XZ(1)

NAME

XZ Utils XZ(1)

Xz, Unxz, xzcat, lzma, unlzma, lzcat — Compress or decompress .xz and .1zma files

SYNOPSIS

xz [option...] | file...]

COMMAND ALIASES

unxz is equivalent to xz ——decompress.

xzcat is equivalent to xz ——decompress ——stdout.

lzma is equivalent to xz ——format=lzma.

unlzma is equivalent to xz —format=Izma ——decompress.

Izcat is equivalent to xz ——format=lzma ——decompress ——stdout.

When writing scripts that need to decompress files, it is recommended to always use the name xz
with appropriate arguments (xz —d or xz —dc) instead of the names unxz and xzcat.

DESCRIPTION

Tukaani

Xz is a general-purpose data compression tool with command line syntax similar to gzip(1) and
bzip2(1). The native file format is the .xz format, but the legacy .lzma format used by LZMA
Utils and raw compressed streams with no container format headers are also supported.

xz compresses or decompresses each file according to the selected operation mode. If no files
are given or file is —, Xz reads from standard input and writes the processed data to standard out-
put. xz will refuse (display an error and skip the file) to write compressed data to standard output
if it is a terminal. Similarly, xz will refuse to read compressed data from standard input if it is a
terminal.

Unless ——stdout is specified, files other than — are written to a new file whose name is derived
from the source file name:

* When compressing, the suffix of the target file format (.xz or .Jzma) is appended to the source
filename to get the target filename.

* When decompressing, the .xz or .Jlzma suffix is removed from the filename to get the target
filename. xz also recognizes the suffixes .txz and .tlz, and replaces them with the .tar suffix.

If the target file already exists, an error is displayed and the file is skipped.

Unless writing to standard output, xz will display a warning and skip the file if any of the follow-
ing applies:

* File is not a regular file. Symbolic links are not followed, and thus they are not considered to
be regular files.

* File has more than one hard link.
» File has setuid, setgid, or sticky bit set.

* The operation mode is set to compress and the file already has a suffix of the target file for-
mat (.xz or .txz when compressing to the .xz format, and .lzma or .tlz when compressing to
the .Jzma format).

2022-08-22 1

XZ(1)

XZ Utils XZ(1)

* The operation mode is set to decompress and the file doesn’t have a suffix of any of the sup-
ported file formats (.xz, .txz, .Jzma, or .tlz).

After successfully compressing or decompressing the file, Xz copies the owner, group, permis-
sions, access time, and modification time from the source file to the target file. If copying the
group fails, the permissions are modified so that the target file doesn’t become accessible to users
who didn’t have permission to access the source file. xz doesn’t support copying other metadata
like access control lists or extended attributes yet.

Once the target file has been successfully closed, the source file is removed unless ——keep was
specified. The source file is never removed if the output is written to standard output.

Sending SIGINFO or SIGUSRI to the xz process makes it print progress information to stan-
dard error. This has only limited use since when standard error is a terminal, using ——verbose
will display an automatically updating progress indicator.

Memory usage

The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending on
the compression settings. The settings used when compressing a file determine the memory re-
quirements of the decompressor. Typically the decompressor needs 5 % to 20 % of the amount of
memory that the compressor needed when creating the file. For example, decompressing a file
created with xz -9 currently requires 65 MiB of memory. Still, it is possible to have .xz files that
require several gigabytes of memory to decompress.

Especially users of older systems may find the possibility of very large memory usage annoying.
To prevent uncomfortable surprises, Xz has a built-in memory usage limiter, which is disabled by
default. While some operating systems provide ways to limit the memory usage of processes, re-
lying on it wasn’t deemed to be flexible enough (for example, using ulimit(1) to limit virtual
memory tends to cripple mmap(2)).

The memory usage limiter can be enabled with the command line option ——memlimit=/imit. Of-
ten it is more convenient to enable the limiter by default by setting the environment variable
XZ_DEFAULTS, for example, XZ_DEFAULTS=——memlimit=150MiB. It is possible to set
the limits separately for compression and decompression by using ——memlimit—compress=/imit
and ——memlimit—decompress=/imit. Using these two options outside XZ_DEFAULTS is
rarely useful because a single run of xz cannot do both compression and decompression and
——memlimit=/imit (or —-M limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing, xz will display an error
and decompressing the file will fail. If the limit is exceeded when compressing, xz will try to
scale the settings down so that the limit is no longer exceeded (except when using ——for-
mat=raw or ——no—adjust). This way the operation won’t fail unless the limit is very small. The
scaling of the settings is done in steps that don’t match the compression level presets, for exam-
ple, if the limit is only slightly less than the amount required for xz -9, the settings will be scaled
down only a little, not all the way down to xz —8.

Concatenation and padding with .xz files

Tukaani

It is possible to concatenate .xz files as is. xz will decompress such files as if they were a single
xz file.

2022-08-22 2

XZ(1)

XZ Utils XZ(1)

It is possible to insert padding between the concatenated parts or after the last part. The padding
must consist of null bytes and the size of the padding must be a multiple of four bytes. This can
be useful, for example, if the .xz file is stored on a medium that measures file sizes in 512-byte
blocks.

Concatenation and padding are not allowed with .lzma files or raw streams.

OPTIONS

Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily in-
dicate large integers. There must be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2°10). Ki, k, kB, K, and KB are accepted as synonyms
for KiB.

MiB Multiply the integer by 1,048,576 (2720). Mi, m, M, and MB are accepted as synonyms
for MiB.

GiB Multiply the integer by 1,073,741,824 (2°30). Gi, g, G, and GB are accepted as syn-
onyms for GiB.

The special value max can be used to indicate the maximum integer value supported by the op-
tion.

Operation mode

Tukaani

If multiple operation mode options are given, the last one takes effect.

—Z, ——compress
Compress. This is the default operation mode when no operation mode option is speci-
fied and no other operation mode is implied from the command name (for example,
unxz implies ——decompress).

—d, ——decompress, ——uncompress
Decompress.

—t, ——test
Test the integrity of compressed files. This option is equivalent to ——decompress
——stdout except that the decompressed data is discarded instead of being written to
standard output. No files are created or removed.

-1, ——list
Print information about compressed files. No uncompressed output is produced, and no
files are created or removed. In list mode, the program cannot read the compressed data
from standard input or from other unseekable sources.

The default listing shows basic information about files, one file per line. To get more
detailed information, use also the ——verbose option. For even more information, use
—-verbose twice, but note that this may be slow, because getting all the extra informa-
tion requires many seeks. The width of verbose output exceeds 80 characters, so piping
the output to, for example, less —S may be convenient if the terminal isn’t wide enough.

2022-08-22 3

XZ(1)

XZ Utils XZ(1)

The exact output may vary between xz versions and different locales. For machine-
readable output, ——robot —-list should be used.

Operation modifiers

Tukaani

-k, —Kkeep

Don’t delete the input files.

Since xz 5.2.6, this option also makes xz compress or decompress even if the input is a
symbolic link to a regular file, has more than one hard link, or has the setuid, setgid, or
sticky bit set. The setuid, setgid, and sticky bits are not copied to the target file. In ear-
lier versions this was only done with ——force.

—f, ——force

This option has several effects:
» If the target file already exists, delete it before compressing or decompressing.

e Compress or decompress even if the input is a symbolic link to a regular file, has
more than one hard link, or has the setuid, setgid, or sticky bit set. The setuid, set-
gid, and sticky bits are not copied to the target file.

e When used with ——decompress ——stdout and xz cannot recognize the type of the
source file, copy the source file as is to standard output. This allows xzcat ——force
to be used like cat(1) for files that have not been compressed with xz. Note that in
future, xz might support new compressed file formats, which may make xz decom-
press more types of files instead of copying them as is to standard output. —for-
mat= format can be used to restrict Xz to decompress only a single file format.

—c, ——stdout, ——to—stdout

Write the compressed or decompressed data to standard output instead of a file. This
implies ——keep.

——single—stream

Decompress only the first .xz stream, and silently ignore possible remaining input data
following the stream. Normally such trailing garbage makes xz display an error.

xz never decompresses more than one stream from .lzma files or raw streams, but this
option still makes xz ignore the possible trailing data after the .Jzma file or raw stream.

This option has no effect if the operation mode is not ——decompress or ——test.

——no-—sparse

Disable creation of sparse files. By default, if decompressing into a regular file, xz tries
to make the file sparse if the decompressed data contains long sequences of binary zeros.
It also works when writing to standard output as long as standard output is connected to
a regular file and certain additional conditions are met to make it safe. Creating sparse
files may save disk space and speed up the decompression by reducing the amount of
disk I/O.

2022-08-22 4

XZ(1) XZ Utils XZ(1)

=S .suf, ——suffix=.suf
When compressing, use .suf as the suffix for the target file instead of .xz or .Jlzma. If
not writing to standard output and the source file already has the suffix .suf, a warning is
displayed and the file is skipped.

When decompressing, recognize files with the suffix .suf in addition to files with the .xz,
.txz, JJlzma, or .tlz suffix. If the source file has the suffix .suf, the suffix is removed to
get the target filename.

When compressing or decompressing raw streams (——format=raw), the suffix must al-
ways be specified unless writing to standard output, because there is no default suffix for
raw streams.

——files[=file]
Read the filenames to process from file; if file is omitted, filenames are read from stan-
dard input. Filenames must be terminated with the newline character. A dash (-) is
taken as a regular filename; it doesn’t mean standard input. If filenames are given also
as command line arguments, they are processed before the filenames read from file.

——filesO[=file]
This is identical to ——files[=file] except that each filename must be terminated with the
null character.

Basic file format and compression options
—F format, ——format=format
Specify the file format to compress or decompress:

auto This is the default. When compressing, auto is equivalent to xz. When decom-
pressing, the format of the input file is automatically detected. Note that raw
streams (created with ——format=raw) cannot be auto-detected.

XZ Compress to the .xz file format, or accept only .xz files when decompressing.

Izma, alone
Compress to the legacy .lzma file format, or accept only .lzma files when de-
compressing. The alternative name alone is provided for backwards compati-
bility with LZMA Utils.

raw Compress or uncompress a raw stream (no headers). This is meant for ad-
vanced users only. To decode raw streams, you need use ——format=raw and
explicitly specify the filter chain, which normally would have been stored in the
container headers.

—C check, ——check=check
Specify the type of the integrity check. The check is calculated from the uncompressed
data and stored in the .xz file. This option has an effect only when compressing into the
.xz format; the .Jzma format doesn’t support integrity checks. The integrity check (if
any) is verified when the .xz file is decompressed.

Tukaani 2022-08-22 5

XZ(1)

Tukaani

XZ Utils XZ(1)

Supported check types:

none Don’t calculate an integrity check at all. This is usually a bad idea. This can
be useful when integrity of the data is verified by other means anyway.

crc32 Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

crc64 Calculate CRC64 using the polynomial from ECMA-182. This is the default,
since it is slightly better than CRC32 at detecting damaged files and the speed
difference is negligible.

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to change
or disable it.

——ignore—check

Don’t verify the integrity check of the compressed data when decompressing. The
CRC32 values in the .xz headers will still be verified normally.

Do not use this option unless you know what you are doing. Possible reasons to use
this option:

* Trying to recover data from a corrupt .xz file.

* Speeding up decompression. This matters mostly with SHA-256 or with files that
have compressed extremely well. It’s recommended to not use this option for this
purpose unless the file integrity is verified externally in some other way.

Select a compression preset level. The default is —6. If multiple preset levels are speci-
fied, the last one takes effect. If a custom filter chain was already specified, setting a
compression preset level clears the custom filter chain.

The differences between the presets are more significant than with gzip(1) and bzip2(1).
The selected compression settings determine the memory requirements of the decom-
pressor, thus using a too high preset level might make it painful to decompress the file
on an old system with little RAM. Specifically, it’s not a good idea to blindly use -9
for everything like it often is with gzip(1) and bzip2(1).

-0..-3
These are somewhat fast presets. —0 is sometimes faster than gzip —9 while
compressing much better. The higher ones often have speed comparable to
bzip2(1) with comparable or better compression ratio, although the results de-
pend a lot on the type of data being compressed.

-4..-6
Good to very good compression while keeping decompressor memory usage
reasonable even for old systems. —6 is the default, which is usually a good
choice for distributing files that need to be decompressible even on systems
with only 16 MiB RAM. (—5e or —6e may be worth considering too. See

2022-08-22 6

XZ(1)

Tukaani

-7 ..

XZ Utils XZ(1)

——extreme.)

-9
These are like —6 but with higher compressor and decompressor memory re-
quirements. These are useful only when compressing files bigger than 8 MiB,
16 MiB, and 32 MiB, respectively.

On the same hardware, the decompression speed is approximately a constant number of
bytes of compressed data per second. In other words, the better the compression, the
faster the decompression will usually be. This also means that the amount of uncom-
pressed output produced per second can vary a lot.

The following table summarises the features of the presets:

Preset DictSize = CompCPU CompMem DecMem

-0 256 KiB 0 3 MiB 1 MiB
-1 1 MiB 1 9 MiB 2 MiB
-2 2 MiB 2 17 MiB 3 MiB
-3 4 MiB 3 32 MiB 5 MiB
—4 4 MiB 4 48 MiB 5 MiB
-5 8 MiB 5 94 MiB 9 MiB
-6 8 MiB 6 94 MiB 9 MiB
=7 16 MiB 6 186 MiB 17 MiB
-8 32 MiB 6 370 MiB 33 MiB
-9 64 MiB 6 674 MiB 65 MiB

Column descriptions:

DictSize is the LZMA?2 dictionary size. It is waste of memory to use a dictionary
bigger than the size of the uncompressed file. This is why it is good to avoid using
the presets —7 ... =9 when there’s no real need for them. At —6 and lower, the
amount of memory wasted is usually low enough to not matter.

CompCPU is a simplified representation of the LZMA?2 settings that affect compres-
sion speed. The dictionary size affects speed too, so while CompCPU is the same
for levels —6 ... =9, higher levels still tend to be a little slower. To get even slower
and thus possibly better compression, see ——extreme.

CompMem contains the compressor memory requirements in the single-threaded
mode. It may vary slightly between xz versions. Memory requirements of some of
the future multithreaded modes may be dramatically higher than that of the single-
threaded mode.

DecMem contains the decompressor memory requirements. That is, the compres-
sion settings determine the memory requirements of the decompressor. The exact
decompressor memory usage is slightly more than the LZMA?2 dictionary size, but
the values in the table have been rounded up to the next full MiB.

2022-08-22 7

XZ(1)

Tukaani

XZ Utils XZ(1)

—e, ——extreme

——fast
——best

Use a slower variant of the selected compression preset level (=0 ... —9) to hopefully get
a little bit better compression ratio, but with bad luck this can also make it worse. De-
compressor memory usage is not affected, but compressor memory usage increases a lit-
tle at preset levels =0 ... =3.

Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets —3e and
—5e use slightly faster settings (lower CompCPU) than —4e and —6e, respectively. That
way no two presets are identical.

Preset DictSize = CompCPU CompMem DecMem

—Oe 256 KiB 8 4 MiB 1 MiB
—le 1 MiB 8 13 MiB 2 MiB
—2e 2 MiB 8 25 MiB 3 MiB
—3e 4 MiB 7 48 MiB 5 MiB
—4e 4 MiB 8 48 MiB 5 MiB
—5e 8 MiB 7 94 MiB 9 MiB
—6e 8 MiB 8 94 MiB 9 MiB
—Te 16 MiB 8 186 MiB 17 MiB
—8e 32 MiB 8 370 MiB 33 MiB
—9e 64 MiB 8 674 MiB 65 MiB

For example, there are a total of four presets that use 8 MiB dictionary, whose order
from the fastest to the slowest is =5, —6, —5e, and —6e.

These are somewhat misleading aliases for —0 and —9, respectively. These are provided
only for backwards compatibility with LZMA Utils. Avoid using these options.

——block—size=size

When compressing to the .xz format, split the input data into blocks of size bytes. The
blocks are compressed independently from each other, which helps with multi-threading
and makes limited random-access decompression possible. This option is typically used
to override the default block size in multi-threaded mode, but this option can be used in
single-threaded mode too.

In multi-threaded mode about three times size bytes will be allocated in each thread for
buffering input and output. The default size is three times the LZMA?2 dictionary size or
1 MiB, whichever is more. Typically a good value is 2—4 times the size of the LZMA2
dictionary or at least 1 MiB. Using size less than the LZMA?2 dictionary size is waste of
RAM because then the LZMA?2 dictionary buffer will never get fully used. The sizes of
the blocks are stored in the block headers, which a future version of xz will use for
multi-threaded decompression.

In single-threaded mode no block splitting is done by default. Setting this option
doesn’t affect memory usage. No size information is stored in block headers, thus files
created in single-threaded mode won’t be identical to files created in multi-threaded
mode. The lack of size information also means that a future version of xz won’t be able
decompress the files in multi-threaded mode.

2022-08-22 8

XZ(1)

Tukaani

XZ Utils XZ(1)

——block-list=sizes

When compressing to the .xz format, start a new block after the given intervals of un-
compressed data.

The uncompressed sizes of the blocks are specified as a comma-separated list. Omitting
a size (two or more consecutive commas) is a shorthand to use the size of the previous
block.

If the input file is bigger than the sum of sizes, the last value in sizes is repeated until the
end of the file. A special value of 0 may be used as the last value to indicate that the rest
of the file should be encoded as a single block.

If one specifies sizes that exceed the encoder’s block size (either the default value in
threaded mode or the value specified with ——block—size=size), the encoder will create
additional blocks while keeping the boundaries specified in sizes. For example, if one
specifies ——block—size=10MiB —-block-list=5MiB,10MiB,8MiB,12MiB,24MiB and
the input file is 80 MiB, one will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1
MiB.

In multi-threaded mode the sizes of the blocks are stored in the block headers. This isn’t
done in single-threaded mode, so the encoded output won’t be identical to that of the
multi-threaded mode.

——flush—timeout=timeout

When compressing, if more than timeout milliseconds (a positive integer) has passed
since the previous flush and reading more input would block, all the pending input data
is flushed from the encoder and made available in the output stream. This can be useful
if xz is used to compress data that is streamed over a network. Small timeout values
make the data available at the receiving end with a small delay, but large fimeout values
give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last
one takes effect. The special timeout value of 0 can be used to explicitly disable this
feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the
stream in real time due to how xz does buffering.

——memlimit—compress=/imit

Set a memory usage limit for compression. If this option is specified multiple times, the
last one takes effect.

If the compression settings exceed the /imit, xz will attempt to adjust the settings down-
wards so that the limit is no longer exceeded and display a notice that automatic adjust-
ment was done. The adjustments are done in this order: reducing the number of threads,
switching to single-threaded mode if even one thread in multi-threaded mode exceeds
the limit, and finally reducing the LZMA?2 dictionary size.

2022-08-22 9

XZ(1)

Tukaani

XZ Utils XZ(1)

When compressing with ——format=raw or if ——no—adjust has been specified, only the
number of threads may be reduced since it can be done without affecting the compressed
output.

If the limit cannot be met even with the adjustments described above, an error is dis-
played and xz will exit with exit status 1.

The limit can be specified in multiple ways:

e The limit can be an absolute value in bytes. Using an integer suffix like MiB can be
useful. Example: ——memlimit—compress=80MiB

* The limit can be specified as a percentage of total physical memory (RAM). This
can be useful especially when setting the XZ_DEFAULTS environment variable in a
shell initialization script that is shared between different computers. That way the
limit is automatically bigger on systems with more memory. Example: ——mem-
limit—compress=70%

* The limit can be reset back to its default value by setting it to 0. This is currently
equivalent to setting the /imit to max (no memory usage limit).

For 32-bit xz there is a special case: if the limit would be over 4020 MiB, the limit is set
to 4020 MiB. On MIPS32 2000 MiB is used instead. (The values 0 and max aren’t af-
fected by this. A similar feature doesn’t exist for decompression.) This can be helpful
when a 32-bit executable has access to 4 GiB address space (2 GiB on MIPS32) while
hopefully doing no harm in other situations.

See also the section Memory usage.

——memlimit—decompress=/imit

Set a memory usage limit for decompression. This also affects the ——list mode. If the
operation is not possible without exceeding the /imit, xz will display an error and de-
compressing the file will fail. See ——memlimit—compress=/imit for possible ways to
specify the limit.

——memlimit—-mt-decompress=Iimit

Set a memory usage limit for multi-threaded decompression. This can only affect the
number of threads; this will never make xz refuse to decompress a file. If limit is too
low to allow any multi-threading, the limit is ignored and xz will continue in single-
threaded mode. Note that if also ——memlimit—decompress is used, it will always apply
to both single-threaded and multi-threaded modes, and so the effective limit for multi-
threading will never be higher than the limit set with ——memlimit—decompress.

In contrast to the other memory usage limit options, ——memlimit—-mt—decom-
press=limit has a system-specific default limit. xz —info—memory can be used to see
the current value.

This option and its default value exist because without any limit the threaded decom-
pressor could end up allocating an insane amount of memory with some input files. If
the default limit is too low on your system, feel free to increase the /imit but never set it

2022-08-22 10

XZ(1)

Tukaani

XZ Utils XZ(1)

to a value larger than the amount of usable RAM as with appropriate input files xz will
attempt to use that amount of memory even with a low number of threads. Running out
of memory or swapping will not improve decompression performance.

See ——memlimit—compress=/imit for possible ways to specify the limit. Setting limit
to 0 resets the /imit to the default system-specific value.

—M limit, ——memlimit=/imit, ——memory=Ilimit

This is equivalent to specifying ——memlimit—compress=I/imit ——memlimit-decom-
press=limit ——memlimit-mt—decompress=/imit.

——no-adjust

Display an error and exit if the memory usage limit cannot be met without adjusting set-
tings that affect the compressed output. That is, this prevents xz from switching the en-
coder from multi-threaded mode to single-threaded mode and from reducing the
LZMAZ? dictionary size. Even when this option is used the number of threads may be
reduced to meet the memory usage limit as that won’t affect the compressed output.

Automatic adjusting is always disabled when creating raw streams (—format=raw).

=T threads, ——threads=threads

Specify the number of worker threads to use. Setting threads to a special value 0 makes
Xz use up to as many threads as the processor(s) on the system support. The actual num-
ber of threads can be fewer than threads if the input file is not big enough for threading
with the given settings or if using more threads would exceed the memory usage limit.

The single-threaded and multi-threaded compressors produce different output. Single-
threaded compressor will give the smallest file size but only the output from the multi-
threaded compressor can be decompressed using multiple threads. Setting threads to 1
will use the single-threaded mode. Setting threads to any other value, including 0, will
use the multi-threaded compressor even if the system supports only one hardware
thread. (xz 5.2.x used single-threaded mode in this situation.)

If an automatic number of threads has been requested and no memory usage limit has
been specified, then a system-specific default soft limit will be used to possibly limit the
number of threads. It is a soft limit in sense that it is ignored if the number of threads
becomes one, thus a soft limit will never stop xz from compressing or decompressing.
This default soft limit will not make xz switch from multi-threaded mode to single-
threaded mode. The active limits can be seen with xz ——info—memory.

Currently the only threading method is to split the input into blocks and compress them
independently from each other. The default block size depends on the compression level
and can be overridden with the ——block—size=size option.

Threaded decompression only works on files that contain multiple blocks with size in-
formation in block headers. All large enough files compressed in multi-threaded mode
meet this condition, but files compressed in single-threaded mode don’t even if
—-block-size=size has been used.

2022-08-22 11

XZ(1)

XZ Utils XZ(1)

Custom compressor filter chains

Tukaani

A custom filter chain allows specifying the compression settings in detail instead of relying on
the settings associated to the presets. When a custom filter chain is specified, preset options (-0
... =9 and ——extreme) earlier on the command line are forgotten. If a preset option is specified
after one or more custom filter chain options, the new preset takes effect and the custom filter
chain options specified earlier are forgotten.

A filter chain is comparable to piping on the command line. When compressing, the uncom-
pressed input goes to the first filter, whose output goes to the next filter (if any). The output of
the last filter gets written to the compressed file. The maximum number of filters in the chain is
four, but typically a filter chain has only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work only
as the last filter in the chain, some only as a non-last filter, and some work in any position in the
chain. Depending on the filter, this limitation is either inherent to the filter design or exists to
prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are wanted
in the filter chain. That is, the order of filter options is significant! When decoding raw streams
(——format=raw), the filter chain is specified in the same order as it was specified when com-
pressing.

Filters take filter-specific options as a comma-separated list. Extra commas in options are ig-
nored. Every option has a default value, so you need to specify only those you want to change.

To see the whole filter chain and options, use xz —vv (that is, use ——verbose twice). This works
also for viewing the filter chain options used by presets.

——lzmal[=options]

——lzma2[=options]
Add LZMA1 or LZMA?Z? filter to the filter chain. These filters can be used only as the
last filter in the chain.

LZMAI is a legacy filter, which is supported almost solely due to the legacy .Jzma file
format, which supports only LZMA1. LZMA?2 is an updated version of LZMATI to fix
some practical issues of LZMA1. The .xz format uses LZMA?2 and doesn’t support
LZMA1 at all. Compression speed and ratios of LZMA1 and LZMA?2 are practically
the same.

LZMAT1 and LZMAZ2 share the same set of options:

preset=preset
Reset all LZMA1 or LZMA?2 options to preset. Preset consist of an integer,
which may be followed by single-letter preset modifiers. The integer can be
from 0 to 9, matching the command line options -0 ... =9. The only supported
modifier is currently e, which matches ——extreme. If no preset is specified,
the default values of LZMA1 or LZMA?2 options are taken from the preset 6.

2022-08-22 12

XZ(1)

Tukaani

XZ Utils XZ(1)

dict=size

Ie=lc

Ip=Ip

pb=pb

Dictionary (history buffer) size indicates how many bytes of the recently pro-
cessed uncompressed data is kept in memory. The algorithm tries to find re-
peating byte sequences (matches) in the uncompressed data, and replace them
with references to the data currently in the dictionary. The bigger the dictio-
nary, the higher is the chance to find a match. Thus, increasing dictionary size
usually improves compression ratio, but a dictionary bigger than the uncom-
pressed file is waste of memory.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB.
The maximum for compression is currently 1.5 GiB (1536 MiB). The decom-
pressor already supports dictionaries up to one byte less than 4 GiB, which is
the maximum for the LZMA1 and LZMA?2 stream formats.

Dictionary size and match finder (mf) together determine the memory usage of
the LZMAT1 or LZMA?2 encoder. The same (or bigger) dictionary size is re-
quired for decompressing that was used when compressing, thus the memory
usage of the decoder is determined by the dictionary size used when compress-
ing. The .xz headers store the dictionary size either as 2°n or 2°n + 2%(n—1), so
these sizes are somewhat preferred for compression. Other sizes will get
rounded up when stored in the .xz headers.

Specify the number of literal context bits. The minimum is O and the maxi-
mum is 4; the default is 3. In addition, the sum of /c and /p must not exceed 4.

All bytes that cannot be encoded as matches are encoded as literals. That is,
literals are simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highest Ic bits of the previous
uncompressed byte correlate with the next byte. For example, in typical Eng-
lish text, an upper-case letter is often followed by a lower-case letter, and a
lower-case letter is usually followed by another lower-case letter. In the US-
ASCII character set, the highest three bits are 010 for upper-case letters and
011 for lower-case letters. When Ic is at least 3, the literal coding can take ad-
vantage of this property in the uncompressed data.

The default value (3) is usually good. If you want maximum compression, test
lc=4. Sometimes it helps a little, and sometimes it makes compression worse.
If it makes it worse, test le=2 too.

Specify the number of literal position bits. The minimum is O and the maxi-
mum is 4; the default is O.

Lp affects what kind of alignment in the uncompressed data is assumed when
encoding literals. See pb below for more information about alignment.

Specify the number of position bits. The minimum is 0 and the maximum is 4;
the default is 2.

2022-08-22 13

XZ(1)

Tukaani

mf=mf

XZ Utils XZ(1)

Pb affects what kind of alignment in the uncompressed data is assumed in gen-
eral. The default means four-byte alignment (2" pb=2"2=4), which is often a
good choice when there’s no better guess.

When the alignment is known, setting pb accordingly may reduce the file size a
little. For example, with text files having one-byte alignment (US-ASCII,
ISO-8859-*, UTF-8), setting pb=0 can improve compression slightly. For
UTF-16 text, pb=1 is a good choice. If the alignment is an odd number like 3
bytes, pb=0 might be the best choice.

Even though the assumed alignment can be adjusted with pb and Ip, LZMA1
and LZMAZ? still slightly favor 16-byte alignment. It might be worth taking
into account when designing file formats that are likely to be often compressed
with LZMA1 or LZMA2.

Match finder has a major effect on encoder speed, memory usage, and com-
pression ratio. Usually Hash Chain match finders are faster than Binary Tree
match finders. The default depends on the preset: 0 uses he3, 1-3 use hed, and
the rest use bt4.

The following match finders are supported. The memory usage formulas below
are rough approximations, which are closest to the reality when dict is a power
of two.

hc3 Hash Chain with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict * 7.5 (if dict <= 16 MiB);
dict * 5.5 + 64 MiB (if dict > 16 MiB)

hcd4 Hash Chain with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4
Memory usage:
dict *7.5 (if dict <= 32 MiB);
dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing
Minimum value for nice: 2
Memory usage: dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict * 11.5 (if dict <= 16 MiB);
dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4

Memory usage:
dict * 11.5 (if dict <=32 MiB);

2022-08-22 14

XZ(1)

Tukaani

XZ Utils XZ(1)

dict * 10.5 (if dict > 32 MiB)

mode=mode
Compression mode specifies the method to analyze the data produced by the
match finder. Supported modes are fast and normal. The default is fast for
presets 0-3 and normal for presets 4-9.

Usually fast is used with Hash Chain match finders and normal with Binary
Tree match finders. This is also what the presets do.

nice=nice
Specify what is considered to be a nice length for a match. Once a match of at
least nice bytes is found, the algorithm stops looking for possibly better
matches.

Nice can be 2-273 bytes. Higher values tend to give better compression ratio
at the expense of speed. The default depends on the preset.

depth=depth
Specify the maximum search depth in the match finder. The default is the spe-
cial value of 0, which makes the compressor determine a reasonable depth from
mf and nice.

Reasonable depth for Hash Chains is 4-100 and 16-1000 for Binary Trees.
Using very high values for depth can make the encoder extremely slow with
some files. Avoid setting the depth over 1000 unless you are prepared to inter-
rupt the compression in case it is taking far too long.

When decoding raw streams (——format=raw), LZMA?2 needs only the dictionary size.
LZMAT1 needs also Ic, Ip, and pb.

——x86[=options]

——powerpc[=options]

——ia64[=options]

——arm([=options|

——armthumb[=options]

——sparc[=options]
Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only as
a non-last filter in the filter chain.

A BCI filter converts relative addresses in the machine code to their absolute counter-
parts. This doesn’t change the size of the data, but it increases redundancy, which can
help LZMA2 to produce 0-15 % smaller .xz file. The BC]J filters are always reversible,
so using a BCJ filter for wrong type of data doesn’t cause any data loss, although it may
make the compression ratio slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only on
the executable section. Applying a BCJ filter on an archive that contains both exe-
cutable and non-executable files may or may not give good results, so it generally isn’t
good to blindly apply a BCJ filter when compressing binary packages for distribution.

2022-08-22 15

XZ(1) XZ Utils XZ(1)

These BCI filters are very fast and use insignificant amount of memory. If a BCJ filter
improves compression ratio of a file, it can improve decompression speed at the same
time. This is because, on the same hardware, the decompression speed of LZMA?2 is
roughly a fixed number of bytes of compressed data per second.

These BCJ filters have known problems related to the compression ratio:

* Some types of files containing executable code (for example, object files, static li-
braries, and Linux kernel modules) have the addresses in the instructions filled with
filler values. These BCI filters will still do the address conversion, which will make
the compression worse with these files.

e Applying a BCJ filter on an archive containing multiple similar executables can
make the compression ratio worse than not using a BCJ filter. This is because the
BCIJ filter doesn’t detect the boundaries of the executable files, and doesn’t reset the
address conversion counter for each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ filters
will still be useful in embedded systems, because the decoder of the new filter will be
bigger and use more memory.

Different instruction sets have different alignment:

Filter Alignment Notes

x86 1 32-bit or 64-bit x86
PowerPC 4 Big endian only
ARM 4 Little endian only
ARM-Thumb 2 Little endian only
1A-64 16 Big or little endian
SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA?2, the compression ratio
may be improved slightly if the LZMA?2 options are set to match the alignment of the
selected BCJ filter. For example, with the IA-64 filter, it’s good to set pb=4 with
LZMAZ2 (2°4=16). The x86 filter is an exception; it’s usually good to stick to LZMA2’s
default four-byte alignment when compressing x86 executables.

All BCIJ filters support the same options:

start=offset
Specify the start offset that is used when converting between relative and abso-
lute addresses. The offser must be a multiple of the alignment of the filter (see
the table above). The default is zero. In practice, the default is good; specify-
ing a custom offset is almost never useful.

——delta[=options]

Add the Delta filter to the filter chain. The Delta filter can be only used as a non-last fil-
ter in the filter chain.

Tukaani 2022-08-22 16

XZ(1)

XZ Utils XZ(1)

Currently only simple byte-wise delta calculation is supported. It can be useful when
compressing, for example, uncompressed bitmap images or uncompressed PCM audio.
However, special purpose algorithms may give significantly better results than Delta +
LZMAZ2. This is true especially with audio, which compresses faster and better, for ex-
ample, with flac(1).

Supported options:

dist=distance

Other options

Tukaani

—q, ——quiet

Specify the distance of the delta calculation in bytes. distance must be 1-256.
The default is 1.

For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7, the
output will be A1 B1 01 02 01 02 01 02.

Suppress warnings and notices. Specify this twice to suppress errors too. This option
has no effect on the exit status. That is, even if a warning was suppressed, the exit status
to indicate a warning is still used.

—-v, —verbose
Be verbose. If standard error is connected to a terminal, xz will display a progress indi-
cator. Specifying ——verbose twice will give even more verbose output.

The progress indicator shows the following information:

Completion percentage is shown if the size of the input file is known. That is, the
percentage cannot be shown in pipes.

Amount of compressed data produced (compressing) or consumed (decompressing).

Amount of uncompressed data consumed (compressing) or produced (decompress-
ing).

Compression ratio, which is calculated by dividing the amount of compressed data
processed so far by the amount of uncompressed data processed so far.

Compression or decompression speed. This is measured as the amount of uncom-
pressed data consumed (compression) or produced (decompression) per second. It is
shown after a few seconds have passed since xz started processing the file.

Elapsed time in the format M:SS or H:MM:SS.

Estimated remaining time is shown only when the size of the input file is known and
a couple of seconds have already passed since xz started processing the file. The
time is shown in a less precise format which never has any colons, for example, 2
min 30 s.

When standard error is not a terminal, ——verbose will make xz print the filename, com-
pressed size, uncompressed size, compression ratio, and possibly also the speed and

2022-08-22 17

XZ(1)

XZ Utils XZ(1)

elapsed time on a single line to standard error after compressing or decompressing the
file. The speed and elapsed time are included only when the operation took at least a
few seconds. If the operation didn’t finish, for example, due to user interruption, also
the completion percentage is printed if the size of the input file is known.

-Q, ——no-warn
Don'’t set the exit status to 2 even if a condition worth a warning was detected. This op-
tion doesn’t affect the verbosity level, thus both ——quiet and ——no—warn have to be
used to not display warnings and to not alter the exit status.

——robot
Print messages in a machine-parsable format. This is intended to ease writing frontends
that want to use xz instead of liblzma, which may be the case with various scripts. The

output with this option enabled is meant to be stable across Xz releases. See the section
ROBOT MODE for details.

——info-memory
Display, in human-readable format, how much physical memory (RAM) and how many
processor threads xz thinks the system has and the memory usage limits for compression
and decompression, and exit successfully.

—h, —help
Display a help message describing the most commonly used options, and exit success-
fully.

—H, ——long-help

Display a help message describing all features of xz, and exit successfully

-V, ——version
Display the version number of xz and liblzma in human readable format. To get ma-
chine-parsable output, specify ——robot before ——version.

ROBOT MODE

The robot mode is activated with the ——robot option. It makes the output of xz easier to parse by
other programs. Currently ——robot is supported only together with ——version, ——info—mem-
ory, and ——list. It will be supported for compression and decompression in the future.

Version

Tukaani

xz ——robot ——version will print the version number of Xz and liblzma in the following format:

X7 _VERSION=XYYYZZZS
LIBLZMA_VERSION=XYYYZZZS

X Major version.
Yyy Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.
777 Patch level for stable releases or just a counter for development releases.

S Stability. O is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY is even.

2022-08-22 18

XZ(1)

XZ Utils XZ(1)

XYYYZZZS are the same on both lines if xz and liblzma are from the same XZ Ultils release.

Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

Memory limit information
xz ——robot —info—-memory prints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes. A special value of zero indicates the default
setting, which for single-threaded mode is the same as no limit.

3. Memory usage limit for decompression in bytes. A special value of zero indicates the de-
fault setting, which for single-threaded mode is the same as no limit.

In the future, the output of xz —robot ——info—memory may have more columns, but never more
than a single line.

List mode
xz ——robot —list uses tab-separated output. The first column of every line has a string that indi-
cates the type of the information found on that line:

Tukaani

name This is always the first line when starting to list a file. The second column on the line is
the filename.

file This line contains overall information about the .xz file. This line is always printed after
the name line.

stream This line type is used only when ——verbose was specified. There are as many stream
lines as there are streams in the .xz file.

block This line type is used only when ——verbose was specified. There are as many block
lines as there are blocks in the .xz file. The block lines are shown after all the stream
lines; different line types are not interleaved.

summary
This line type is used only when ——verbose was specified twice. This line is printed af-
ter all block lines. Like the file line, the summary line contains overall information
about the .xz file.

totals This line is always the very last line of the list output. It shows the total counts and

sizes.

The columns of the file lines:

2. Number of streams in the file

Total number of blocks in the stream(s)

Compressed size of the file

Uncompressed size of the file

Compression ratio, for example, 0.123. If ratio is over 9.999, three dashes (———)
are displayed instead of the ratio.

S kW

2022-08-22 19

XZ(1)

8.

XZ Utils

XZ(1)

Comma-separated list of integrity check names. The following strings are used for
the known check types: None, CRC32, CRC64, and SHA-256. For unknown
check types, Unknown—N is used, where N is the Check ID as a decimal number

(one or two digits).
Total size of stream padding in the file

The columns of the stream lines:

2.

S0 XN AW

0.

Stream number (the first stream is 1)

Number of blocks in the stream

Compressed start offset

Uncompressed start offset

Compressed size (does not include stream padding)
Uncompressed size

Compression ratio

Name of the integrity check

Size of stream padding

The columns of the block lines:

2.

S0 XN AW

0.

Number of the stream containing this block

Block number relative to the beginning of the stream (the first block is 1)
Block number relative to the beginning of the file

Compressed start offset relative to the beginning of the file
Uncompressed start offset relative to the beginning of the file

Total compressed size of the block (includes headers)

Uncompressed size

Compression ratio

Name of the integrity check

If ——verbose was specified twice, additional columns are included on the block lines. These are
not displayed with a single ——verbose, because getting this information requires many seeks and
can thus be slow:

11.
12.

Value of the integrity check in hexadecimal
Block header size

13. Block flags: ¢ indicates that compressed size is present, and u indicates that uncom-
pressed size is present. If the flag is not set, a dash (-) is shown instead to keep the

string length fixed. New flags may be added to the end of the string in the future.

14. Size of the actual compressed data in the block (this excludes the block header,

block padding, and check fields)

15. Amount of memory (in bytes) required to decompress this block with this xz ver-

sion

16. Filter chain. Note that most of the options used at compression time cannot be
known, because only the options that are needed for decompression are stored in

the .xz headers.

The columns of the summary lines:
Amount of memory (in bytes) required to decompress this file with this xz version
yes or no indicating if all block headers have both compressed size and uncom-

2.
3.

pressed size stored in them

Since xz 5.1.2alpha:

Tukaani

2022-08-22

20

XZ(1) XZ Utils XZ(1)

4. Minimum xz version required to decompress the file

The columns of the totals line:
2. Number of streams
Number of blocks
Compressed size
Uncompressed size
Average compression ratio
Comma-separated list of integrity check names that were present in the files
Stream padding size
Number of files. This is here to keep the order of the earlier columns the same as
on file lines.

Yoo kW

If ——verbose was specified twice, additional columns are included on the totals line:
10. Maximum amount of memory (in bytes) required to decompress the files with this
XZ version
11. yes or no indicating if all block headers have both compressed size and uncom-
pressed size stored in them
Since xz 5.1.2alpha:
12. Minimum xz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line types,
but the existing columns won’t be changed.

EXIT STATUS
0 All is good.
1 An error occurred.
2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT
xz parses space-separated lists of options from the environment variables XZ_DEFAULTS and
XZ_OPT, in this order, before parsing the options from the command line. Note that only op-
tions are parsed from the environment variables; all non-options are silently ignored. Parsing is
done with getopt_long(3) which is used also for the command line arguments.

XZ_DEFAULTS
User-specific or system-wide default options. Typically this is set in a shell initialization
script to enable xz’s memory usage limiter by default. Excluding shell initialization
scripts and similar special cases, scripts must never set or unset XZ_DEFAULTS.

X7Z_OPT
This is for passing options to xz when it is not possible to set the options directly on the
xz command line. This is the case when Xz is run by a script or tool, for example, GNU
tar(1):

XZ_OPT=-2v tar caf foo.tar.xz foo

Tukaani 2022-08-22 21

XZ(1) XZ Utils XZ(1)

Scripts may use XZ_OPT, for example, to set script-specific default compression op-
tions. It is still recommended to allow users to override XZ_OPT if that is reasonable.
For example, in sh(1) scripts one may use something like this:

XZ_ _OPT=${XZ_OPT-"-7e"}
export XZ_OPT

LZMA UTILS COMPATIBILITY
The command line syntax of xz is practically a superset of 1zma, unlzma, and lzcat as found
from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Ultils
without breaking existing scripts. There are some incompatibilities though, which may some-
times cause problems.

Compression preset levels
The numbering of the compression level presets is not identical in xz and LZMA Utils. The most
important difference is how dictionary sizes are mapped to different presets. Dictionary size is
roughly equal to the decompressor memory usage.

Level XZ LZMA Utils
-0 256 KiB N/A
-1 1 MiB 64 KiB
-2 2 MiB 1 MiB
-3 4 MiB 512 KiB
—4 4 MiB 1 MiB
-5 8 MiB 2 MiB
-6 8 MiB 4 MiB
-7 16 MiB 8 MiB
-8 32 MiB 16 MiB
-9 64 MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some other
differences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level XZ LZMA Utils 4.32.x
-0 3 MiB N/A
-1 9 MiB 2 MiB
-2 17 MiB 12 MiB
-3 32 MiB 12 MiB
—4 48 MiB 16 MiB
-5 94 MiB 26 MiB
-6 94 MiB 45 MiB
=7 186 MiB 83 MiB
-8 370 MiB 159 MiB
-9 674 MiB 311 MiB

The default preset level in LZMA Ugtils is —7 while in XZ Utils it is —6, so both use an 8 MiB dic-
tionary by default.

Tukaani 2022-08-22 22

XZ(1)

XZ Utils XZ(1)

Streamed vs. non-streamed .lzma files

The uncompressed size of the file can be stored in the .Jlzma header. LZMA Utils does that when
compressing regular files. The alternative is to mark that uncompressed size is unknown and use
end-of-payload marker to indicate where the decompressor should stop. LZMA Utils uses this
method when uncompressed size isn’t known, which is the case, for example, in pipes.

xz supports decompressing .lzma files with or without end-of-payload marker, but all .lzma files
created by xz will use end-of-payload marker and have uncompressed size marked as unknown in
the .Jlzma header. This may be a problem in some uncommon situations. For example, a .Jzma
decompressor in an embedded device might work only with files that have known uncompressed
size. If you hit this problem, you need to use LZMA Utils or LZMA SDK to create .Jzma files
with known uncompressed size.

Unsupported .1zma files

The .Izma format allows Ic values up to 8, and Ip values up to 4. LZMA Utils can decompress
files with any Ic and /p, but always creates files with lc=3 and Ip=0. Creating files with other Ic
and /p is possible with xz and with LZMA SDK.

The implementation of the LZMALI filter in liblzma requires that the sum of /c and Ip must not
exceed 4. Thus, .Jzma files, which exceed this limitation, cannot be decompressed with xz.

LZMA Utils creates only .Jzma files which have a dictionary size of 2°n (a power of 2) but ac-
cepts files with any dictionary size. liblzma accepts only .Jzma files which have a dictionary size
of 2°n or 2°n + 2°(n—1). This is to decrease false positives when detecting .lzma files.

These limitations shouldn’t be a problem in practice, since practically all .Jzma files have been
compressed with settings that liblzma will accept.

Trailing garbage

When decompressing, LZMA Utils silently ignore everything after the first .Jzma stream. In
most situations, this is a bug. This also means that LZMA Utils don’t support decompressing
concatenated .Jzma files.

If there is data left after the first .Jzma stream, xz considers the file to be corrupt unless ——sin-
gle-stream was used. This may break obscure scripts which have assumed that trailing garbage
is ignored.

NOTES

Compressed output may vary

Tukaani

The exact compressed output produced from the same uncompressed input file may vary between
XZ Utils versions even if compression options are identical. This is because the encoder can be
improved (faster or better compression) without affecting the file format. The output can vary
even between different builds of the same XZ Utils version, if different build options are used.

The above means that once ——rsyncable has been implemented, the resulting files won’t neces-
sarily be rsyncable unless both old and new files have been compressed with the same xz version.
This problem can be fixed if a part of the encoder implementation is frozen to keep rsyncable out-
put stable across xz versions.

2022-08-22 23

XZ(1) XZ Utils XZ(1)

Embedded .xz decompressors
Embedded .xz decompressor implementations like XZ Embedded don’t necessarily support files
created with integrity check types other than mnone and crc32. Since the default is
——check=crc64, you must use ——check=none or ——check=cre32 when creating files for embed-
ded systems.

Outside embedded systems, all .xz format decompressors support all the check types, or at least
are able to decompress the file without verifying the integrity check if the particular check is not
supported.

XZ Embedded supports BCJ filters, but only with the default start offset.
EXAMPLES

Basics
Compress the file foo into foo.xz using the default compression level (—6), and remove foo if
compression is successful:

xz foo
Decompress bar.xz into bar and don’t remove bar.xz even if decompression is successful:
xz —dk bar.xz

Create baz.tarxz with the preset —4e (—4 ——extreme), which is slower than the default —6, but
needs less memory for compression and decompression (48 MiB and 5 MiB, respectively):

tar cf - baz | Xz —4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a sin-
gle command:

xz —dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Parallel compression of many files
On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many files:

find . -type £ \! —-name ’*.xz’ -print0 \
| xargs —-0r -P4 -nl6 xz -T1

The —P option to xargs(1) sets the number of parallel xz processes. The best value for the —n op-
tion depends on how many files there are to be compressed. If there are only a couple of files, the
value should probably be 1; with tens of thousands of files, 100 or even more may be appropriate
to reduce the number of xz processes that xargs(1) will eventually create.

The option —T1 for xz is there to force it to single-threaded mode, because xargs(1) is used to
control the amount of parallelization.

Robot mode
Calculate how many bytes have been saved in total after compressing multiple files:

xz ——-robot —--list *.xz | awk ’/“totals/{print $5-$4}’

Tukaani 2022-08-22 24

XZ(1)

XZ Utils XZ(1)

A script may want to know that it is using new enough xz. The following sh(1) script checks that
the version number of the xz tool is at least 5.0.0. This method is compatible with old beta ver-
sions, which didn’t support the ——robot option:

if ! eval "$(xz —--robot —-version 2> /dev/null)" ||
["$XZ_VERSION" -1t 50000002]; then
echo "Your xz is too old."
fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been set,
don’t increase it:

NEWLIM=S$ ((123 << 20)) # 123 MiB

OLDLIM=$ (xz —-robot --info-memory | cut -£3)

if [SOLDLIM -eq 0 —-o $OLDLIM -gt SNEWLIM]; then
XZ_OPT="$XZ_OPT --memlimit-decompress=S$SNEWLIM"
export XZ_OPT

fi

Custom compressor filter chains

Tukaani

The simplest use for custom filter chains is customizing a LZMA?2 preset. This can be useful, be-
cause the presets cover only a subset of the potentially useful combinations of compression set-
tings.

The CompCPU columns of the tables from the descriptions of the options —0 ... =9 and ——ex-
treme are useful when customizing LZMA?2 presets. Here are the relevant parts collected from
those two tables:

Preset CompCPU

-0 0
-1 1
-2 2
-3 3
-4 4
-5 5
-6 6
—Se 7
—6e 8

If you know that a file requires somewhat big dictionary (for example, 32 MiB) to compress well,
but you want to compress it quicker than xz —8 would do, a preset with a low CompCPU value
(for example, 1) can be modified to use a bigger dictionary:

xz ——lzma2=preset=1,dict=32MiB foo.tar

With certain files, the above command may be faster than xz —6 while compressing significantly
better. However, it must be emphasized that only some files benefit from a big dictionary while
keeping the CompCPU value low. The most obvious situation, where a big dictionary can help a
lot, is an archive containing very similar files of at least a few megabytes each. The dictionary

2022-08-22 25

XZ(1)

Tukaani

XZ Utils XZ(1)

size has to be significantly bigger than any individual file to allow LZMA?2 to take full advantage
of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being compressed
is at least several hundred megabytes, it may be useful to use an even bigger dictionary than the
64 MiB that xz -9 would use:

Xz —-vv ——lzma2=dict=192MiB big_foo.tar

Using —vv (——verbose ——verbose) like in the above example can be useful to see the memory
requirements of the compressor and decompressor. Remember that using a dictionary bigger
than the size of the uncompressed file is waste of memory, so the above command isn’t useful for
small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to be
kept low, for example, to make it possible to decompress the file on an embedded system. The
following command uses —6e (—6 ——extreme) as a base and sets the dictionary to only 64 KiB.
The resulting file can be decompressed with XZ Embedded (that’s why there is ——check=crc32)
using about 100 KiB of memory.

xz ——-check=crc32 --lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context bits
(Ic) and number of position bits (pb) can sometimes help. Adjusting the number of literal posi-
tion bits (Ip) might help too, but usually /c and pb are more important. For example, a source
code archive contains mostly US-ASCII text, so something like the following might give slightly
(like 0.1 %) smaller file than xz —6e (try also without lc=4):

xz ——lzmal=preset=6e,pb=0,1lc=4 source_code.tar

Using another filter together with LZMA?2 can improve compression with certain file types. For
example, to compress a x86-32 or x86-64 shared library using the x86 BC]J filter:

XZ ——-x86 —--lzma2 libfoo.so

Note that the order of the filter options is significant. If ——x86 is specified after ——lzma2, xz will
give an error, because there cannot be any filter after LZMA?2, and also because the x86 BCJ filter
cannot be used as the last filter in the chain.

The Delta filter together with LZMA?2 can give good results with bitmap images. It should usu-
ally beat PNG, which has a few more advanced filters than simple delta but uses Deflate for the
actual compression.

The image has to be saved in uncompressed format, for example, as uncompressed TIFF. The
distance parameter of the Delta filter is set to match the number of bytes per pixel in the image.
For example, 24-bit RGB bitmap needs dist=3, and it is also good to pass pb=0 to LZMA?2 to ac-
commodate the three-byte alignment:

xz ——delta=dist=3 —--1lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (for example, .tar), the Delta filter will

2022-08-22 26

XZ(1) XZ Utils

work on that too as long as all images have the same number of bytes per pixel.

SEE ALSO
xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <https://tukaani.org/xz/>
XZ Embedded: <https://tukaani.org/xz/embedded.html>
LZMA SDK: <http://7-zip.org/sdk.html>

Tukaani 2022-08-22

XZ(1)

27

