
XZ(1) XZ Utils XZ(1)

NAME

xz, unxz, xzcat, lzma, unlzma, lzcat − Compress or decompress .xz and .lzma files

SYNOPSIS

xz [option...] [file...]

COMMAND ALIASES

unxz is equivalent to xz −−decompress.

xzcat is equivalent to xz −−decompress −−stdout.

lzma is equivalent to xz −−format=lzma.

unlzma is equivalent to xz −−format=lzma −−decompress.

lzcat is equivalent to xz −−format=lzma −−decompress −−stdout.

When writing scripts that need to decompress files, it is recommended to always use the name xz

with appropriate arguments (xz −d or xz −dc) instead of the names unxz and xzcat.

DESCRIPTION

xz is a general-purpose data compression tool with command line syntax similar to gzip(1) and

bzip2(1). The native file format is the .xz format, but the legacy .lzma format used by LZMA

Utils and raw compressed streams with no container format headers are also supported.

xz compresses or decompresses each file according to the selected operation mode. If no files

are given or file is −, xz reads from standard input and writes the processed data to standard out-

put. xz will refuse (display an error and skip the file) to write compressed data to standard output

if it is a terminal. Similarly, xz will refuse to read compressed data from standard input if it is a

terminal.

Unless −−stdout is specified, files other than − are written to a new file whose name is derived

from the source file name:

• When compressing, the suffix of the target file format (.xz or .lzma) is appended to the source

filename to get the target filename.

• When decompressing, the .xz or .lzma suffix is removed from the filename to get the target

filename. xz also recognizes the suffixes .txz and .tlz, and replaces them with the .tar suffix.

If the target file already exists, an error is displayed and the file is skipped.

Unless writing to standard output, xz will display a warning and skip the file if any of the follow-

ing applies:

• File is not a regular file. Symbolic links are not followed, and thus they are not considered to

be regular files.

• File has more than one hard link.

• File has setuid, setgid, or sticky bit set.

• The operation mode is set to compress and the file already has a suffix of the target file for-

mat (.xz or .txz when compressing to the .xz format, and .lzma or .tlz when compressing to

the .lzma format).

Tukaani 2022-08-22 1

XZ(1) XZ Utils XZ(1)

• The operation mode is set to decompress and the file doesn’t hav e a suffix of any of the sup-

ported file formats (.xz, .txz, .lzma, or .tlz).

After successfully compressing or decompressing the file, xz copies the owner, group, permis-

sions, access time, and modification time from the source file to the target file. If copying the

group fails, the permissions are modified so that the target file doesn’t become accessible to users

who didn’t hav e permission to access the source file. xz doesn’t support copying other metadata

like access control lists or extended attributes yet.

Once the target file has been successfully closed, the source file is removed unless −−keep was

specified. The source file is never removed if the output is written to standard output.

Sending SIGINFO or SIGUSR1 to the xz process makes it print progress information to stan-

dard error. This has only limited use since when standard error is a terminal, using −−verbose

will display an automatically updating progress indicator.

Memory usage

The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending on

the compression settings. The settings used when compressing a file determine the memory re-

quirements of the decompressor. Typically the decompressor needs 5 % to 20 % of the amount of

memory that the compressor needed when creating the file. For example, decompressing a file

created with xz −9 currently requires 65 MiB of memory. Still, it is possible to have .xz files that

require several gigabytes of memory to decompress.

Especially users of older systems may find the possibility of very large memory usage annoying.

To prevent uncomfortable surprises, xz has a built-in memory usage limiter, which is disabled by

default. While some operating systems provide ways to limit the memory usage of processes, re-

lying on it wasn’t deemed to be flexible enough (for example, using ulimit(1) to limit virtual

memory tends to cripple mmap(2)).

The memory usage limiter can be enabled with the command line option −−memlimit=limit. Of-

ten it is more convenient to enable the limiter by default by setting the environment variable

XZ_DEFAULTS, for example, XZ_DEFAULTS=−−memlimit=150MiB. It is possible to set

the limits separately for compression and decompression by using −−memlimit−compress=limit

and −−memlimit−decompress=limit. Using these two options outside XZ_DEFAULTS is

rarely useful because a single run of xz cannot do both compression and decompression and

−−memlimit=limit (or −M limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing, xz will display an error

and decompressing the file will fail. If the limit is exceeded when compressing, xz will try to

scale the settings down so that the limit is no longer exceeded (except when using −−for-

mat=raw or −−no−adjust). This way the operation won’t fail unless the limit is very small. The

scaling of the settings is done in steps that don’t match the compression level presets, for exam-

ple, if the limit is only slightly less than the amount required for xz −9, the settings will be scaled

down only a little, not all the way down to xz −8.

Concatenation and padding with .xz files

It is possible to concatenate .xz files as is. xz will decompress such files as if they were a single

.xz file.

Tukaani 2022-08-22 2

XZ(1) XZ Utils XZ(1)

It is possible to insert padding between the concatenated parts or after the last part. The padding

must consist of null bytes and the size of the padding must be a multiple of four bytes. This can

be useful, for example, if the .xz file is stored on a medium that measures file sizes in 512-byte

blocks.

Concatenation and padding are not allowed with .lzma files or raw streams.

OPTIONS

Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily in-

dicate large integers. There must be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2ˆ10). Ki, k, kB, K, and KB are accepted as synonyms

for KiB.

MiB Multiply the integer by 1,048,576 (2ˆ20). Mi, m, M, and MB are accepted as synonyms

for MiB.

GiB Multiply the integer by 1,073,741,824 (2ˆ30). Gi, g, G, and GB are accepted as syn-

onyms for GiB.

The special value max can be used to indicate the maximum integer value supported by the op-

tion.

Operation mode

If multiple operation mode options are given, the last one takes effect.

−z, −−compress

Compress. This is the default operation mode when no operation mode option is speci-

fied and no other operation mode is implied from the command name (for example,

unxz implies −−decompress).

−d, −−decompress, −−uncompress

Decompress.

−t, −−test

Test the integrity of compressed files. This option is equivalent to −−decompress

−−stdout except that the decompressed data is discarded instead of being written to

standard output. No files are created or removed.

−l, −−list

Print information about compressed files. No uncompressed output is produced, and no

files are created or removed. In list mode, the program cannot read the compressed data

from standard input or from other unseekable sources.

The default listing shows basic information about files, one file per line. To get more

detailed information, use also the −−verbose option. For even more information, use

−−verbose twice, but note that this may be slow, because getting all the extra informa-

tion requires many seeks. The width of verbose output exceeds 80 characters, so piping

the output to, for example, less −S may be convenient if the terminal isn’t wide enough.

Tukaani 2022-08-22 3

XZ(1) XZ Utils XZ(1)

The exact output may vary between xz versions and different locales. For machine-

readable output, −−robot −−list should be used.

Operation modifiers

−k, −−keep

Don’t delete the input files.

Since xz 5.2.6, this option also makes xz compress or decompress even if the input is a

symbolic link to a regular file, has more than one hard link, or has the setuid, setgid, or

sticky bit set. The setuid, setgid, and sticky bits are not copied to the target file. In ear-

lier versions this was only done with −−force.

−f, −−force

This option has several effects:

• If the target file already exists, delete it before compressing or decompressing.

• Compress or decompress even if the input is a symbolic link to a regular file, has

more than one hard link, or has the setuid, setgid, or sticky bit set. The setuid, set-

gid, and sticky bits are not copied to the target file.

• When used with −−decompress −−stdout and xz cannot recognize the type of the

source file, copy the source file as is to standard output. This allows xzcat −−force

to be used like cat(1) for files that have not been compressed with xz. Note that in

future, xz might support new compressed file formats, which may make xz decom-

press more types of files instead of copying them as is to standard output. −−for-

mat= format can be used to restrict xz to decompress only a single file format.

−c, −−stdout, −−to−stdout

Write the compressed or decompressed data to standard output instead of a file. This

implies −−keep.

−−single−stream

Decompress only the first .xz stream, and silently ignore possible remaining input data

following the stream. Normally such trailing garbage makes xz display an error.

xz never decompresses more than one stream from .lzma files or raw streams, but this

option still makes xz ignore the possible trailing data after the .lzma file or raw stream.

This option has no effect if the operation mode is not −−decompress or −−test.

−−no−sparse

Disable creation of sparse files. By default, if decompressing into a regular file, xz tries

to make the file sparse if the decompressed data contains long sequences of binary zeros.

It also works when writing to standard output as long as standard output is connected to

a regular file and certain additional conditions are met to make it safe. Creating sparse

files may save disk space and speed up the decompression by reducing the amount of

disk I/O.

Tukaani 2022-08-22 4

XZ(1) XZ Utils XZ(1)

−S .suf, −−suffix=.suf

When compressing, use .suf as the suffix for the target file instead of .xz or .lzma. If

not writing to standard output and the source file already has the suffix .suf , a warning is

displayed and the file is skipped.

When decompressing, recognize files with the suffix .suf in addition to files with the .xz,

.txz, .lzma, or .tlz suffix. If the source file has the suffix .suf , the suffix is removed to

get the target filename.

When compressing or decompressing raw streams (−−format=raw), the suffix must al-

ways be specified unless writing to standard output, because there is no default suffix for

raw streams.

−−files[=file]

Read the filenames to process from file; if file is omitted, filenames are read from stan-

dard input. Filenames must be terminated with the newline character. A dash (−) is

taken as a regular filename; it doesn’t mean standard input. If filenames are given also

as command line arguments, they are processed before the filenames read from file.

−−files0[=file]

This is identical to −−files[=file] except that each filename must be terminated with the

null character.

Basic file format and compression options

−F format, −−format=format

Specify the file format to compress or decompress:

auto This is the default. When compressing, auto is equivalent to xz. When decom-

pressing, the format of the input file is automatically detected. Note that raw

streams (created with −−format=raw) cannot be auto-detected.

xz Compress to the .xz file format, or accept only .xz files when decompressing.

lzma, alone

Compress to the legacy .lzma file format, or accept only .lzma files when de-

compressing. The alternative name alone is provided for backwards compati-

bility with LZMA Utils.

raw Compress or uncompress a raw stream (no headers). This is meant for ad-

vanced users only. To decode raw streams, you need use −−format=raw and

explicitly specify the filter chain, which normally would have been stored in the

container headers.

−C check, −−check=check

Specify the type of the integrity check. The check is calculated from the uncompressed

data and stored in the .xz file. This option has an effect only when compressing into the

.xz format; the .lzma format doesn’t support integrity checks. The integrity check (if

any) is verified when the .xz file is decompressed.

Tukaani 2022-08-22 5

XZ(1) XZ Utils XZ(1)

Supported check types:

none Don’t calculate an integrity check at all. This is usually a bad idea. This can

be useful when integrity of the data is verified by other means anyway.

crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

crc64 Calculate CRC64 using the polynomial from ECMA-182. This is the default,

since it is slightly better than CRC32 at detecting damaged files and the speed

difference is negligible.

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to change

or disable it.

−−ignore−check

Don’t verify the integrity check of the compressed data when decompressing. The

CRC32 values in the .xz headers will still be verified normally.

Do not use this option unless you know what you are doing. Possible reasons to use

this option:

• Trying to recover data from a corrupt .xz file.

• Speeding up decompression. This matters mostly with SHA-256 or with files that

have compressed extremely well. It’s recommended to not use this option for this

purpose unless the file integrity is verified externally in some other way.

−0 ... −9

Select a compression preset level. The default is −6. If multiple preset levels are speci-

fied, the last one takes effect. If a custom filter chain was already specified, setting a

compression preset level clears the custom filter chain.

The differences between the presets are more significant than with gzip(1) and bzip2(1).

The selected compression settings determine the memory requirements of the decom-

pressor, thus using a too high preset level might make it painful to decompress the file

on an old system with little RAM. Specifically, it’s not a good idea to blindly use −9

for everything like it often is with gzip(1) and bzip2(1).

−0 ... −3

These are somewhat fast presets. −0 is sometimes faster than gzip −9 while

compressing much better. The higher ones often have speed comparable to

bzip2(1) with comparable or better compression ratio, although the results de-

pend a lot on the type of data being compressed.

−4 ... −6

Good to very good compression while keeping decompressor memory usage

reasonable even for old systems. −6 is the default, which is usually a good

choice for distributing files that need to be decompressible even on systems

with only 16 MiB RAM. (−5e or −6e may be worth considering too. See

Tukaani 2022-08-22 6

XZ(1) XZ Utils XZ(1)

−−extreme.)

−7 ... −9

These are like −6 but with higher compressor and decompressor memory re-

quirements. These are useful only when compressing files bigger than 8 MiB,

16 MiB, and 32 MiB, respectively.

On the same hardware, the decompression speed is approximately a constant number of

bytes of compressed data per second. In other words, the better the compression, the

faster the decompression will usually be. This also means that the amount of uncom-

pressed output produced per second can vary a lot.

The following table summarises the features of the presets:

Preset DictSize CompCPU CompMem DecMem

−0 256 KiB 0 3 MiB 1 MiB

−1 1 MiB 1 9 MiB 2 MiB

−2 2 MiB 2 17 MiB 3 MiB

−3 4 MiB 3 32 MiB 5 MiB

−4 4 MiB 4 48 MiB 5 MiB

−5 8 MiB 5 94 MiB 9 MiB

−6 8 MiB 6 94 MiB 9 MiB

−7 16 MiB 6 186 MiB 17 MiB

−8 32 MiB 6 370 MiB 33 MiB

−9 64 MiB 6 674 MiB 65 MiB

Column descriptions:

• DictSize is the LZMA2 dictionary size. It is waste of memory to use a dictionary

bigger than the size of the uncompressed file. This is why it is good to avoid using

the presets −7 ... −9 when there’s no real need for them. At −6 and lower, the

amount of memory wasted is usually low enough to not matter.

• CompCPU is a simplified representation of the LZMA2 settings that affect compres-

sion speed. The dictionary size affects speed too, so while CompCPU is the same

for levels −6 ... −9, higher levels still tend to be a little slower. To get even slower

and thus possibly better compression, see −−extreme.

• CompMem contains the compressor memory requirements in the single-threaded

mode. It may vary slightly between xz versions. Memory requirements of some of

the future multithreaded modes may be dramatically higher than that of the single-

threaded mode.

• DecMem contains the decompressor memory requirements. That is, the compres-

sion settings determine the memory requirements of the decompressor. The exact

decompressor memory usage is slightly more than the LZMA2 dictionary size, but

the values in the table have been rounded up to the next full MiB.

Tukaani 2022-08-22 7

XZ(1) XZ Utils XZ(1)

−e, −−extreme

Use a slower variant of the selected compression preset level (−0 ... −9) to hopefully get

a little bit better compression ratio, but with bad luck this can also make it worse. De-

compressor memory usage is not affected, but compressor memory usage increases a lit-

tle at preset levels −0 ... −3.

Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets −3e and

−5e use slightly faster settings (lower CompCPU) than −4e and −6e, respectively. That

way no two presets are identical.

Preset DictSize CompCPU CompMem DecMem

−0e 256 KiB 8 4 MiB 1 MiB

−1e 1 MiB 8 13 MiB 2 MiB

−2e 2 MiB 8 25 MiB 3 MiB

−3e 4 MiB 7 48 MiB 5 MiB

−4e 4 MiB 8 48 MiB 5 MiB

−5e 8 MiB 7 94 MiB 9 MiB

−6e 8 MiB 8 94 MiB 9 MiB

−7e 16 MiB 8 186 MiB 17 MiB

−8e 32 MiB 8 370 MiB 33 MiB

−9e 64 MiB 8 674 MiB 65 MiB

For example, there are a total of four presets that use 8 MiB dictionary, whose order

from the fastest to the slowest is −5, −6, −5e, and −6e.

−−fast

−−best These are somewhat misleading aliases for −0 and −9, respectively. These are provided

only for backwards compatibility with LZMA Utils. Av oid using these options.

−−block−size=size

When compressing to the .xz format, split the input data into blocks of size bytes. The

blocks are compressed independently from each other, which helps with multi-threading

and makes limited random-access decompression possible. This option is typically used

to override the default block size in multi-threaded mode, but this option can be used in

single-threaded mode too.

In multi-threaded mode about three times size bytes will be allocated in each thread for

buffering input and output. The default size is three times the LZMA2 dictionary size or

1 MiB, whichever is more. Typically a good value is 2–4 times the size of the LZMA2

dictionary or at least 1 MiB. Using size less than the LZMA2 dictionary size is waste of

RAM because then the LZMA2 dictionary buffer will never get fully used. The sizes of

the blocks are stored in the block headers, which a future version of xz will use for

multi-threaded decompression.

In single-threaded mode no block splitting is done by default. Setting this option

doesn’t affect memory usage. No size information is stored in block headers, thus files

created in single-threaded mode won’t be identical to files created in multi-threaded

mode. The lack of size information also means that a future version of xz won’t be able

decompress the files in multi-threaded mode.

Tukaani 2022-08-22 8

XZ(1) XZ Utils XZ(1)

−−block−list=sizes

When compressing to the .xz format, start a new block after the given intervals of un-

compressed data.

The uncompressed sizes of the blocks are specified as a comma-separated list. Omitting

a size (two or more consecutive commas) is a shorthand to use the size of the previous

block.

If the input file is bigger than the sum of sizes, the last value in sizes is repeated until the

end of the file. A special value of 0 may be used as the last value to indicate that the rest

of the file should be encoded as a single block.

If one specifies sizes that exceed the encoder’s block size (either the default value in

threaded mode or the value specified with −−block−size=size), the encoder will create

additional blocks while keeping the boundaries specified in sizes. For example, if one

specifies −−block−size=10MiB −−block−list=5MiB,10MiB,8MiB,12MiB,24MiB and

the input file is 80 MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1

MiB.

In multi-threaded mode the sizes of the blocks are stored in the block headers. This isn’t

done in single-threaded mode, so the encoded output won’t be identical to that of the

multi-threaded mode.

−−flush−timeout=timeout

When compressing, if more than timeout milliseconds (a positive integer) has passed

since the previous flush and reading more input would block, all the pending input data

is flushed from the encoder and made available in the output stream. This can be useful

if xz is used to compress data that is streamed over a network. Small timeout values

make the data available at the receiving end with a small delay, but large timeout values

give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last

one takes effect. The special timeout value of 0 can be used to explicitly disable this

feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the

stream in real time due to how xz does buffering.

−−memlimit−compress=limit

Set a memory usage limit for compression. If this option is specified multiple times, the

last one takes effect.

If the compression settings exceed the limit, xz will attempt to adjust the settings down-

wards so that the limit is no longer exceeded and display a notice that automatic adjust-

ment was done. The adjustments are done in this order: reducing the number of threads,

switching to single-threaded mode if even one thread in multi-threaded mode exceeds

the limit, and finally reducing the LZMA2 dictionary size.

Tukaani 2022-08-22 9

XZ(1) XZ Utils XZ(1)

When compressing with −−format=raw or if −−no−adjust has been specified, only the

number of threads may be reduced since it can be done without affecting the compressed

output.

If the limit cannot be met even with the adjustments described above, an error is dis-

played and xz will exit with exit status 1.

The limit can be specified in multiple ways:

• The limit can be an absolute value in bytes. Using an integer suffix like MiB can be

useful. Example: −−memlimit−compress=80MiB

• The limit can be specified as a percentage of total physical memory (RAM). This

can be useful especially when setting the XZ_DEFAULTS environment variable in a

shell initialization script that is shared between different computers. That way the

limit is automatically bigger on systems with more memory. Example: −−mem-

limit−compress=70%

• The limit can be reset back to its default value by setting it to 0. This is currently

equivalent to setting the limit to max (no memory usage limit).

For 32-bit xz there is a special case: if the limit would be over 4020 MiB, the limit is set

to 4020 MiB. On MIPS32 2000 MiB is used instead. (The values 0 and max aren’t af-

fected by this. A similar feature doesn’t exist for decompression.) This can be helpful

when a 32-bit executable has access to 4 GiB address space (2 GiB on MIPS32) while

hopefully doing no harm in other situations.

See also the section Memory usage.

−−memlimit−decompress=limit

Set a memory usage limit for decompression. This also affects the −−list mode. If the

operation is not possible without exceeding the limit, xz will display an error and de-

compressing the file will fail. See −−memlimit−compress=limit for possible ways to

specify the limit.

−−memlimit−mt−decompress=limit

Set a memory usage limit for multi-threaded decompression. This can only affect the

number of threads; this will never make xz refuse to decompress a file. If limit is too

low to allow any multi-threading, the limit is ignored and xz will continue in single-

threaded mode. Note that if also −−memlimit−decompress is used, it will always apply

to both single-threaded and multi-threaded modes, and so the effective limit for multi-

threading will never be higher than the limit set with −−memlimit−decompress.

In contrast to the other memory usage limit options, −−memlimit−mt−decom-

press=limit has a system-specific default limit. xz −−info−memory can be used to see

the current value.

This option and its default value exist because without any limit the threaded decom-

pressor could end up allocating an insane amount of memory with some input files. If

the default limit is too low on your system, feel free to increase the limit but nev er set it

Tukaani 2022-08-22 10

XZ(1) XZ Utils XZ(1)

to a value larger than the amount of usable RAM as with appropriate input files xz will

attempt to use that amount of memory even with a low number of threads. Running out

of memory or swapping will not improve decompression performance.

See −−memlimit−compress=limit for possible ways to specify the limit. Setting limit

to 0 resets the limit to the default system-specific value.

−M limit, −−memlimit=limit, −−memory=limit

This is equivalent to specifying −−memlimit−compress=limit −−memlimit-decom-

press=limit −−memlimit−mt−decompress=limit.

−−no−adjust

Display an error and exit if the memory usage limit cannot be met without adjusting set-

tings that affect the compressed output. That is, this prevents xz from switching the en-

coder from multi-threaded mode to single-threaded mode and from reducing the

LZMA2 dictionary size. Even when this option is used the number of threads may be

reduced to meet the memory usage limit as that won’t affect the compressed output.

Automatic adjusting is always disabled when creating raw streams (−−format=raw).

−T threads, −−threads=threads

Specify the number of worker threads to use. Setting threads to a special value 0 makes

xz use up to as many threads as the processor(s) on the system support. The actual num-

ber of threads can be fewer than threads if the input file is not big enough for threading

with the given settings or if using more threads would exceed the memory usage limit.

The single-threaded and multi-threaded compressors produce different output. Single-

threaded compressor will give the smallest file size but only the output from the multi-

threaded compressor can be decompressed using multiple threads. Setting threads to 1

will use the single-threaded mode. Setting threads to any other value, including 0, will

use the multi-threaded compressor even if the system supports only one hardware

thread. (xz 5.2.x used single-threaded mode in this situation.)

If an automatic number of threads has been requested and no memory usage limit has

been specified, then a system-specific default soft limit will be used to possibly limit the

number of threads. It is a soft limit in sense that it is ignored if the number of threads

becomes one, thus a soft limit will never stop xz from compressing or decompressing.

This default soft limit will not make xz switch from multi-threaded mode to single-

threaded mode. The active limits can be seen with xz −−info−memory.

Currently the only threading method is to split the input into blocks and compress them

independently from each other. The default block size depends on the compression level

and can be overridden with the −−block−size=size option.

Threaded decompression only works on files that contain multiple blocks with size in-

formation in block headers. All large enough files compressed in multi-threaded mode

meet this condition, but files compressed in single-threaded mode don’t even if

−−block−size=size has been used.

Tukaani 2022-08-22 11

XZ(1) XZ Utils XZ(1)

Custom compressor filter chains

A custom filter chain allows specifying the compression settings in detail instead of relying on

the settings associated to the presets. When a custom filter chain is specified, preset options (−0

... −9 and −−extreme) earlier on the command line are forgotten. If a preset option is specified

after one or more custom filter chain options, the new preset takes effect and the custom filter

chain options specified earlier are forgotten.

A filter chain is comparable to piping on the command line. When compressing, the uncom-

pressed input goes to the first filter, whose output goes to the next filter (if any). The output of

the last filter gets written to the compressed file. The maximum number of filters in the chain is

four, but typically a filter chain has only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work only

as the last filter in the chain, some only as a non-last filter, and some work in any position in the

chain. Depending on the filter, this limitation is either inherent to the filter design or exists to

prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are wanted

in the filter chain. That is, the order of filter options is significant! When decoding raw streams

(−−format=raw), the filter chain is specified in the same order as it was specified when com-

pressing.

Filters take filter-specific options as a comma-separated list. Extra commas in options are ig-

nored. Every option has a default value, so you need to specify only those you want to change.

To see the whole filter chain and options, use xz −vv (that is, use −−verbose twice). This works

also for viewing the filter chain options used by presets.

−−lzma1[=options]

−−lzma2[=options]

Add LZMA1 or LZMA2 filter to the filter chain. These filters can be used only as the

last filter in the chain.

LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma file

format, which supports only LZMA1. LZMA2 is an updated version of LZMA1 to fix

some practical issues of LZMA1. The .xz format uses LZMA2 and doesn’t support

LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA2 are practically

the same.

LZMA1 and LZMA2 share the same set of options:

preset= preset

Reset all LZMA1 or LZMA2 options to preset. Preset consist of an integer,

which may be followed by single-letter preset modifiers. The integer can be

from 0 to 9, matching the command line options −0 ... −9. The only supported

modifier is currently e, which matches −−extreme. If no preset is specified,

the default values of LZMA1 or LZMA2 options are taken from the preset 6.

Tukaani 2022-08-22 12

XZ(1) XZ Utils XZ(1)

dict=size

Dictionary (history buffer) size indicates how many bytes of the recently pro-

cessed uncompressed data is kept in memory. The algorithm tries to find re-

peating byte sequences (matches) in the uncompressed data, and replace them

with references to the data currently in the dictionary. The bigger the dictio-

nary, the higher is the chance to find a match. Thus, increasing dictionary size

usually improves compression ratio, but a dictionary bigger than the uncom-

pressed file is waste of memory.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB.

The maximum for compression is currently 1.5 GiB (1536 MiB). The decom-

pressor already supports dictionaries up to one byte less than 4 GiB, which is

the maximum for the LZMA1 and LZMA2 stream formats.

Dictionary size and match finder (mf) together determine the memory usage of

the LZMA1 or LZMA2 encoder. The same (or bigger) dictionary size is re-

quired for decompressing that was used when compressing, thus the memory

usage of the decoder is determined by the dictionary size used when compress-

ing. The .xz headers store the dictionary size either as 2ˆn or 2ˆn + 2ˆ(n−1), so

these sizes are somewhat preferred for compression. Other sizes will get

rounded up when stored in the .xz headers.

lc=lc Specify the number of literal context bits. The minimum is 0 and the maxi-

mum is 4; the default is 3. In addition, the sum of lc and lp must not exceed 4.

All bytes that cannot be encoded as matches are encoded as literals. That is,

literals are simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highest lc bits of the previous

uncompressed byte correlate with the next byte. For example, in typical Eng-

lish text, an upper-case letter is often followed by a lower-case letter, and a

lower-case letter is usually followed by another lower-case letter. In the US-

ASCII character set, the highest three bits are 010 for upper-case letters and

011 for lower-case letters. When lc is at least 3, the literal coding can take ad-

vantage of this property in the uncompressed data.

The default value (3) is usually good. If you want maximum compression, test

lc=4. Sometimes it helps a little, and sometimes it makes compression worse.

If it makes it worse, test lc=2 too.

lp=lp Specify the number of literal position bits. The minimum is 0 and the maxi-

mum is 4; the default is 0.

Lp affects what kind of alignment in the uncompressed data is assumed when

encoding literals. See pb below for more information about alignment.

pb= pb Specify the number of position bits. The minimum is 0 and the maximum is 4;

the default is 2.

Tukaani 2022-08-22 13

XZ(1) XZ Utils XZ(1)

Pb affects what kind of alignment in the uncompressed data is assumed in gen-

eral. The default means four-byte alignment (2ˆ pb=2ˆ2=4), which is often a

good choice when there’s no better guess.

When the alignment is known, setting pb accordingly may reduce the file size a

little. For example, with text files having one-byte alignment (US-ASCII,

ISO-8859-*, UTF-8), setting pb=0 can improve compression slightly. For

UTF-16 text, pb=1 is a good choice. If the alignment is an odd number like 3

bytes, pb=0 might be the best choice.

Even though the assumed alignment can be adjusted with pb and lp, LZMA1

and LZMA2 still slightly favor 16-byte alignment. It might be worth taking

into account when designing file formats that are likely to be often compressed

with LZMA1 or LZMA2.

mf=mf Match finder has a major effect on encoder speed, memory usage, and com-

pression ratio. Usually Hash Chain match finders are faster than Binary Tree

match finders. The default depends on the preset: 0 uses hc3, 1–3 use hc4, and

the rest use bt4.

The following match finders are supported. The memory usage formulas below

are rough approximations, which are closest to the reality when dict is a power

of two.

hc3 Hash Chain with 2- and 3-byte hashing

Minimum value for nice: 3

Memory usage:

dict * 7.5 (if dict <= 16 MiB);

dict * 5.5 + 64 MiB (if dict > 16 MiB)

hc4 Hash Chain with 2-, 3-, and 4-byte hashing

Minimum value for nice: 4

Memory usage:

dict * 7.5 (if dict <= 32 MiB);

dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing

Minimum value for nice: 2

Memory usage: dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing

Minimum value for nice: 3

Memory usage:

dict * 11.5 (if dict <= 16 MiB);

dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing

Minimum value for nice: 4

Memory usage:

dict * 11.5 (if dict <= 32 MiB);

Tukaani 2022-08-22 14

XZ(1) XZ Utils XZ(1)

dict * 10.5 (if dict > 32 MiB)

mode=mode

Compression mode specifies the method to analyze the data produced by the

match finder. Supported modes are fast and normal. The default is fast for

presets 0–3 and normal for presets 4–9.

Usually fast is used with Hash Chain match finders and normal with Binary

Tree match finders. This is also what the presets do.

nice=nice

Specify what is considered to be a nice length for a match. Once a match of at

least nice bytes is found, the algorithm stops looking for possibly better

matches.

Nice can be 2–273 bytes. Higher values tend to give better compression ratio

at the expense of speed. The default depends on the preset.

depth=depth

Specify the maximum search depth in the match finder. The default is the spe-

cial value of 0, which makes the compressor determine a reasonable depth from

mf and nice.

Reasonable depth for Hash Chains is 4–100 and 16–1000 for Binary Trees.

Using very high values for depth can make the encoder extremely slow with

some files. Av oid setting the depth over 1000 unless you are prepared to inter-

rupt the compression in case it is taking far too long.

When decoding raw streams (−−format=raw), LZMA2 needs only the dictionary size.

LZMA1 needs also lc, lp, and pb.

−−x86[=options]

−−powerpc[=options]

−−ia64[=options]

−−arm[=options]

−−armthumb[=options]

−−sparc[=options]

Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only as

a non-last filter in the filter chain.

A BCJ filter converts relative addresses in the machine code to their absolute counter-

parts. This doesn’t change the size of the data, but it increases redundancy, which can

help LZMA2 to produce 0–15 % smaller .xz file. The BCJ filters are always reversible,

so using a BCJ filter for wrong type of data doesn’t cause any data loss, although it may

make the compression ratio slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only on

the executable section. Applying a BCJ filter on an archive that contains both exe-

cutable and non-executable files may or may not give good results, so it generally isn’t

good to blindly apply a BCJ filter when compressing binary packages for distribution.

Tukaani 2022-08-22 15

XZ(1) XZ Utils XZ(1)

These BCJ filters are very fast and use insignificant amount of memory. If a BCJ filter

improves compression ratio of a file, it can improve decompression speed at the same

time. This is because, on the same hardware, the decompression speed of LZMA2 is

roughly a fixed number of bytes of compressed data per second.

These BCJ filters have known problems related to the compression ratio:

• Some types of files containing executable code (for example, object files, static li-

braries, and Linux kernel modules) have the addresses in the instructions filled with

filler values. These BCJ filters will still do the address conversion, which will make

the compression worse with these files.

• Applying a BCJ filter on an archive containing multiple similar executables can

make the compression ratio worse than not using a BCJ filter. This is because the

BCJ filter doesn’t detect the boundaries of the executable files, and doesn’t reset the

address conversion counter for each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ filters

will still be useful in embedded systems, because the decoder of the new filter will be

bigger and use more memory.

Different instruction sets have different alignment:

Filter Alignment Notes

x86 1 32-bit or 64-bit x86

PowerPC 4 Big endian only

ARM 4 Little endian only

ARM-Thumb 2 Little endian only

IA-64 16 Big or little endian

SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA2, the compression ratio

may be improved slightly if the LZMA2 options are set to match the alignment of the

selected BCJ filter. For example, with the IA-64 filter, it’s good to set pb=4 with

LZMA2 (2ˆ4=16). The x86 filter is an exception; it’s usually good to stick to LZMA2’s

default four-byte alignment when compressing x86 executables.

All BCJ filters support the same options:

start=offset

Specify the start offset that is used when converting between relative and abso-

lute addresses. The offset must be a multiple of the alignment of the filter (see

the table above). The default is zero. In practice, the default is good; specify-

ing a custom offset is almost never useful.

−−delta[=options]

Add the Delta filter to the filter chain. The Delta filter can be only used as a non-last fil-

ter in the filter chain.

Tukaani 2022-08-22 16

XZ(1) XZ Utils XZ(1)

Currently only simple byte-wise delta calculation is supported. It can be useful when

compressing, for example, uncompressed bitmap images or uncompressed PCM audio.

However, special purpose algorithms may give significantly better results than Delta +

LZMA2. This is true especially with audio, which compresses faster and better, for ex-

ample, with flac(1).

Supported options:

dist=distance

Specify the distance of the delta calculation in bytes. distance must be 1–256.

The default is 1.

For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the

output will be A1 B1 01 02 01 02 01 02.

Other options

−q, −−quiet

Suppress warnings and notices. Specify this twice to suppress errors too. This option

has no effect on the exit status. That is, even if a warning was suppressed, the exit status

to indicate a warning is still used.

−v, −−verbose

Be verbose. If standard error is connected to a terminal, xz will display a progress indi-

cator. Specifying −−verbose twice will give even more verbose output.

The progress indicator shows the following information:

• Completion percentage is shown if the size of the input file is known. That is, the

percentage cannot be shown in pipes.

• Amount of compressed data produced (compressing) or consumed (decompressing).

• Amount of uncompressed data consumed (compressing) or produced (decompress-

ing).

• Compression ratio, which is calculated by dividing the amount of compressed data

processed so far by the amount of uncompressed data processed so far.

• Compression or decompression speed. This is measured as the amount of uncom-

pressed data consumed (compression) or produced (decompression) per second. It is

shown after a few seconds have passed since xz started processing the file.

• Elapsed time in the format M:SS or H:MM:SS.

• Estimated remaining time is shown only when the size of the input file is known and

a couple of seconds have already passed since xz started processing the file. The

time is shown in a less precise format which never has any colons, for example, 2

min 30 s.

When standard error is not a terminal, −−verbose will make xz print the filename, com-

pressed size, uncompressed size, compression ratio, and possibly also the speed and

Tukaani 2022-08-22 17

XZ(1) XZ Utils XZ(1)

elapsed time on a single line to standard error after compressing or decompressing the

file. The speed and elapsed time are included only when the operation took at least a

few seconds. If the operation didn’t finish, for example, due to user interruption, also

the completion percentage is printed if the size of the input file is known.

−Q, −−no−warn

Don’t set the exit status to 2 even if a condition worth a warning was detected. This op-

tion doesn’t affect the verbosity level, thus both −−quiet and −−no−warn have to be

used to not display warnings and to not alter the exit status.

−−robot

Print messages in a machine-parsable format. This is intended to ease writing frontends

that want to use xz instead of liblzma, which may be the case with various scripts. The

output with this option enabled is meant to be stable across xz releases. See the section

ROBOT MODE for details.

−−info−memory

Display, in human-readable format, how much physical memory (RAM) and how many

processor threads xz thinks the system has and the memory usage limits for compression

and decompression, and exit successfully.

−h, −−help

Display a help message describing the most commonly used options, and exit success-

fully.

−H, −−long−help

Display a help message describing all features of xz, and exit successfully

−V, −−version

Display the version number of xz and liblzma in human readable format. To get ma-

chine-parsable output, specify −−robot before −−version.

ROBOT MODE

The robot mode is activated with the −−robot option. It makes the output of xz easier to parse by

other programs. Currently −−robot is supported only together with −−version, −−info−mem-

ory, and −−list. It will be supported for compression and decompression in the future.

Version

xz −−robot −−version will print the version number of xz and liblzma in the following format:

XZ_VERSION=XYYYZZZS

LIBLZMA_VERSION=XYYYZZZS

X Major version.

YYY Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.

ZZZ Patch level for stable releases or just a counter for development releases.

S Stability. 0 is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY is even.

Tukaani 2022-08-22 18

XZ(1) XZ Utils XZ(1)

XYYYZZZS are the same on both lines if xz and liblzma are from the same XZ Utils release.

Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

Memory limit information

xz −−robot −−info−memory prints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes. A special value of zero indicates the default

setting, which for single-threaded mode is the same as no limit.

3. Memory usage limit for decompression in bytes. A special value of zero indicates the de-

fault setting, which for single-threaded mode is the same as no limit.

In the future, the output of xz −−robot −−info−memory may have more columns, but never more

than a single line.

List mode

xz −−robot −−list uses tab-separated output. The first column of every line has a string that indi-

cates the type of the information found on that line:

name This is always the first line when starting to list a file. The second column on the line is

the filename.

file This line contains overall information about the .xz file. This line is always printed after

the name line.

stream This line type is used only when −−verbose was specified. There are as many stream

lines as there are streams in the .xz file.

block This line type is used only when −−verbose was specified. There are as many block

lines as there are blocks in the .xz file. The block lines are shown after all the stream

lines; different line types are not interleaved.

summary

This line type is used only when −−verbose was specified twice. This line is printed af-

ter all block lines. Like the file line, the summary line contains overall information

about the .xz file.

totals This line is always the very last line of the list output. It shows the total counts and

sizes.

The columns of the file lines:

2. Number of streams in the file

3. Total number of blocks in the stream(s)

4. Compressed size of the file

5. Uncompressed size of the file

6. Compression ratio, for example, 0.123. If ratio is over 9.999, three dashes (−−−)

are displayed instead of the ratio.

Tukaani 2022-08-22 19

XZ(1) XZ Utils XZ(1)

7. Comma-separated list of integrity check names. The following strings are used for

the known check types: None, CRC32, CRC64, and SHA−256. For unknown

check types, Unknown−N is used, where N is the Check ID as a decimal number

(one or two digits).

8. Total size of stream padding in the file

The columns of the stream lines:

2. Stream number (the first stream is 1)

3. Number of blocks in the stream

4. Compressed start offset

5. Uncompressed start offset

6. Compressed size (does not include stream padding)

7. Uncompressed size

8. Compression ratio

9. Name of the integrity check

10. Size of stream padding

The columns of the block lines:

2. Number of the stream containing this block

3. Block number relative to the beginning of the stream (the first block is 1)

4. Block number relative to the beginning of the file

5. Compressed start offset relative to the beginning of the file

6. Uncompressed start offset relative to the beginning of the file

7. Total compressed size of the block (includes headers)

8. Uncompressed size

9. Compression ratio

10. Name of the integrity check

If −−verbose was specified twice, additional columns are included on the block lines. These are

not displayed with a single −−verbose, because getting this information requires many seeks and

can thus be slow:

11. Value of the integrity check in hexadecimal

12. Block header size

13. Block flags: c indicates that compressed size is present, and u indicates that uncom-

pressed size is present. If the flag is not set, a dash (−) is shown instead to keep the

string length fixed. New flags may be added to the end of the string in the future.

14. Size of the actual compressed data in the block (this excludes the block header,

block padding, and check fields)

15. Amount of memory (in bytes) required to decompress this block with this xz ver-

sion

16. Filter chain. Note that most of the options used at compression time cannot be

known, because only the options that are needed for decompression are stored in

the .xz headers.

The columns of the summary lines:

2. Amount of memory (in bytes) required to decompress this file with this xz version

3. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them

Since xz 5.1.2alpha:

Tukaani 2022-08-22 20

XZ(1) XZ Utils XZ(1)

4. Minimum xz version required to decompress the file

The columns of the totals line:

2. Number of streams

3. Number of blocks

4. Compressed size

5. Uncompressed size

6. Av erage compression ratio

7. Comma-separated list of integrity check names that were present in the files

8. Stream padding size

9. Number of files. This is here to keep the order of the earlier columns the same as

on file lines.

If −−verbose was specified twice, additional columns are included on the totals line:

10. Maximum amount of memory (in bytes) required to decompress the files with this

xz version

11. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them

Since xz 5.1.2alpha:

12. Minimum xz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line types,

but the existing columns won’t be changed.

EXIT STATUS

0 All is good.

1 An error occurred.

2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT

xz parses space-separated lists of options from the environment variables XZ_DEFAULTS and

XZ_OPT, in this order, before parsing the options from the command line. Note that only op-

tions are parsed from the environment variables; all non-options are silently ignored. Parsing is

done with getopt_long(3) which is used also for the command line arguments.

XZ_DEFAULTS

User-specific or system-wide default options. Typically this is set in a shell initialization

script to enable xz’s memory usage limiter by default. Excluding shell initialization

scripts and similar special cases, scripts must never set or unset XZ_DEFAULTS.

XZ_OPT

This is for passing options to xz when it is not possible to set the options directly on the

xz command line. This is the case when xz is run by a script or tool, for example, GNU

tar(1):

XZ_OPT=−2v tar caf foo.tar.xz foo

Tukaani 2022-08-22 21

XZ(1) XZ Utils XZ(1)

Scripts may use XZ_OPT, for example, to set script-specific default compression op-

tions. It is still recommended to allow users to override XZ_OPT if that is reasonable.

For example, in sh(1) scripts one may use something like this:

XZ_OPT=${XZ_OPT−"−7e"}
export XZ_OPT

LZMA UTILS COMPATIBILITY

The command line syntax of xz is practically a superset of lzma, unlzma, and lzcat as found

from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Utils

without breaking existing scripts. There are some incompatibilities though, which may some-

times cause problems.

Compression preset levels

The numbering of the compression level presets is not identical in xz and LZMA Utils. The most

important difference is how dictionary sizes are mapped to different presets. Dictionary size is

roughly equal to the decompressor memory usage.

Level xz LZMA Utils

−0 256 KiB N/A

−1 1 MiB 64 KiB

−2 2 MiB 1 MiB

−3 4 MiB 512 KiB

−4 4 MiB 1 MiB

−5 8 MiB 2 MiB

−6 8 MiB 4 MiB

−7 16 MiB 8 MiB

−8 32 MiB 16 MiB

−9 64 MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some other

differences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level xz LZMA Utils 4.32.x

−0 3 MiB N/A

−1 9 MiB 2 MiB

−2 17 MiB 12 MiB

−3 32 MiB 12 MiB

−4 48 MiB 16 MiB

−5 94 MiB 26 MiB

−6 94 MiB 45 MiB

−7 186 MiB 83 MiB

−8 370 MiB 159 MiB

−9 674 MiB 311 MiB

The default preset level in LZMA Utils is −7 while in XZ Utils it is −6, so both use an 8 MiB dic-

tionary by default.

Tukaani 2022-08-22 22

XZ(1) XZ Utils XZ(1)

Streamed vs. non-streamed .lzma files

The uncompressed size of the file can be stored in the .lzma header. LZMA Utils does that when

compressing regular files. The alternative is to mark that uncompressed size is unknown and use

end-of-payload marker to indicate where the decompressor should stop. LZMA Utils uses this

method when uncompressed size isn’t known, which is the case, for example, in pipes.

xz supports decompressing .lzma files with or without end-of-payload marker, but all .lzma files

created by xz will use end-of-payload marker and have uncompressed size marked as unknown in

the .lzma header. This may be a problem in some uncommon situations. For example, a .lzma

decompressor in an embedded device might work only with files that have known uncompressed

size. If you hit this problem, you need to use LZMA Utils or LZMA SDK to create .lzma files

with known uncompressed size.

Unsupported .lzma files

The .lzma format allows lc values up to 8, and lp values up to 4. LZMA Utils can decompress

files with any lc and lp, but always creates files with lc=3 and lp=0. Creating files with other lc

and lp is possible with xz and with LZMA SDK.

The implementation of the LZMA1 filter in liblzma requires that the sum of lc and lp must not

exceed 4. Thus, .lzma files, which exceed this limitation, cannot be decompressed with xz.

LZMA Utils creates only .lzma files which have a dictionary size of 2ˆn (a power of 2) but ac-

cepts files with any dictionary size. liblzma accepts only .lzma files which have a dictionary size

of 2ˆn or 2ˆn + 2ˆ(n−1). This is to decrease false positives when detecting .lzma files.

These limitations shouldn’t be a problem in practice, since practically all .lzma files have been

compressed with settings that liblzma will accept.

Trailing garbage

When decompressing, LZMA Utils silently ignore everything after the first .lzma stream. In

most situations, this is a bug. This also means that LZMA Utils don’t support decompressing

concatenated .lzma files.

If there is data left after the first .lzma stream, xz considers the file to be corrupt unless −−sin-

gle−stream was used. This may break obscure scripts which have assumed that trailing garbage

is ignored.

NOTES

Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary between

XZ Utils versions even if compression options are identical. This is because the encoder can be

improved (faster or better compression) without affecting the file format. The output can vary

ev en between different builds of the same XZ Utils version, if different build options are used.

The above means that once −−rsyncable has been implemented, the resulting files won’t neces-

sarily be rsyncable unless both old and new files have been compressed with the same xz version.

This problem can be fixed if a part of the encoder implementation is frozen to keep rsyncable out-

put stable across xz versions.

Tukaani 2022-08-22 23

XZ(1) XZ Utils XZ(1)

Embedded .xz decompressors

Embedded .xz decompressor implementations like XZ Embedded don’t necessarily support files

created with integrity check types other than none and crc32. Since the default is

−−check=crc64, you must use −−check=none or −−check=crc32 when creating files for embed-

ded systems.

Outside embedded systems, all .xz format decompressors support all the check types, or at least

are able to decompress the file without verifying the integrity check if the particular check is not

supported.

XZ Embedded supports BCJ filters, but only with the default start offset.

EXAMPLES

Basics

Compress the file foo into foo.xz using the default compression level (−6), and remove foo if

compression is successful:

xz foo

Decompress bar.xz into bar and don’t remove bar.xz ev en if decompression is successful:

xz −dk bar.xz

Create baz.tar.xz with the preset −4e (−4 −−extreme), which is slower than the default −6, but

needs less memory for compression and decompression (48 MiB and 5 MiB, respectively):

tar cf − baz | xz −4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a sin-

gle command:

xz −dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Parallel compression of many files

On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many files:

find . −type f \! −name ’*.xz’ −print0 \
| xargs −0r −P4 −n16 xz −T1

The −P option to xargs(1) sets the number of parallel xz processes. The best value for the −n op-

tion depends on how many files there are to be compressed. If there are only a couple of files, the

value should probably be 1; with tens of thousands of files, 100 or even more may be appropriate

to reduce the number of xz processes that xargs(1) will eventually create.

The option −T1 for xz is there to force it to single-threaded mode, because xargs(1) is used to

control the amount of parallelization.

Robot mode

Calculate how many bytes have been saved in total after compressing multiple files:

xz −−robot −−list *.xz | awk ’/ˆtotals/{print $5−$4}’

Tukaani 2022-08-22 24

XZ(1) XZ Utils XZ(1)

A script may want to know that it is using new enough xz. The following sh(1) script checks that

the version number of the xz tool is at least 5.0.0. This method is compatible with old beta ver-

sions, which didn’t support the −−robot option:

if ! eval "$(xz −−robot −−version 2> /dev/null)" ||
["$XZ_VERSION" −lt 50000002]; then

echo "Your xz is too old."
fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been set,

don’t increase it:

NEWLIM=$((123 << 20)) # 123 MiB
OLDLIM=$(xz −−robot −−info−memory | cut −f3)
if [$OLDLIM −eq 0 −o $OLDLIM −gt $NEWLIM]; then

XZ_OPT="$XZ_OPT −−memlimit−decompress=$NEWLIM"
export XZ_OPT

fi

Custom compressor filter chains

The simplest use for custom filter chains is customizing a LZMA2 preset. This can be useful, be-

cause the presets cover only a subset of the potentially useful combinations of compression set-

tings.

The CompCPU columns of the tables from the descriptions of the options −0 ... −9 and −−ex-

treme are useful when customizing LZMA2 presets. Here are the relevant parts collected from

those two tables:

Preset CompCPU

−0 0

−1 1

−2 2

−3 3

−4 4

−5 5

−6 6

−5e 7

−6e 8

If you know that a file requires somewhat big dictionary (for example, 32 MiB) to compress well,

but you want to compress it quicker than xz −8 would do, a preset with a low CompCPU value

(for example, 1) can be modified to use a bigger dictionary:

xz −−lzma2=preset=1,dict=32MiB foo.tar

With certain files, the above command may be faster than xz −6 while compressing significantly

better. Howev er, it must be emphasized that only some files benefit from a big dictionary while

keeping the CompCPU value low. The most obvious situation, where a big dictionary can help a

lot, is an archive containing very similar files of at least a few meg abytes each. The dictionary

Tukaani 2022-08-22 25

XZ(1) XZ Utils XZ(1)

size has to be significantly bigger than any individual file to allow LZMA2 to take full advantage

of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being compressed

is at least several hundred megabytes, it may be useful to use an even bigger dictionary than the

64 MiB that xz −9 would use:

xz −vv −−lzma2=dict=192MiB big_foo.tar

Using −vv (−−verbose −−verbose) like in the above example can be useful to see the memory

requirements of the compressor and decompressor. Remember that using a dictionary bigger

than the size of the uncompressed file is waste of memory, so the above command isn’t useful for

small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to be

kept low, for example, to make it possible to decompress the file on an embedded system. The

following command uses −6e (−6 −−extreme) as a base and sets the dictionary to only 64 KiB.

The resulting file can be decompressed with XZ Embedded (that’s why there is −−check=crc32)

using about 100 KiB of memory.

xz −−check=crc32 −−lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context bits

(lc) and number of position bits (pb) can sometimes help. Adjusting the number of literal posi-

tion bits (lp) might help too, but usually lc and pb are more important. For example, a source

code archive contains mostly US-ASCII text, so something like the following might give slightly

(like 0.1 %) smaller file than xz −6e (try also without lc=4):

xz −−lzma2=preset=6e,pb=0,lc=4 source_code.tar

Using another filter together with LZMA2 can improve compression with certain file types. For

example, to compress a x86-32 or x86-64 shared library using the x86 BCJ filter:

xz −−x86 −−lzma2 libfoo.so

Note that the order of the filter options is significant. If −−x86 is specified after −−lzma2, xz will

give an error, because there cannot be any filter after LZMA2, and also because the x86 BCJ filter

cannot be used as the last filter in the chain.

The Delta filter together with LZMA2 can give good results with bitmap images. It should usu-

ally beat PNG, which has a few more advanced filters than simple delta but uses Deflate for the

actual compression.

The image has to be saved in uncompressed format, for example, as uncompressed TIFF. The

distance parameter of the Delta filter is set to match the number of bytes per pixel in the image.

For example, 24-bit RGB bitmap needs dist=3, and it is also good to pass pb=0 to LZMA2 to ac-

commodate the three-byte alignment:

xz −−delta=dist=3 −−lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (for example, .tar), the Delta filter will

Tukaani 2022-08-22 26

XZ(1) XZ Utils XZ(1)

work on that too as long as all images have the same number of bytes per pixel.

SEE ALSO

xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <https://tukaani.org/xz/>

XZ Embedded: <https://tukaani.org/xz/embedded.html>

LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2022-08-22 27

