
XZ(1) XZ Utils XZ(1)

NAME

xz, unxz, xzcat, lzma, unlzma, lzcat − Compress or decompress .xz and .lzma files

SYNOPSIS

xz [option...] [file...]

COMMAND ALIASES

unxz is equivalent to xz −−decompress.

xzcat is equivalent to xz −−decompress −−stdout.

lzma is equivalent to xz −−format=lzma.

unlzma is equivalent to xz −−format=lzma −−decompress.

lzcat is equivalent to xz −−format=lzma −−decompress −−stdout.

When writing scripts that need to decompress files, it is recommended to always use the name

xz with appropriate arguments (xz −d or xz −dc) instead of the names unxz and xzcat.

DESCRIPTION

xz is a general-purpose data compression tool with command line syntax similar to gzip(1)

and bzip2(1). The native file format is the .xz format, but the legacy .lzma format used by

LZMA Utils and raw compressed streams with no container format headers are also sup-

ported.

xz compresses or decompresses each file according to the selected operation mode. If no

files are given or file is −, xz reads from standard input and writes the processed data to stan-

dard output. xz will refuse (display an error and skip the file) to write compressed data to

standard output if it is a terminal. Similarly, xz will refuse to read compressed data from

standard input if it is a terminal.

Unless −−stdout is specified, files other than − are written to a new file whose name is de-

rived from the source file name:

• When compressing, the suffix of the target file format (.xz or .lzma) is appended to the

source filename to get the target filename.

• When decompressing, the .xz or .lzma suffix is removed from the filename to get the tar-

get filename. xz also recognizes the suffixes .txz and .tlz, and replaces them with the .tar

suffix.

If the target file already exists, an error is displayed and the file is skipped.

Unless writing to standard output, xz will display a warning and skip the file if any of the fol-

lowing applies:

• File is not a regular file. Symbolic links are not followed, and thus they are not consid-

ered to be regular files.

• File has more than one hard link.

• File has setuid, setgid, or sticky bit set.

• The operation mode is set to compress and the file already has a suffix of the target file

format (.xz or .txz when compressing to the .xz format, and .lzma or .tlz when compress-

ing to the .lzma format).

Tukaani 2022-08-22 1

XZ(1) XZ Utils XZ(1)

• The operation mode is set to decompress and the file doesn’t hav e a suffix of any of the

supported file formats (.xz, .txz, .lzma, or .tlz).

After successfully compressing or decompressing the file, xz copies the owner, group, per-

missions, access time, and modification time from the source file to the target file. If copying

the group fails, the permissions are modified so that the target file doesn’t become accessible

to users who didn’t hav e permission to access the source file. xz doesn’t support copying

other metadata like access control lists or extended attributes yet.

Once the target file has been successfully closed, the source file is removed unless −−keep

was specified. The source file is never removed if the output is written to standard output.

Sending SIGINFO or SIGUSR1 to the xz process makes it print progress information to

standard error. This has only limited use since when standard error is a terminal, using

−−verbose will display an automatically updating progress indicator.

Memory usage

The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending

on the compression settings. The settings used when compressing a file determine the mem-

ory requirements of the decompressor. Typically the decompressor needs 5 % to 20 % of the

amount of memory that the compressor needed when creating the file. For example, decom-

pressing a file created with xz −9 currently requires 65 MiB of memory. Still, it is possible to

have .xz files that require several gigabytes of memory to decompress.

Especially users of older systems may find the possibility of very large memory usage annoy-

ing. To prevent uncomfortable surprises, xz has a built-in memory usage limiter, which is

disabled by default. While some operating systems provide ways to limit the memory usage

of processes, relying on it wasn’t deemed to be flexible enough (for example, using ulimit(1)

to limit virtual memory tends to cripple mmap(2)).

The memory usage limiter can be enabled with the command line option −−memlimit=limit.

Often it is more convenient to enable the limiter by default by setting the environment vari-

able XZ_DEFAULTS, for example, XZ_DEFAULTS=−−memlimit=150MiB. It is possible

to set the limits separately for compression and decompression by using −−memlimit−com-

press=limit and −−memlimit−decompress=limit. Using these two options outside XZ_DE-

FA ULTS is rarely useful because a single run of xz cannot do both compression and decom-

pression and −−memlimit=limit (or −M limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing, xz will display an error

and decompressing the file will fail. If the limit is exceeded when compressing, xz will try to

scale the settings down so that the limit is no longer exceeded (except when using −−for-

mat=raw or −−no−adjust). This way the operation won’t fail unless the limit is very small.

The scaling of the settings is done in steps that don’t match the compression level presets, for

example, if the limit is only slightly less than the amount required for xz −9, the settings will

be scaled down only a little, not all the way down to xz −8.

Concatenation and padding with .xz files

It is possible to concatenate .xz files as is. xz will decompress such files as if they were a sin-

gle .xz file.

It is possible to insert padding between the concatenated parts or after the last part. The pad-

ding must consist of null bytes and the size of the padding must be a multiple of four bytes.

This can be useful, for example, if the .xz file is stored on a medium that measures file sizes

in 512-byte blocks.

Tukaani 2022-08-22 2

XZ(1) XZ Utils XZ(1)

Concatenation and padding are not allowed with .lzma files or raw streams.

OPTIONS

Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily

indicate large integers. There must be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2ˆ10). Ki, k, kB, K, and KB are accepted as syn-

onyms for KiB.

MiB Multiply the integer by 1,048,576 (2ˆ20). Mi, m, M, and MB are accepted as syn-

onyms for MiB.

GiB Multiply the integer by 1,073,741,824 (2ˆ30). Gi, g, G, and GB are accepted as syn-

onyms for GiB.

The special value max can be used to indicate the maximum integer value supported by the

option.

Operation mode

If multiple operation mode options are given, the last one takes effect.

−z, −−compress

Compress. This is the default operation mode when no operation mode option is

specified and no other operation mode is implied from the command name (for ex-

ample, unxz implies −−decompress).

−d, −−decompress, −−uncompress

Decompress.

−t, −−test

Test the integrity of compressed files. This option is equivalent to −−decompress

−−stdout except that the decompressed data is discarded instead of being written to

standard output. No files are created or removed.

−l, −−list

Print information about compressed files. No uncompressed output is produced,

and no files are created or removed. In list mode, the program cannot read the com-

pressed data from standard input or from other unseekable sources.

The default listing shows basic information about files, one file per line. To get

more detailed information, use also the −−verbose option. For even more informa-

tion, use −−verbose twice, but note that this may be slow, because getting all the ex-

tra information requires many seeks. The width of verbose output exceeds 80 char-

acters, so piping the output to, for example, less −S may be convenient if the termi-

nal isn’t wide enough.

The exact output may vary between xz versions and different locales. For machine-

readable output, −−robot −−list should be used.

Operation modifiers

−k, −−keep

Don’t delete the input files.

Tukaani 2022-08-22 3

XZ(1) XZ Utils XZ(1)

Since xz 5.2.6, this option also makes xz compress or decompress even if the input is

a symbolic link to a regular file, has more than one hard link, or has the setuid, set-

gid, or sticky bit set. The setuid, setgid, and sticky bits are not copied to the target

file. In earlier versions this was only done with −−force.

−f, −−force

This option has several effects:

• If the target file already exists, delete it before compressing or decompressing.

• Compress or decompress even if the input is a symbolic link to a regular file, has

more than one hard link, or has the setuid, setgid, or sticky bit set. The setuid,

setgid, and sticky bits are not copied to the target file.

• When used with −−decompress −−stdout and xz cannot recognize the type of

the source file, copy the source file as is to standard output. This allows xzcat

−−force to be used like cat(1) for files that have not been compressed with xz.

Note that in future, xz might support new compressed file formats, which may

make xz decompress more types of files instead of copying them as is to stan-

dard output. −−format= format can be used to restrict xz to decompress only a

single file format.

−c, −−stdout, −−to−stdout

Write the compressed or decompressed data to standard output instead of a file.

This implies −−keep.

−−single−stream

Decompress only the first .xz stream, and silently ignore possible remaining input

data following the stream. Normally such trailing garbage makes xz display an er-

ror.

xz never decompresses more than one stream from .lzma files or raw streams, but

this option still makes xz ignore the possible trailing data after the .lzma file or raw

stream.

This option has no effect if the operation mode is not −−decompress or −−test.

−−no−sparse

Disable creation of sparse files. By default, if decompressing into a regular file, xz

tries to make the file sparse if the decompressed data contains long sequences of bi-

nary zeros. It also works when writing to standard output as long as standard output

is connected to a regular file and certain additional conditions are met to make it

safe. Creating sparse files may save disk space and speed up the decompression by

reducing the amount of disk I/O.

−S .suf, −−suffix=.suf

When compressing, use .suf as the suffix for the target file instead of .xz or .lzma.

If not writing to standard output and the source file already has the suffix .suf , a

warning is displayed and the file is skipped.

When decompressing, recognize files with the suffix .suf in addition to files with the

.xz, .txz, .lzma, or .tlz suffix. If the source file has the suffix .suf , the suffix is re-

moved to get the target filename.

Tukaani 2022-08-22 4

XZ(1) XZ Utils XZ(1)

When compressing or decompressing raw streams (−−format=raw), the suffix must

always be specified unless writing to standard output, because there is no default

suffix for raw streams.

−−files[=file]

Read the filenames to process from file; if file is omitted, filenames are read from

standard input. Filenames must be terminated with the newline character. A dash

(−) is taken as a regular filename; it doesn’t mean standard input. If filenames are

given also as command line arguments, they are processed before the filenames read

from file.

−−files0[=file]

This is identical to −−files[=file] except that each filename must be terminated with

the null character.

Basic file format and compression options

−F format, −−format=format

Specify the file format to compress or decompress:

auto This is the default. When compressing, auto is equivalent to xz. When de-

compressing, the format of the input file is automatically detected. Note

that raw streams (created with −−format=raw) cannot be auto-detected.

xz Compress to the .xz file format, or accept only .xz files when decompress-

ing.

lzma, alone

Compress to the legacy .lzma file format, or accept only .lzma files when

decompressing. The alternative name alone is provided for backwards

compatibility with LZMA Utils.

raw Compress or uncompress a raw stream (no headers). This is meant for ad-

vanced users only. To decode raw streams, you need use −−format=raw

and explicitly specify the filter chain, which normally would have been

stored in the container headers.

−C check, −−check=check

Specify the type of the integrity check. The check is calculated from the uncom-

pressed data and stored in the .xz file. This option has an effect only when com-

pressing into the .xz format; the .lzma format doesn’t support integrity checks. The

integrity check (if any) is verified when the .xz file is decompressed.

Supported check types:

none Don’t calculate an integrity check at all. This is usually a bad idea. This

can be useful when integrity of the data is verified by other means anyway.

crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

crc64 Calculate CRC64 using the polynomial from ECMA-182. This is the de-

fault, since it is slightly better than CRC32 at detecting damaged files and

the speed difference is negligible.

Tukaani 2022-08-22 5

XZ(1) XZ Utils XZ(1)

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to

change or disable it.

−−ignore−check

Don’t verify the integrity check of the compressed data when decompressing. The

CRC32 values in the .xz headers will still be verified normally.

Do not use this option unless you know what you are doing. Possible reasons to

use this option:

• Trying to recover data from a corrupt .xz file.

• Speeding up decompression. This matters mostly with SHA-256 or with files

that have compressed extremely well. It’s recommended to not use this option

for this purpose unless the file integrity is verified externally in some other way.

−0 ... −9

Select a compression preset level. The default is −6. If multiple preset levels are

specified, the last one takes effect. If a custom filter chain was already specified, set-

ting a compression preset level clears the custom filter chain.

The differences between the presets are more significant than with gzip(1) and

bzip2(1). The selected compression settings determine the memory requirements of

the decompressor, thus using a too high preset level might make it painful to decom-

press the file on an old system with little RAM. Specifically, it’s not a good idea to

blindly use −9 for everything like it often is with gzip(1) and bzip2(1).

−0 ... −3

These are somewhat fast presets. −0 is sometimes faster than gzip −9 while

compressing much better. The higher ones often have speed comparable to

bzip2(1) with comparable or better compression ratio, although the results

depend a lot on the type of data being compressed.

−4 ... −6

Good to very good compression while keeping decompressor memory us-

age reasonable even for old systems. −6 is the default, which is usually a

good choice for distributing files that need to be decompressible even on

systems with only 16 MiB RAM. (−5e or −6e may be worth considering

too. See −−extreme.)

−7 ... −9

These are like −6 but with higher compressor and decompressor memory

requirements. These are useful only when compressing files bigger than

8 MiB, 16 MiB, and 32 MiB, respectively.

On the same hardware, the decompression speed is approximately a constant number

of bytes of compressed data per second. In other words, the better the compression,

the faster the decompression will usually be. This also means that the amount of un-

compressed output produced per second can vary a lot.

The following table summarises the features of the presets:

Tukaani 2022-08-22 6

XZ(1) XZ Utils XZ(1)

Preset DictSize CompCPU CompMem DecMem

−0 256 KiB 0 3 MiB 1 MiB

−1 1 MiB 1 9 MiB 2 MiB

−2 2 MiB 2 17 MiB 3 MiB

−3 4 MiB 3 32 MiB 5 MiB

−4 4 MiB 4 48 MiB 5 MiB

−5 8 MiB 5 94 MiB 9 MiB

−6 8 MiB 6 94 MiB 9 MiB

−7 16 MiB 6 186 MiB 17 MiB

−8 32 MiB 6 370 MiB 33 MiB

−9 64 MiB 6 674 MiB 65 MiB

Column descriptions:

• DictSize is the LZMA2 dictionary size. It is waste of memory to use a dictio-

nary bigger than the size of the uncompressed file. This is why it is good to

avoid using the presets −7 ... −9 when there’s no real need for them. At −6 and

lower, the amount of memory wasted is usually low enough to not matter.

• CompCPU is a simplified representation of the LZMA2 settings that affect com-

pression speed. The dictionary size affects speed too, so while CompCPU is the

same for levels −6 ... −9, higher levels still tend to be a little slower. To get even

slower and thus possibly better compression, see −−extreme.

• CompMem contains the compressor memory requirements in the single-threaded

mode. It may vary slightly between xz versions. Memory requirements of some

of the future multithreaded modes may be dramatically higher than that of the

single-threaded mode.

• DecMem contains the decompressor memory requirements. That is, the com-

pression settings determine the memory requirements of the decompressor. The

exact decompressor memory usage is slightly more than the LZMA2 dictionary

size, but the values in the table have been rounded up to the next full MiB.

−e, −−extreme

Use a slower variant of the selected compression preset level (−0 ... −9) to hopefully

get a little bit better compression ratio, but with bad luck this can also make it worse.

Decompressor memory usage is not affected, but compressor memory usage in-

creases a little at preset levels −0 ... −3.

Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets −3e

and −5e use slightly faster settings (lower CompCPU) than −4e and −6e, respec-

tively. That way no two presets are identical.

Preset DictSize CompCPU CompMem DecMem

−0e 256 KiB 8 4 MiB 1 MiB

−1e 1 MiB 8 13 MiB 2 MiB

−2e 2 MiB 8 25 MiB 3 MiB

−3e 4 MiB 7 48 MiB 5 MiB

−4e 4 MiB 8 48 MiB 5 MiB

−5e 8 MiB 7 94 MiB 9 MiB

−6e 8 MiB 8 94 MiB 9 MiB

Tukaani 2022-08-22 7

XZ(1) XZ Utils XZ(1)

−7e 16 MiB 8 186 MiB 17 MiB

−8e 32 MiB 8 370 MiB 33 MiB

−9e 64 MiB 8 674 MiB 65 MiB

For example, there are a total of four presets that use 8 MiB dictionary, whose order

from the fastest to the slowest is −5, −6, −5e, and −6e.

−−fast

−−best These are somewhat misleading aliases for −0 and −9, respectively. These are pro-

vided only for backwards compatibility with LZMA Utils. Av oid using these op-

tions.

−−block−size=size

When compressing to the .xz format, split the input data into blocks of size bytes.

The blocks are compressed independently from each other, which helps with multi-

threading and makes limited random-access decompression possible. This option is

typically used to override the default block size in multi-threaded mode, but this op-

tion can be used in single-threaded mode too.

In multi-threaded mode about three times size bytes will be allocated in each thread

for buffering input and output. The default size is three times the LZMA2 dictionary

size or 1 MiB, whichever is more. Typically a good value is 2–4 times the size of

the LZMA2 dictionary or at least 1 MiB. Using size less than the LZMA2 dictio-

nary size is waste of RAM because then the LZMA2 dictionary buffer will never get

fully used. The sizes of the blocks are stored in the block headers, which a future

version of xz will use for multi-threaded decompression.

In single-threaded mode no block splitting is done by default. Setting this option

doesn’t affect memory usage. No size information is stored in block headers, thus

files created in single-threaded mode won’t be identical to files created in multi-

threaded mode. The lack of size information also means that a future version of xz

won’t be able decompress the files in multi-threaded mode.

−−block−list=sizes

When compressing to the .xz format, start a new block after the given intervals of

uncompressed data.

The uncompressed sizes of the blocks are specified as a comma-separated list.

Omitting a size (two or more consecutive commas) is a shorthand to use the size of

the previous block.

If the input file is bigger than the sum of sizes, the last value in sizes is repeated until

the end of the file. A special value of 0 may be used as the last value to indicate that

the rest of the file should be encoded as a single block.

If one specifies sizes that exceed the encoder’s block size (either the default value in

threaded mode or the value specified with −−block−size=size), the encoder will cre-

ate additional blocks while keeping the boundaries specified in sizes. For example,

if one specifies −−block−size=10MiB

−−block−list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is 80 MiB, one

will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1 MiB.

In multi-threaded mode the sizes of the blocks are stored in the block headers. This

isn’t done in single-threaded mode, so the encoded output won’t be identical to that

Tukaani 2022-08-22 8

XZ(1) XZ Utils XZ(1)

of the multi-threaded mode.

−−flush−timeout=timeout

When compressing, if more than timeout milliseconds (a positive integer) has passed

since the previous flush and reading more input would block, all the pending input

data is flushed from the encoder and made available in the output stream. This can

be useful if xz is used to compress data that is streamed over a network. Small time-

out values make the data available at the receiving end with a small delay, but large

timeout values give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last

one takes effect. The special timeout value of 0 can be used to explicitly disable this

feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the

stream in real time due to how xz does buffering.

−−memlimit−compress=limit

Set a memory usage limit for compression. If this option is specified multiple times,

the last one takes effect.

If the compression settings exceed the limit, xz will attempt to adjust the settings

downwards so that the limit is no longer exceeded and display a notice that auto-

matic adjustment was done. The adjustments are done in this order: reducing the

number of threads, switching to single-threaded mode if even one thread in multi-

threaded mode exceeds the limit, and finally reducing the LZMA2 dictionary size.

When compressing with −−format=raw or if −−no−adjust has been specified, only

the number of threads may be reduced since it can be done without affecting the

compressed output.

If the limit cannot be met even with the adjustments described above, an error is dis-

played and xz will exit with exit status 1.

The limit can be specified in multiple ways:

• The limit can be an absolute value in bytes. Using an integer suffix like MiB can

be useful. Example: −−memlimit−compress=80MiB

• The limit can be specified as a percentage of total physical memory (RAM).

This can be useful especially when setting the XZ_DEFAULTS environment

variable in a shell initialization script that is shared between different computers.

That way the limit is automatically bigger on systems with more memory. Ex-

ample: −−memlimit−compress=70%

• The limit can be reset back to its default value by setting it to 0. This is currently

equivalent to setting the limit to max (no memory usage limit).

For 32-bit xz there is a special case: if the limit would be over 4020 MiB, the limit is

set to 4020 MiB. On MIPS32 2000 MiB is used instead. (The values 0 and max

aren’t affected by this. A similar feature doesn’t exist for decompression.) This can

be helpful when a 32-bit executable has access to 4 GiB address space (2 GiB on

Tukaani 2022-08-22 9

XZ(1) XZ Utils XZ(1)

MIPS32) while hopefully doing no harm in other situations.

See also the section Memory usage.

−−memlimit−decompress=limit

Set a memory usage limit for decompression. This also affects the −−list mode. If

the operation is not possible without exceeding the limit, xz will display an error and

decompressing the file will fail. See −−memlimit−compress=limit for possible

ways to specify the limit.

−−memlimit−mt−decompress=limit

Set a memory usage limit for multi-threaded decompression. This can only affect

the number of threads; this will never make xz refuse to decompress a file. If limit is

too low to allow any multi-threading, the limit is ignored and xz will continue in sin-

gle-threaded mode. Note that if also −−memlimit−decompress is used, it will al-

ways apply to both single-threaded and multi-threaded modes, and so the effective

limit for multi-threading will never be higher than the limit set with −−mem-

limit−decompress.

In contrast to the other memory usage limit options, −−memlimit−mt−decom-

press=limit has a system-specific default limit. xz −−info−memory can be used to

see the current value.

This option and its default value exist because without any limit the threaded decom-

pressor could end up allocating an insane amount of memory with some input files.

If the default limit is too low on your system, feel free to increase the limit but nev er

set it to a value larger than the amount of usable RAM as with appropriate input files

xz will attempt to use that amount of memory even with a low number of threads.

Running out of memory or swapping will not improve decompression performance.

See −−memlimit−compress=limit for possible ways to specify the limit. Setting

limit to 0 resets the limit to the default system-specific value.

−M limit, −−memlimit=limit, −−memory=limit

This is equivalent to specifying −−memlimit−compress=limit −−memlimit-decom-

press=limit −−memlimit−mt−decompress=limit.

−−no−adjust

Display an error and exit if the memory usage limit cannot be met without adjusting

settings that affect the compressed output. That is, this prevents xz from switching

the encoder from multi-threaded mode to single-threaded mode and from reducing

the LZMA2 dictionary size. Even when this option is used the number of threads

may be reduced to meet the memory usage limit as that won’t affect the compressed

output.

Automatic adjusting is always disabled when creating raw streams (−−for-

mat=raw).

−T threads, −−threads=threads

Specify the number of worker threads to use. Setting threads to a special value 0

makes xz use up to as many threads as the processor(s) on the system support. The

actual number of threads can be fewer than threads if the input file is not big enough

Tukaani 2022-08-22 10

XZ(1) XZ Utils XZ(1)

for threading with the given settings or if using more threads would exceed the

memory usage limit.

The single-threaded and multi-threaded compressors produce different output. Sin-

gle-threaded compressor will give the smallest file size but only the output from the

multi-threaded compressor can be decompressed using multiple threads. Setting

threads to 1 will use the single-threaded mode. Setting threads to any other value,

including 0, will use the multi-threaded compressor even if the system supports only

one hardware thread. (xz 5.2.x used single-threaded mode in this situation.)

If an automatic number of threads has been requested and no memory usage limit

has been specified, then a system-specific default soft limit will be used to possibly

limit the number of threads. It is a soft limit in sense that it is ignored if the number

of threads becomes one, thus a soft limit will never stop xz from compressing or de-

compressing. This default soft limit will not make xz switch from multi-threaded

mode to single-threaded mode. The active limits can be seen with xz −−info−mem-

ory.

Currently the only threading method is to split the input into blocks and compress

them independently from each other. The default block size depends on the com-

pression level and can be overridden with the −−block−size=size option.

Threaded decompression only works on files that contain multiple blocks with size

information in block headers. All large enough files compressed in multi-threaded

mode meet this condition, but files compressed in single-threaded mode don’t even if

−−block−size=size has been used.

Custom compressor filter chains

A custom filter chain allows specifying the compression settings in detail instead of relying

on the settings associated to the presets. When a custom filter chain is specified, preset op-

tions (−0 ... −9 and −−extreme) earlier on the command line are forgotten. If a preset option

is specified after one or more custom filter chain options, the new preset takes effect and the

custom filter chain options specified earlier are forgotten.

A filter chain is comparable to piping on the command line. When compressing, the uncom-

pressed input goes to the first filter, whose output goes to the next filter (if any). The output

of the last filter gets written to the compressed file. The maximum number of filters in the

chain is four, but typically a filter chain has only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work

only as the last filter in the chain, some only as a non-last filter, and some work in any posi-

tion in the chain. Depending on the filter, this limitation is either inherent to the filter design

or exists to prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are

wanted in the filter chain. That is, the order of filter options is significant! When decoding

raw streams (−−format=raw), the filter chain is specified in the same order as it was speci-

fied when compressing.

Filters take filter-specific options as a comma-separated list. Extra commas in options are ig-

nored. Every option has a default value, so you need to specify only those you want to

change.

To see the whole filter chain and options, use xz −vv (that is, use −−verbose twice). This

Tukaani 2022-08-22 11

XZ(1) XZ Utils XZ(1)

works also for viewing the filter chain options used by presets.

−−lzma1[=options]

−−lzma2[=options]

Add LZMA1 or LZMA2 filter to the filter chain. These filters can be used only as

the last filter in the chain.

LZMA1 is a legacy filter, which is supported almost solely due to the legacy .lzma

file format, which supports only LZMA1. LZMA2 is an updated version of LZMA1

to fix some practical issues of LZMA1. The .xz format uses LZMA2 and doesn’t

support LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA2 are

practically the same.

LZMA1 and LZMA2 share the same set of options:

preset= preset

Reset all LZMA1 or LZMA2 options to preset. Preset consist of an inte-

ger, which may be followed by single-letter preset modifiers. The integer

can be from 0 to 9, matching the command line options −0 ... −9. The only

supported modifier is currently e, which matches −−extreme. If no preset

is specified, the default values of LZMA1 or LZMA2 options are taken

from the preset 6.

dict=size

Dictionary (history buffer) size indicates how many bytes of the recently

processed uncompressed data is kept in memory. The algorithm tries to

find repeating byte sequences (matches) in the uncompressed data, and re-

place them with references to the data currently in the dictionary. The big-

ger the dictionary, the higher is the chance to find a match. Thus, increas-

ing dictionary size usually improves compression ratio, but a dictionary

bigger than the uncompressed file is waste of memory.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB.

The maximum for compression is currently 1.5 GiB (1536 MiB). The de-

compressor already supports dictionaries up to one byte less than 4 GiB,

which is the maximum for the LZMA1 and LZMA2 stream formats.

Dictionary size and match finder (mf) together determine the memory us-

age of the LZMA1 or LZMA2 encoder. The same (or bigger) dictionary

size is required for decompressing that was used when compressing, thus

the memory usage of the decoder is determined by the dictionary size used

when compressing. The .xz headers store the dictionary size either as 2ˆn

or 2ˆn + 2ˆ(n−1), so these sizes are somewhat preferred for compression.

Other sizes will get rounded up when stored in the .xz headers.

lc=lc Specify the number of literal context bits. The minimum is 0 and the maxi-

mum is 4; the default is 3. In addition, the sum of lc and lp must not ex-

ceed 4.

All bytes that cannot be encoded as matches are encoded as literals. That

is, literals are simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highest lc bits of the previ-

ous uncompressed byte correlate with the next byte. For example, in

Tukaani 2022-08-22 12

XZ(1) XZ Utils XZ(1)

typical English text, an upper-case letter is often followed by a lower-case

letter, and a lower-case letter is usually followed by another lower-case let-

ter. In the US-ASCII character set, the highest three bits are 010 for upper-

case letters and 011 for lower-case letters. When lc is at least 3, the literal

coding can take advantage of this property in the uncompressed data.

The default value (3) is usually good. If you want maximum compression,

test lc=4. Sometimes it helps a little, and sometimes it makes compression

worse. If it makes it worse, test lc=2 too.

lp=lp Specify the number of literal position bits. The minimum is 0 and the max-

imum is 4; the default is 0.

Lp affects what kind of alignment in the uncompressed data is assumed

when encoding literals. See pb below for more information about align-

ment.

pb= pb Specify the number of position bits. The minimum is 0 and the maximum

is 4; the default is 2.

Pb affects what kind of alignment in the uncompressed data is assumed in

general. The default means four-byte alignment (2ˆ pb=2ˆ2=4), which is of-

ten a good choice when there’s no better guess.

When the alignment is known, setting pb accordingly may reduce the file

size a little. For example, with text files having one-byte alignment (US-

ASCII, ISO-8859-*, UTF-8), setting pb=0 can improve compression

slightly. For UTF-16 text, pb=1 is a good choice. If the alignment is an

odd number like 3 bytes, pb=0 might be the best choice.

Even though the assumed alignment can be adjusted with pb and lp,

LZMA1 and LZMA2 still slightly favor 16-byte alignment. It might be

worth taking into account when designing file formats that are likely to be

often compressed with LZMA1 or LZMA2.

mf=mf Match finder has a major effect on encoder speed, memory usage, and com-

pression ratio. Usually Hash Chain match finders are faster than Binary

Tree match finders. The default depends on the preset: 0 uses hc3, 1–3 use

hc4, and the rest use bt4.

The following match finders are supported. The memory usage formulas

below are rough approximations, which are closest to the reality when dict

is a power of two.

hc3 Hash Chain with 2- and 3-byte hashing

Minimum value for nice: 3

Memory usage:

dict * 7.5 (if dict <= 16 MiB);

dict * 5.5 + 64 MiB (if dict > 16 MiB)

hc4 Hash Chain with 2-, 3-, and 4-byte hashing

Minimum value for nice: 4

Memory usage:

dict * 7.5 (if dict <= 32 MiB);

Tukaani 2022-08-22 13

XZ(1) XZ Utils XZ(1)

dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing

Minimum value for nice: 2

Memory usage: dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing

Minimum value for nice: 3

Memory usage:

dict * 11.5 (if dict <= 16 MiB);

dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing

Minimum value for nice: 4

Memory usage:

dict * 11.5 (if dict <= 32 MiB);

dict * 10.5 (if dict > 32 MiB)

mode=mode

Compression mode specifies the method to analyze the data produced by

the match finder. Supported modes are fast and normal. The default is

fast for presets 0–3 and normal for presets 4–9.

Usually fast is used with Hash Chain match finders and normal with Bi-

nary Tree match finders. This is also what the presets do.

nice=nice

Specify what is considered to be a nice length for a match. Once a match

of at least nice bytes is found, the algorithm stops looking for possibly bet-

ter matches.

Nice can be 2–273 bytes. Higher values tend to give better compression ra-

tio at the expense of speed. The default depends on the preset.

depth=depth

Specify the maximum search depth in the match finder. The default is the

special value of 0, which makes the compressor determine a reasonable

depth from mf and nice.

Reasonable depth for Hash Chains is 4–100 and 16–1000 for Binary Trees.

Using very high values for depth can make the encoder extremely slow

with some files. Av oid setting the depth over 1000 unless you are prepared

to interrupt the compression in case it is taking far too long.

When decoding raw streams (−−format=raw), LZMA2 needs only the dictionary

size. LZMA1 needs also lc, lp, and pb.

−−x86[=options]

−−powerpc[=options]

−−ia64[=options]

−−arm[=options]

−−armthumb[=options]

Tukaani 2022-08-22 14

XZ(1) XZ Utils XZ(1)

−−sparc[=options]

Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only

as a non-last filter in the filter chain.

A BCJ filter converts relative addresses in the machine code to their absolute coun-

terparts. This doesn’t change the size of the data, but it increases redundancy, which

can help LZMA2 to produce 0–15 % smaller .xz file. The BCJ filters are always re-

versible, so using a BCJ filter for wrong type of data doesn’t cause any data loss, al-

though it may make the compression ratio slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only

on the executable section. Applying a BCJ filter on an archive that contains both ex-

ecutable and non-executable files may or may not give good results, so it generally

isn’t good to blindly apply a BCJ filter when compressing binary packages for distri-

bution.

These BCJ filters are very fast and use insignificant amount of memory. If a BCJ fil-

ter improves compression ratio of a file, it can improve decompression speed at the

same time. This is because, on the same hardware, the decompression speed of

LZMA2 is roughly a fixed number of bytes of compressed data per second.

These BCJ filters have known problems related to the compression ratio:

• Some types of files containing executable code (for example, object files, static

libraries, and Linux kernel modules) have the addresses in the instructions filled

with filler values. These BCJ filters will still do the address conversion, which

will make the compression worse with these files.

• Applying a BCJ filter on an archive containing multiple similar executables can

make the compression ratio worse than not using a BCJ filter. This is because

the BCJ filter doesn’t detect the boundaries of the executable files, and doesn’t

reset the address conversion counter for each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ

filters will still be useful in embedded systems, because the decoder of the new filter

will be bigger and use more memory.

Different instruction sets have different alignment:

Filter Alignment Notes

x86 1 32-bit or 64-bit x86

PowerPC 4 Big endian only

ARM 4 Little endian only

ARM-Thumb 2 Little endian only

IA-64 16 Big or little endian

SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA2, the compression ra-

tio may be improved slightly if the LZMA2 options are set to match the alignment of

the selected BCJ filter. For example, with the IA-64 filter, it’s good to set pb=4 with

LZMA2 (2ˆ4=16). The x86 filter is an exception; it’s usually good to stick to

LZMA2’s default four-byte alignment when compressing x86 executables.

Tukaani 2022-08-22 15

XZ(1) XZ Utils XZ(1)

All BCJ filters support the same options:

start=offset

Specify the start offset that is used when converting between relative and

absolute addresses. The offset must be a multiple of the alignment of the

filter (see the table above). The default is zero. In practice, the default is

good; specifying a custom offset is almost never useful.

−−delta[=options]

Add the Delta filter to the filter chain. The Delta filter can be only used as a non-last

filter in the filter chain.

Currently only simple byte-wise delta calculation is supported. It can be useful

when compressing, for example, uncompressed bitmap images or uncompressed

PCM audio. However, special purpose algorithms may give significantly better re-

sults than Delta + LZMA2. This is true especially with audio, which compresses

faster and better, for example, with flac(1).

Supported options:

dist=distance

Specify the distance of the delta calculation in bytes. distance must be

1–256. The default is 1.

For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7,

the output will be A1 B1 01 02 01 02 01 02.

Other options

−q, −−quiet

Suppress warnings and notices. Specify this twice to suppress errors too. This op-

tion has no effect on the exit status. That is, even if a warning was suppressed, the

exit status to indicate a warning is still used.

−v, −−verbose

Be verbose. If standard error is connected to a terminal, xz will display a progress

indicator. Specifying −−verbose twice will give even more verbose output.

The progress indicator shows the following information:

• Completion percentage is shown if the size of the input file is known. That is,

the percentage cannot be shown in pipes.

• Amount of compressed data produced (compressing) or consumed (decompress-

ing).

• Amount of uncompressed data consumed (compressing) or produced (decom-

pressing).

• Compression ratio, which is calculated by dividing the amount of compressed

data processed so far by the amount of uncompressed data processed so far.

• Compression or decompression speed. This is measured as the amount of un-

compressed data consumed (compression) or produced (decompression) per sec-

ond. It is shown after a few seconds have passed since xz started processing the

file.

Tukaani 2022-08-22 16

XZ(1) XZ Utils XZ(1)

• Elapsed time in the format M:SS or H:MM:SS.

• Estimated remaining time is shown only when the size of the input file is known

and a couple of seconds have already passed since xz started processing the file.

The time is shown in a less precise format which never has any colons, for exam-

ple, 2 min 30 s.

When standard error is not a terminal, −−verbose will make xz print the filename,

compressed size, uncompressed size, compression ratio, and possibly also the speed

and elapsed time on a single line to standard error after compressing or decompress-

ing the file. The speed and elapsed time are included only when the operation took

at least a few seconds. If the operation didn’t finish, for example, due to user inter-

ruption, also the completion percentage is printed if the size of the input file is

known.

−Q, −−no−warn

Don’t set the exit status to 2 even if a condition worth a warning was detected. This

option doesn’t affect the verbosity level, thus both −−quiet and −−no−warn have to

be used to not display warnings and to not alter the exit status.

−−robot

Print messages in a machine-parsable format. This is intended to ease writing front-

ends that want to use xz instead of liblzma, which may be the case with various

scripts. The output with this option enabled is meant to be stable across xz releases.

See the section ROBOT MODE for details.

−−info−memory

Display, in human-readable format, how much physical memory (RAM) and how

many processor threads xz thinks the system has and the memory usage limits for

compression and decompression, and exit successfully.

−h, −−help

Display a help message describing the most commonly used options, and exit suc-

cessfully.

−H, −−long−help

Display a help message describing all features of xz, and exit successfully

−V, −−version

Display the version number of xz and liblzma in human readable format. To get ma-

chine-parsable output, specify −−robot before −−version.

ROBOT MODE

The robot mode is activated with the −−robot option. It makes the output of xz easier to

parse by other programs. Currently −−robot is supported only together with −−version,

−−info−memory, and −−list. It will be supported for compression and decompression in the

future.

Version

xz −−robot −−version will print the version number of xz and liblzma in the following for-

mat:

XZ_VERSION=XYYYZZZS

LIBLZMA_VERSION=XYYYZZZS

Tukaani 2022-08-22 17

XZ(1) XZ Utils XZ(1)

X Major version.

YYY Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.

ZZZ Patch level for stable releases or just a counter for development releases.

S Stability. 0 is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY is

ev en.

XYYYZZZS are the same on both lines if xz and liblzma are from the same XZ Utils release.

Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

Memory limit information

xz −−robot −−info−memory prints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes. A special value of zero indicates the de-

fault setting, which for single-threaded mode is the same as no limit.

3. Memory usage limit for decompression in bytes. A special value of zero indicates the

default setting, which for single-threaded mode is the same as no limit.

In the future, the output of xz −−robot −−info−memory may have more columns, but never

more than a single line.

List mode

xz −−robot −−list uses tab-separated output. The first column of every line has a string that

indicates the type of the information found on that line:

name This is always the first line when starting to list a file. The second column on the

line is the filename.

file This line contains overall information about the .xz file. This line is always printed

after the name line.

stream This line type is used only when −−verbose was specified. There are as many

stream lines as there are streams in the .xz file.

block This line type is used only when −−verbose was specified. There are as many block

lines as there are blocks in the .xz file. The block lines are shown after all the

stream lines; different line types are not interleaved.

summary

This line type is used only when −−verbose was specified twice. This line is printed

after all block lines. Like the file line, the summary line contains overall informa-

tion about the .xz file.

totals This line is always the very last line of the list output. It shows the total counts and

sizes.

The columns of the file lines:

2. Number of streams in the file

Tukaani 2022-08-22 18

XZ(1) XZ Utils XZ(1)

3. Total number of blocks in the stream(s)

4. Compressed size of the file

5. Uncompressed size of the file

6. Compression ratio, for example, 0.123. If ratio is over 9.999, three dashes

(−−−) are displayed instead of the ratio.

7. Comma-separated list of integrity check names. The following strings are used

for the known check types: None, CRC32, CRC64, and SHA−256. For un-

known check types, Unknown−N is used, where N is the Check ID as a deci-

mal number (one or two digits).

8. Total size of stream padding in the file

The columns of the stream lines:

2. Stream number (the first stream is 1)

3. Number of blocks in the stream

4. Compressed start offset

5. Uncompressed start offset

6. Compressed size (does not include stream padding)

7. Uncompressed size

8. Compression ratio

9. Name of the integrity check

10. Size of stream padding

The columns of the block lines:

2. Number of the stream containing this block

3. Block number relative to the beginning of the stream (the first block is 1)

4. Block number relative to the beginning of the file

5. Compressed start offset relative to the beginning of the file

6. Uncompressed start offset relative to the beginning of the file

7. Total compressed size of the block (includes headers)

8. Uncompressed size

9. Compression ratio

10. Name of the integrity check

If −−verbose was specified twice, additional columns are included on the block lines. These

are not displayed with a single −−verbose, because getting this information requires many

seeks and can thus be slow:

11. Value of the integrity check in hexadecimal

12. Block header size

13. Block flags: c indicates that compressed size is present, and u indicates that un-

compressed size is present. If the flag is not set, a dash (−) is shown instead to

keep the string length fixed. New flags may be added to the end of the string in

the future.

14. Size of the actual compressed data in the block (this excludes the block header,

block padding, and check fields)

15. Amount of memory (in bytes) required to decompress this block with this xz

version

16. Filter chain. Note that most of the options used at compression time cannot be

known, because only the options that are needed for decompression are stored

in the .xz headers.

The columns of the summary lines:

2. Amount of memory (in bytes) required to decompress this file with this xz ver-

sion

Tukaani 2022-08-22 19

XZ(1) XZ Utils XZ(1)

3. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them

Since xz 5.1.2alpha:

4. Minimum xz version required to decompress the file

The columns of the totals line:

2. Number of streams

3. Number of blocks

4. Compressed size

5. Uncompressed size

6. Av erage compression ratio

7. Comma-separated list of integrity check names that were present in the files

8. Stream padding size

9. Number of files. This is here to keep the order of the earlier columns the same

as on file lines.

If −−verbose was specified twice, additional columns are included on the totals line:

10. Maximum amount of memory (in bytes) required to decompress the files with

this xz version

11. yes or no indicating if all block headers have both compressed size and uncom-

pressed size stored in them

Since xz 5.1.2alpha:

12. Minimum xz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line

types, but the existing columns won’t be changed.

EXIT STATUS

0 All is good.

1 An error occurred.

2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT

xz parses space-separated lists of options from the environment variables XZ_DEFAULTS

and XZ_OPT, in this order, before parsing the options from the command line. Note that

only options are parsed from the environment variables; all non-options are silently ignored.

Parsing is done with getopt_long(3) which is used also for the command line arguments.

XZ_DEFAULTS

User-specific or system-wide default options. Typically this is set in a shell initial-

ization script to enable xz’s memory usage limiter by default. Excluding shell ini-

tialization scripts and similar special cases, scripts must never set or unset XZ_DE-

FA ULTS.

XZ_OPT

This is for passing options to xz when it is not possible to set the options directly on

the xz command line. This is the case when xz is run by a script or tool, for exam-

ple, GNU tar(1):

XZ_OPT=−2v tar caf foo.tar.xz foo

Tukaani 2022-08-22 20

XZ(1) XZ Utils XZ(1)

Scripts may use XZ_OPT, for example, to set script-specific default compression

options. It is still recommended to allow users to override XZ_OPT if that is rea-

sonable. For example, in sh(1) scripts one may use something like this:

XZ_OPT=${XZ_OPT−"−7e"}
export XZ_OPT

LZMA UTILS COMPATIBILITY

The command line syntax of xz is practically a superset of lzma, unlzma, and lzcat as found

from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Utils

without breaking existing scripts. There are some incompatibilities though, which may some-

times cause problems.

Compression preset levels

The numbering of the compression level presets is not identical in xz and LZMA Utils. The

most important difference is how dictionary sizes are mapped to different presets. Dictionary

size is roughly equal to the decompressor memory usage.

Level xz LZMA Utils

−0 256 KiB N/A

−1 1 MiB 64 KiB

−2 2 MiB 1 MiB

−3 4 MiB 512 KiB

−4 4 MiB 1 MiB

−5 8 MiB 2 MiB

−6 8 MiB 4 MiB

−7 16 MiB 8 MiB

−8 32 MiB 16 MiB

−9 64 MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some

other differences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level xz LZMA Utils 4.32.x

−0 3 MiB N/A

−1 9 MiB 2 MiB

−2 17 MiB 12 MiB

−3 32 MiB 12 MiB

−4 48 MiB 16 MiB

−5 94 MiB 26 MiB

−6 94 MiB 45 MiB

−7 186 MiB 83 MiB

−8 370 MiB 159 MiB

−9 674 MiB 311 MiB

The default preset level in LZMA Utils is −7 while in XZ Utils it is −6, so both use an 8 MiB

dictionary by default.

Streamed vs. non-streamed .lzma files

The uncompressed size of the file can be stored in the .lzma header. LZMA Utils does that

when compressing regular files. The alternative is to mark that uncompressed size is un-

known and use end-of-payload marker to indicate where the decompressor should stop.

LZMA Utils uses this method when uncompressed size isn’t known, which is the case, for

Tukaani 2022-08-22 21

XZ(1) XZ Utils XZ(1)

example, in pipes.

xz supports decompressing .lzma files with or without end-of-payload marker, but all .lzma

files created by xz will use end-of-payload marker and have uncompressed size marked as un-

known in the .lzma header. This may be a problem in some uncommon situations. For ex-

ample, a .lzma decompressor in an embedded device might work only with files that have

known uncompressed size. If you hit this problem, you need to use LZMA Utils or LZMA

SDK to create .lzma files with known uncompressed size.

Unsupported .lzma files

The .lzma format allows lc values up to 8, and lp values up to 4. LZMA Utils can decom-

press files with any lc and lp, but always creates files with lc=3 and lp=0. Creating files with

other lc and lp is possible with xz and with LZMA SDK.

The implementation of the LZMA1 filter in liblzma requires that the sum of lc and lp must

not exceed 4. Thus, .lzma files, which exceed this limitation, cannot be decompressed with

xz.

LZMA Utils creates only .lzma files which have a dictionary size of 2ˆn (a power of 2) but

accepts files with any dictionary size. liblzma accepts only .lzma files which have a dictio-

nary size of 2ˆn or 2ˆn + 2ˆ(n−1). This is to decrease false positives when detecting .lzma

files.

These limitations shouldn’t be a problem in practice, since practically all .lzma files have

been compressed with settings that liblzma will accept.

Trailing garbage

When decompressing, LZMA Utils silently ignore everything after the first .lzma stream. In

most situations, this is a bug. This also means that LZMA Utils don’t support decompressing

concatenated .lzma files.

If there is data left after the first .lzma stream, xz considers the file to be corrupt unless

−−single−stream was used. This may break obscure scripts which have assumed that trailing

garbage is ignored.

NOTES

Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary be-

tween XZ Utils versions even if compression options are identical. This is because the en-

coder can be improved (faster or better compression) without affecting the file format. The

output can vary even between different builds of the same XZ Utils version, if different build

options are used.

The above means that once −−rsyncable has been implemented, the resulting files won’t nec-

essarily be rsyncable unless both old and new files have been compressed with the same xz

version. This problem can be fixed if a part of the encoder implementation is frozen to keep

rsyncable output stable across xz versions.

Embedded .xz decompressors

Embedded .xz decompressor implementations like XZ Embedded don’t necessarily support

files created with integrity check types other than none and crc32. Since the default is

−−check=crc64, you must use −−check=none or −−check=crc32 when creating files for em-

bedded systems.

Tukaani 2022-08-22 22

XZ(1) XZ Utils XZ(1)

Outside embedded systems, all .xz format decompressors support all the check types, or at

least are able to decompress the file without verifying the integrity check if the particular

check is not supported.

XZ Embedded supports BCJ filters, but only with the default start offset.

EXAMPLES

Basics

Compress the file foo into foo.xz using the default compression level (−6), and remove foo if

compression is successful:

xz foo

Decompress bar.xz into bar and don’t remove bar.xz ev en if decompression is successful:

xz −dk bar.xz

Create baz.tar.xz with the preset −4e (−4 −−extreme), which is slower than the default −6,

but needs less memory for compression and decompression (48 MiB and 5 MiB, respec-

tively):

tar cf − baz | xz −4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a

single command:

xz −dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Parallel compression of many files

On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many

files:

find . −type f \! −name ’*.xz’ −print0 \
| xargs −0r −P4 −n16 xz −T1

The −P option to xargs(1) sets the number of parallel xz processes. The best value for the −n

option depends on how many files there are to be compressed. If there are only a couple of

files, the value should probably be 1; with tens of thousands of files, 100 or even more may be

appropriate to reduce the number of xz processes that xargs(1) will eventually create.

The option −T1 for xz is there to force it to single-threaded mode, because xargs(1) is used to

control the amount of parallelization.

Robot mode

Calculate how many bytes have been saved in total after compressing multiple files:

xz −−robot −−list *.xz | awk ’/ˆtotals/{print $5−$4}’

A script may want to know that it is using new enough xz. The following sh(1) script checks

that the version number of the xz tool is at least 5.0.0. This method is compatible with old

beta versions, which didn’t support the −−robot option:

if ! eval "$(xz −−robot −−version 2> /dev/null)" ||
["$XZ_VERSION" −lt 50000002]; then

echo "Your xz is too old."

Tukaani 2022-08-22 23

XZ(1) XZ Utils XZ(1)

fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been

set, don’t increase it:

NEWLIM=$((123 << 20)) # 123 MiB
OLDLIM=$(xz −−robot −−info−memory | cut −f3)
if [$OLDLIM −eq 0 −o $OLDLIM −gt $NEWLIM]; then

XZ_OPT="$XZ_OPT −−memlimit−decompress=$NEWLIM"
export XZ_OPT

fi

Custom compressor filter chains

The simplest use for custom filter chains is customizing a LZMA2 preset. This can be useful,

because the presets cover only a subset of the potentially useful combinations of compression

settings.

The CompCPU columns of the tables from the descriptions of the options −0 ... −9 and −−ex-

treme are useful when customizing LZMA2 presets. Here are the relevant parts collected

from those two tables:

Preset CompCPU

−0 0

−1 1

−2 2

−3 3

−4 4

−5 5

−6 6

−5e 7

−6e 8

If you know that a file requires somewhat big dictionary (for example, 32 MiB) to compress

well, but you want to compress it quicker than xz −8 would do, a preset with a low Com-

pCPU value (for example, 1) can be modified to use a bigger dictionary:

xz −−lzma2=preset=1,dict=32MiB foo.tar

With certain files, the above command may be faster than xz −6 while compressing signifi-

cantly better. Howev er, it must be emphasized that only some files benefit from a big dictio-

nary while keeping the CompCPU value low. The most obvious situation, where a big dictio-

nary can help a lot, is an archive containing very similar files of at least a few meg abytes

each. The dictionary size has to be significantly bigger than any individual file to allow

LZMA2 to take full advantage of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being com-

pressed is at least several hundred megabytes, it may be useful to use an even bigger dictio-

nary than the 64 MiB that xz −9 would use:

xz −vv −−lzma2=dict=192MiB big_foo.tar

Using −vv (−−verbose −−verbose) like in the above example can be useful to see the mem-

ory requirements of the compressor and decompressor. Remember that using a dictionary

Tukaani 2022-08-22 24

XZ(1) XZ Utils XZ(1)

bigger than the size of the uncompressed file is waste of memory, so the above command isn’t

useful for small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to

be kept low, for example, to make it possible to decompress the file on an embedded system.

The following command uses −6e (−6 −−extreme) as a base and sets the dictionary to only

64 KiB. The resulting file can be decompressed with XZ Embedded (that’s why there is

−−check=crc32) using about 100 KiB of memory.

xz −−check=crc32 −−lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context

bits (lc) and number of position bits (pb) can sometimes help. Adjusting the number of lit-

eral position bits (lp) might help too, but usually lc and pb are more important. For example,

a source code archive contains mostly US-ASCII text, so something like the following might

give slightly (like 0.1 %) smaller file than xz −6e (try also without lc=4):

xz −−lzma2=preset=6e,pb=0,lc=4 source_code.tar

Using another filter together with LZMA2 can improve compression with certain file types.

For example, to compress a x86-32 or x86-64 shared library using the x86 BCJ filter:

xz −−x86 −−lzma2 libfoo.so

Note that the order of the filter options is significant. If −−x86 is specified after −−lzma2, xz

will give an error, because there cannot be any filter after LZMA2, and also because the x86

BCJ filter cannot be used as the last filter in the chain.

The Delta filter together with LZMA2 can give good results with bitmap images. It should

usually beat PNG, which has a few more advanced filters than simple delta but uses Deflate

for the actual compression.

The image has to be saved in uncompressed format, for example, as uncompressed TIFF. The

distance parameter of the Delta filter is set to match the number of bytes per pixel in the im-

age. For example, 24-bit RGB bitmap needs dist=3, and it is also good to pass pb=0 to

LZMA2 to accommodate the three-byte alignment:

xz −−delta=dist=3 −−lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (for example, .tar), the Delta filter will

work on that too as long as all images have the same number of bytes per pixel.

SEE ALSO

xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <https://tukaani.org/xz/>

XZ Embedded: <https://tukaani.org/xz/embedded.html>

LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2022-08-22 25

