XZ(1) X7 Utils X7(1)
NAME

Xz, Unxz, Xzcat, lzma, unlzma, 1zcat — Compress or decompress .xz and .1zma files
SYNOPSIS

Xz [option...] [file...]
COMMAND ALIASES

unxz is equivalent to xz ——decompress.

xzcat is equivalent to xz ——decompress ——stdout.

Izma is equivalent to xz ——format=Izma.

unlzma is equivalent to xz ——format=lzma ——decompress.

Izcat is equivalent to xz ——format=lzma ——decompress ——stdout.

When writing scripts that need to decompress files, it is recommended to always use the name

xz with appropriate arguments (xz —d or Xz —dc) instead of the names unxz and xzcat.

DESCRIPTION

XZ is a general-purpose data compression tool with command line syntax similar to gzip(1)

and bzip2(1). The native file format is the .xz format, but the legacy .Izma format used by

LZMA Utils and raw compressed streams with no container format headers are also sup-

ported.

xz compresses or decompresses each file according to the selected operation mode. If no

files are given or file is —, Xz reads from standard input and writes the processed data to stan-

dard output. xz will refuse (display an error and skip the file) to write compressed data to
standard output if it is a terminal. Similarly, xz will refuse to read compressed data from
standard input if it is a terminal.

Unless ——stdout is specified, files other than — are written to a new file whose name is de-

rived from the source file name:

*  When compressing, the suffix of the target file format (.xz or .lzma) is appended to the
source filename to get the target filename.

e When decompressing, the .xz or .Jzma suffix is removed from the filename to get the tar-
get filename. xz also recognizes the suffixes .txz and .tlz, and replaces them with the .tar
suffix.

If the target file already exists, an error is displayed and the file is skipped.

Unless writing to standard output, xz will display a warning and skip the file if any of the fol-

lowing applies:

» File is not a regular file. Symbolic links are not followed, and thus they are not consid-
ered to be regular files.

e File has more than one hard link.

* File has setuid, setgid, or sticky bit set.

* The operation mode is set to compress and the file already has a suffix of the target file
format (.xz or .txz when compressing to the .xz format, and .1zma or .tlz when compress-
ing to the .1zma format).

Tukaani 2022-08-22 1



XZ(1)

XZ Utils XZ(1)

* The operation mode is set to decompress and the file doesn’t have a suffix of any of the
supported file formats (.xz, .txz, .Jzma, or .tlz).

After successfully compressing or decompressing the file, Xz copies the owner, group, per-
missions, access time, and modification time from the source file to the target file. If copying
the group fails, the permissions are modified so that the target file doesn’t become accessible
to users who didn’t have permission to access the source file. xz doesn’t support copying
other metadata like access control lists or extended attributes yet.

Once the target file has been successfully closed, the source file is removed unless ——keep
was specified. The source file is never removed if the output is written to standard output.

Sending SIGINFO or SIGUSR1 to the xz process makes it print progress information to
standard error. This has only limited use since when standard error is a terminal, using
——verbose will display an automatically updating progress indicator.

Memory usage

The memory usage of xz varies from a few hundred kilobytes to several gigabytes depending
on the compression settings. The settings used when compressing a file determine the mem-
ory requirements of the decompressor. Typically the decompressor needs 5 % to 20 % of the
amount of memory that the compressor needed when creating the file. For example, decom-
pressing a file created with xz —9 currently requires 65 MiB of memory. Still, it is possible to
have .xz files that require several gigabytes of memory to decompress.

Especially users of older systems may find the possibility of very large memory usage annoy-
ing. To prevent uncomfortable surprises, Xz has a built-in memory usage limiter, which is
disabled by default. While some operating systems provide ways to limit the memory usage
of processes, relying on it wasn’t deemed to be flexible enough (for example, using ulimit(1)
to limit virtual memory tends to cripple mmap(2)).

The memory usage limiter can be enabled with the command line option ——memlimit=/imit.
Often it is more convenient to enable the limiter by default by setting the environment vari-
able XZ_DEFAULTS, for example, XZ_DEFAULTS=—memlimit=150MiB. It is possible
to set the limits separately for compression and decompression by using ——memlimit—com-
press=limit and ——memlimit—decompress=/imit. Using these two options outside XZ_DE-
FAULTS is rarely useful because a single run of xz cannot do both compression and decom-
pression and ——memlimit=/imit (or —M [limit) is shorter to type on the command line.

If the specified memory usage limit is exceeded when decompressing, xz will display an error
and decompressing the file will fail. If the limit is exceeded when compressing, xz will try to
scale the settings down so that the limit is no longer exceeded (except when using ——for-
mat=raw or ——no-adjust). This way the operation won’t fail unless the limit is very small.
The scaling of the settings is done in steps that don’t match the compression level presets, for
example, if the limit is only slightly less than the amount required for xz -9, the settings will
be scaled down only a little, not all the way down to xz -8.

Concatenation and padding with .xz files

Tukaani

It is possible to concatenate .xz files as is. xz will decompress such files as if they were a sin-
gle .xz file.

It is possible to insert padding between the concatenated parts or after the last part. The pad-
ding must consist of null bytes and the size of the padding must be a multiple of four bytes.
This can be useful, for example, if the .xz file is stored on a medium that measures file sizes
in 512-byte blocks.

2022-08-22 2



XZ(1) XZ Utils XZ(1)

Concatenation and padding are not allowed with .1zma files or raw streams.

OPTIONS
Integer suffixes and special values
In most places where an integer argument is expected, an optional suffix is supported to easily
indicate large integers. There must be no space between the integer and the suffix.

KiB Multiply the integer by 1,024 (2710). Ki, k, kB, K, and KB are accepted as syn-
onyms for KiB.

MiB  Multiply the integer by 1,048,576 (2720). Mi, m, M, and MB are accepted as syn-
onyms for MiB.

GiB Multiply the integer by 1,073,741,824 (2730). Gi, g, G, and GB are accepted as syn-
onyms for GiB.

The special value max can be used to indicate the maximum integer value supported by the
option.

Operation mode
If multiple operation mode options are given, the last one takes effect.

—Z, ——compress
Compress. This is the default operation mode when no operation mode option is
specified and no other operation mode is implied from the command name (for ex-
ample, unxz implies ——decompress).

—d, ——decompress, ——uncompress
Decompress.

—t, ——test
Test the integrity of compressed files. This option is equivalent to ——decompress
——stdout except that the decompressed data is discarded instead of being written to
standard output. No files are created or removed.

-1, ——list
Print information about compressed files. No uncompressed output is produced,
and no files are created or removed. In list mode, the program cannot read the com-
pressed data from standard input or from other unseekable sources.

The default listing shows basic information about files, one file per line. To get
more detailed information, use also the ——verbose option. For even more informa-
tion, use ——verbose twice, but note that this may be slow, because getting all the ex-
tra information requires many seeks. The width of verbose output exceeds 80 char-
acters, so piping the output to, for example, less —S may be convenient if the termi-
nal isn’t wide enough.

The exact output may vary between xz versions and different locales. For machine-
readable output, ——robot —-list should be used.

Operation modifiers

-k, —keep
Don’t delete the input files.

Tukaani 2022-08-22 3



XZ(1)

Tukaani

XZ Utils XZ(1)

Since xz 5.2.6, this option also makes xz compress or decompress even if the input is
a symbolic link to a regular file, has more than one hard link, or has the setuid, set-
gid, or sticky bit set. The setuid, setgid, and sticky bits are not copied to the target
file. In earlier versions this was only done with ——force.

—f, —force

This option has several effects:
» If the target file already exists, delete it before compressing or decompressing.

e Compress or decompress even if the input is a symbolic link to a regular file, has
more than one hard link, or has the setuid, setgid, or sticky bit set. The setuid,
setgid, and sticky bits are not copied to the target file.

*  When used with ——decompress ——stdout and xz cannot recognize the type of
the source file, copy the source file as is to standard output. This allows xzcat
——force to be used like cat(1) for files that have not been compressed with xz.
Note that in future, xz might support new compressed file formats, which may
make xz decompress more types of files instead of copying them as is to stan-
dard output. ——format= format can be used to restrict xz to decompress only a
single file format.

—c, ——stdout, ——to—stdout

Write the compressed or decompressed data to standard output instead of a file.
This implies —keep.

——single—stream

Decompress only the first .xz stream, and silently ignore possible remaining input
data following the stream. Normally such trailing garbage makes xz display an er-
IOL.

xz never decompresses more than one stream from .lzma files or raw streams, but
this option still makes xz ignore the possible trailing data after the .Jzma file or raw
stream.

This option has no effect if the operation mode is not ——decompress or ——test.

——no-sparse

Disable creation of sparse files. By default, if decompressing into a regular file, xz
tries to make the file sparse if the decompressed data contains long sequences of bi-
nary zeros. It also works when writing to standard output as long as standard output
is connected to a regular file and certain additional conditions are met to make it
safe. Creating sparse files may save disk space and speed up the decompression by
reducing the amount of disk I/O.

=S .suf, ——suffix=.suf

When compressing, use .suf as the suffix for the target file instead of .xz or .lzma.
If not writing to standard output and the source file already has the suffix .suf, a
warning is displayed and the file is skipped.

When decompressing, recognize files with the suffix .suf in addition to files with the
Xz, .txz, JJzma, or .tlz suffix. If the source file has the suffix .suf, the suffix is re-
moved to get the target filename.

2022-08-22 4



XZ(1)

XZ Utils XZ(1)

When compressing or decompressing raw streams (——format=raw), the suffix must
always be specified unless writing to standard output, because there is no default
suffix for raw streams.

—files[=file]

Read the filenames to process from file; if file is omitted, filenames are read from
standard input. Filenames must be terminated with the newline character. A dash
(-) is taken as a regular filename; it doesn’t mean standard input. If filenames are
given also as command line arguments, they are processed before the filenames read
from file.

——filesO[=file]

This is identical to ——files[=file] except that each filename must be terminated with
the null character.

Basic file format and compression options
—F format, ——format=format
Specify the file format to compress or decompress:

Tukaani

auto

XZ

This is the default. When compressing, auto is equivalent to xz. When de-
compressing, the format of the input file is automatically detected. Note
that raw streams (created with ——format=raw) cannot be auto-detected.

Compress to the .xz file format, or accept only .xz files when decompress-
ing.

lzma, alone

raw

Compress to the legacy .Jzma file format, or accept only .lzma files when
decompressing. The alternative name alone is provided for backwards
compatibility with LZMA Ultils.

Compress or uncompress a raw stream (no headers). This is meant for ad-
vanced users only. To decode raw streams, you need use ——format=raw
and explicitly specify the filter chain, which normally would have been
stored in the container headers.

—C check, ——check=check
Specify the type of the integrity check. The check is calculated from the uncom-
pressed data and stored in the .xz file. This option has an effect only when com-
pressing into the .xz format; the .Jzma format doesn’t support integrity checks. The
integrity check (if any) is verified when the .xz file is decompressed.

Supported check types:

none

crc32

crc64

Don’t calculate an integrity check at all. This is usually a bad idea. This
can be useful when integrity of the data is verified by other means anyway.

Calculate CRC32 using the polynomial from IEEE-802.3 (Ethernet).

Calculate CRC64 using the polynomial from ECMA-182. This is the de-
fault, since it is slightly better than CRC32 at detecting damaged files and
the speed difference is negligible.

2022-08-22 5



XZ(1)

Tukaani

XZ Utils XZ(1)

sha256 Calculate SHA-256. This is somewhat slower than CRC32 and CRC64.

Integrity of the .xz headers is always verified with CRC32. It is not possible to
change or disable it.

——ignore—check

Don’t verify the integrity check of the compressed data when decompressing. The
CRC32 values in the .xz headers will still be verified normally.

Do not use this option unless you know what you are doing. Possible reasons to
use this option:

* Trying to recover data from a corrupt .xz file.

e Speeding up decompression. This matters mostly with SHA-256 or with files
that have compressed extremely well. It’s recommended to not use this option
for this purpose unless the file integrity is verified externally in some other way.

Select a compression preset level. The default is —6. If multiple preset levels are
specified, the last one takes effect. If a custom filter chain was already specified, set-
ting a compression preset level clears the custom filter chain.

The differences between the presets are more significant than with gzip(1) and
bzip2(1). The selected compression settings determine the memory requirements of
the decompressor, thus using a too high preset level might make it painful to decom-
press the file on an old system with little RAM. Specifically, it’s not a good idea to
blindly use -9 for everything like it often is with gzip(1) and bzip2(1).

-0..-3
These are somewhat fast presets. —0 is sometimes faster than gzip —9 while
compressing much better. The higher ones often have speed comparable to
bzip2(1) with comparable or better compression ratio, although the results
depend a lot on the type of data being compressed.

—4..-6
Good to very good compression while keeping decompressor memory us-
age reasonable even for old systems. —6 is the default, which is usually a
good choice for distributing files that need to be decompressible even on
systems with only 16 MiB RAM. (-5e or —6e may be worth considering
too. See ——extreme.)

-7..-9
These are like —6 but with higher compressor and decompressor memory
requirements. These are useful only when compressing files bigger than
8 MiB, 16 MiB, and 32 MiB, respectively.

On the same hardware, the decompression speed is approximately a constant number
of bytes of compressed data per second. In other words, the better the compression,
the faster the decompression will usually be. This also means that the amount of un-
compressed output produced per second can vary a lot.

The following table summarises the features of the presets:

2022-08-22 6



XZ(1)

Tukaani

XZ Utils XZ(1)

Preset  DictSize  CompCPU  CompMem DecMem

-0 256 KiB 0 3 MiB 1 MiB
-1 1 MiB 1 9 MiB 2 MiB
-2 2 MiB 2 17 MiB 3 MiB
-3 4 MiB 3 32 MiB 5 MiB
-4 4 MiB 4 48 MiB 5 MiB
-5 8 MiB 5 94 MiB 9 MiB
-6 8 MiB 6 94 MiB 9 MiB
-7 16 MiB 6 186 MiB 17 MiB
-8 32 MiB 6 370 MiB 33 MiB
-9 64 MiB 6 674 MiB 65 MiB

Column descriptions:

* DictSize is the LZMA?2 dictionary size. It is waste of memory to use a dictio-
nary bigger than the size of the uncompressed file. This is why it is good to
avoid using the presets =7 ... =9 when there’s no real need for them. At —6 and
lower, the amount of memory wasted is usually low enough to not matter.

e CompCPU is a simplified representation of the LZMA?2 settings that affect com-
pression speed. The dictionary size affects speed too, so while CompCPU is the
same for levels —6 ... =9, higher levels still tend to be a little slower. To get even
slower and thus possibly better compression, see ——extreme.

* CompMem contains the compressor memory requirements in the single-threaded
mode. It may vary slightly between xz versions. Memory requirements of some
of the future multithreaded modes may be dramatically higher than that of the
single-threaded mode.

* DecMem contains the decompressor memory requirements. That is, the com-
pression settings determine the memory requirements of the decompressor. The
exact decompressor memory usage is slightly more than the LZMA?2 dictionary
size, but the values in the table have been rounded up to the next full MiB.

—e, ——extreme
Use a slower variant of the selected compression preset level (=0 ... =9) to hopefully
get a little bit better compression ratio, but with bad luck this can also make it worse.
Decompressor memory usage is not affected, but compressor memory usage in-
creases a little at preset levels =0 ... =3.

Since there are two presets with dictionary sizes 4 MiB and 8 MiB, the presets —3e
and —Se use slightly faster settings (lower CompCPU) than —4e and —6e, respec-
tively. That way no two presets are identical.

Preset  DictSize = CompCPU  CompMem DecMem

—0e 256 KiB 8 4 MiB 1 MiB
—-le 1 MiB 8 13 MiB 2 MiB
—2e 2 MiB 8 25 MiB 3 MiB
-3e 4 MiB 7 48 MiB 5 MiB
—4e 4 MiB 8 48 MiB 5 MiB
—5e 8 MiB 7 94 MiB 9 MiB
—6e 8 MiB 8 94 MiB 9 MiB
2022-08-22 7



XZ(1)

Tukaani

XZ Utils XZ(1)
—Te 16 MiB 8 186 MiB 17 MiB
—8e 32 MiB 8 370 MiB 33 MiB
—9¢ 64 MiB 8 674 MiB 65 MiB

For example, there are a total of four presets that use 8 MiB dictionary, whose order
from the fastest to the slowest is =5, —6, —5e, and —6e.

——best These are somewhat misleading aliases for —0 and -9, respectively. These are pro-

vided only for backwards compatibility with LZMA Ultils. Avoid using these op-
tions.

——block—size=size

When compressing to the .xz format, split the input data into blocks of size bytes.
The blocks are compressed independently from each other, which helps with multi-
threading and makes limited random-access decompression possible. This option is
typically used to override the default block size in multi-threaded mode, but this op-
tion can be used in single-threaded mode too.

In multi-threaded mode about three times size bytes will be allocated in each thread
for buffering input and output. The default size is three times the LZMA?2 dictionary
size or 1 MiB, whichever is more. Typically a good value is 2—4 times the size of
the LZMA?2 dictionary or at least 1 MiB. Using size less than the LZMA?2 dictio-
nary size is waste of RAM because then the LZMA?2 dictionary buffer will never get
fully used. The sizes of the blocks are stored in the block headers, which a future
version of xz will use for multi-threaded decompression.

In single-threaded mode no block splitting is done by default. Setting this option
doesn’t affect memory usage. No size information is stored in block headers, thus
files created in single-threaded mode won’t be identical to files created in multi-
threaded mode. The lack of size information also means that a future version of xz
won’t be able decompress the files in multi-threaded mode.

——block-list=sizes

When compressing to the .xz format, start a new block after the given intervals of
uncompressed data.

The uncompressed sizes of the blocks are specified as a comma-separated list.
Omitting a size (two or more consecutive commas) is a shorthand to use the size of
the previous block.

If the input file is bigger than the sum of sizes, the last value in sizes is repeated until
the end of the file. A special value of 0 may be used as the last value to indicate that
the rest of the file should be encoded as a single block.

If one specifies sizes that exceed the encoder’s block size (either the default value in
threaded mode or the value specified with ——block—size=size), the encoder will cre-
ate additional blocks while keeping the boundaries specified in sizes. For example,
if one specifies ——block-size=10MiB
——block-list=5MiB,10MiB,8MiB,12MiB,24MiB and the input file is 80 MiB, one
will get 11 blocks: 5, 10, 8, 10, 2, 10, 10, 4, 10, 10, and 1 MiB.

In multi-threaded mode the sizes of the blocks are stored in the block headers. This
isn’t done in single-threaded mode, so the encoded output won’t be identical to that

2022-08-22 8



XZ(1)

Tukaani

XZ Utils XZ(1)

of the multi-threaded mode.

——flush—timeout=timeout

When compressing, if more than timeout milliseconds (a positive integer) has passed
since the previous flush and reading more input would block, all the pending input
data is flushed from the encoder and made available in the output stream. This can
be useful if xz is used to compress data that is streamed over a network. Small time-
out values make the data available at the receiving end with a small delay, but large
timeout values give better compression ratio.

This feature is disabled by default. If this option is specified more than once, the last
one takes effect. The special timeout value of 0 can be used to explicitly disable this
feature.

This feature is not available on non-POSIX systems.

This feature is still experimental. Currently xz is unsuitable for decompressing the
stream in real time due to how xz does buffering.

——memlimit—compress=/imit

Set a memory usage limit for compression. If this option is specified multiple times,
the last one takes effect.

If the compression settings exceed the limit, xz will attempt to adjust the settings
downwards so that the limit is no longer exceeded and display a notice that auto-
matic adjustment was done. The adjustments are done in this order: reducing the
number of threads, switching to single-threaded mode if even one thread in multi-
threaded mode exceeds the /imit, and finally reducing the LZMA?2 dictionary size.

When compressing with ——format=raw or if ——no-adjust has been specified, only
the number of threads may be reduced since it can be done without affecting the
compressed output.

If the limit cannot be met even with the adjustments described above, an error is dis-
played and xz will exit with exit status 1.

The limit can be specified in multiple ways:

* The limit can be an absolute value in bytes. Using an integer suffix like MiB can
be useful. Example: ——memlimit—compress=80MiB

e The limit can be specified as a percentage of total physical memory (RAM).
This can be useful especially when setting the XZ_DEFAULTS environment
variable in a shell initialization script that is shared between different computers.
That way the limit is automatically bigger on systems with more memory. Ex-
ample: ——memlimit—compress=70%

e The limit can be reset back to its default value by setting it to 0. This is currently
equivalent to setting the /imit to max (no memory usage limit).

For 32-bit xz there is a special case: if the /imit would be over 4020 MiB, the limit is
set to 4020 MiB. On MIPS32 2000 MiB is used instead. (The values 0 and max
aren’t affected by this. A similar feature doesn’t exist for decompression.) This can
be helpful when a 32-bit executable has access to 4 GiB address space (2 GiB on

2022-08-22 9



XZ(1) XZ Utils XZ(1)

MIPS32) while hopefully doing no harm in other situations.
See also the section Memory usage.

——memlimit—decompress=/imit
Set a memory usage limit for decompression. This also affects the ——list mode. If
the operation is not possible without exceeding the limit, xz will display an error and
decompressing the file will fail. See ——memlimit—compress=I/imit for possible
ways to specify the limit.

——memlimit—-mt-decompress=Iimit

Set a memory usage limit for multi-threaded decompression. This can only affect
the number of threads; this will never make xz refuse to decompress a file. If limit is
too low to allow any multi-threading, the limif is ignored and xz will continue in sin-
gle-threaded mode. Note that if also ——memlimit—decompress is used, it will al-
ways apply to both single-threaded and multi-threaded modes, and so the effective
limit for multi-threading will never be higher than the limit set with ——mem-
limit—decompress.

In contrast to the other memory usage limit options, ——memlimit—-mt—decom-
press=limit has a system-specific default /imit. xz ——info-memory can be used to
see the current value.

This option and its default value exist because without any limit the threaded decom-
pressor could end up allocating an insane amount of memory with some input files.
If the default limit is too low on your system, feel free to increase the /imit but never
set it to a value larger than the amount of usable RAM as with appropriate input files
xz will attempt to use that amount of memory even with a low number of threads.
Running out of memory or swapping will not improve decompression performance.

See ——memlimit—compress=/imit for possible ways to specify the limit. Setting
limit to 0 resets the limit to the default system-specific value.

—M limit, ——memlimit=/imit, ——memory=Ilimit
This is equivalent to specifying ——memlimit—compress=/imit ——memlimit-decom-
press=l/imit ——memlimit—-mt—decompress=/imit.

——no-adjust
Display an error and exit if the memory usage limit cannot be met without adjusting
settings that affect the compressed output. That is, this prevents xz from switching
the encoder from multi-threaded mode to single-threaded mode and from reducing
the LZMA?2 dictionary size. Even when this option is used the number of threads
may be reduced to meet the memory usage limit as that won’t affect the compressed
output.

Automatic adjusting is always disabled when creating raw streams (——for-
mat=raw).

—T threads, ——threads=threads
Specify the number of worker threads to use. Setting threads to a special value 0
makes Xz use up to as many threads as the processor(s) on the system support. The
actual number of threads can be fewer than threads if the input file is not big enough

Tukaani 2022-08-22 10



XZ(1)

XZ Utils XZ(1)

for threading with the given settings or if using more threads would exceed the
memory usage limit.

The single-threaded and multi-threaded compressors produce different output. Sin-
gle-threaded compressor will give the smallest file size but only the output from the
multi-threaded compressor can be decompressed using multiple threads. Setting
threads to 1 will use the single-threaded mode. Setting threads to any other value,
including 0, will use the multi-threaded compressor even if the system supports only
one hardware thread. (xz 5.2.x used single-threaded mode in this situation.)

If an automatic number of threads has been requested and no memory usage limit
has been specified, then a system-specific default soft limit will be used to possibly
limit the number of threads. It is a soft limit in sense that it is ignored if the number
of threads becomes one, thus a soft limit will never stop xz from compressing or de-
compressing. This default soft limit will not make xz switch from multi-threaded
mode to single-threaded mode. The active limits can be seen with xz ——info—mem-
ory.

Currently the only threading method is to split the input into blocks and compress
them independently from each other. The default block size depends on the com-
pression level and can be overridden with the ——block—size=size option.

Threaded decompression only works on files that contain multiple blocks with size
information in block headers. All large enough files compressed in multi-threaded
mode meet this condition, but files compressed in single-threaded mode don’t even if
——block-size=size has been used.

Custom compressor filter chains

Tukaani

A custom filter chain allows specifying the compression settings in detail instead of relying
on the settings associated to the presets. When a custom filter chain is specified, preset op-
tions (=0 ... -9 and ——extreme) earlier on the command line are forgotten. If a preset option
is specified after one or more custom filter chain options, the new preset takes effect and the
custom filter chain options specified earlier are forgotten.

A filter chain is comparable to piping on the command line. When compressing, the uncom-
pressed input goes to the first filter, whose output goes to the next filter (if any). The output
of the last filter gets written to the compressed file. The maximum number of filters in the
chain is four, but typically a filter chain has only one or two filters.

Many filters have limitations on where they can be in the filter chain: some filters can work
only as the last filter in the chain, some only as a non-last filter, and some work in any posi-
tion in the chain. Depending on the filter, this limitation is either inherent to the filter design
or exists to prevent security issues.

A custom filter chain is specified by using one or more filter options in the order they are
wanted in the filter chain. That is, the order of filter options is significant! When decoding
raw streams (——format=raw), the filter chain is specified in the same order as it was speci-
fied when compressing.

Filters take filter-specific options as a comma-separated list. Extra commas in options are ig-
nored. Every option has a default value, so you need to specify only those you want to
change.

To see the whole filter chain and options, use xz —vv (that is, use ——verbose twice). This

2022-08-22 11



XZ(1)

Tukaani

XZ Utils XZ(1)

works also for viewing the filter chain options used by presets.

——lzmal[=options]

——lzma2[=options]
Add LZMA1 or LZMAZ2 filter to the filter chain. These filters can be used only as
the last filter in the chain.

LZMALI is a legacy filter, which is supported almost solely due to the legacy .Jzma
file format, which supports only LZMA1. LZMA?2 is an updated version of LZMA1
to fix some practical issues of LZMAI1. The .xz format uses LZMA?2 and doesn’t
support LZMAT1 at all. Compression speed and ratios of LZMA1 and LZMA?2 are
practically the same.

LZMA1 and LZMA?2 share the same set of options:

preset=preset

Reset all LZMAT1 or LZMA?2 options to preset. Preset consist of an inte-
ger, which may be followed by single-letter preset modifiers. The integer
can be from 0 to 9, matching the command line options —0 ... =9. The only
supported modifier is currently e, which matches ——extreme. If no preset
is specified, the default values of LZMA1 or LZMA?2 options are taken
from the preset 6.

dict=size

le=lc

Dictionary (history buffer) size indicates how many bytes of the recently
processed uncompressed data is kept in memory. The algorithm tries to
find repeating byte sequences (matches) in the uncompressed data, and re-
place them with references to the data currently in the dictionary. The big-
ger the dictionary, the higher is the chance to find a match. Thus, increas-
ing dictionary size usually improves compression ratio, but a dictionary
bigger than the uncompressed file is waste of memory.

Typical dictionary size is from 64 KiB to 64 MiB. The minimum is 4 KiB.
The maximum for compression is currently 1.5 GiB (1536 MiB). The de-
compressor already supports dictionaries up to one byte less than 4 GiB,
which is the maximum for the LZMA1 and LZMA?2 stream formats.

Dictionary size and match finder (mf) together determine the memory us-
age of the LZMA1 or LZMA?2 encoder. The same (or bigger) dictionary
size is required for decompressing that was used when compressing, thus
the memory usage of the decoder is determined by the dictionary size used
when compressing. The .xz headers store the dictionary size either as 2°n
or 2°n + 2"°(n—1), so these sizes are somewhat preferred for compression.
Other sizes will get rounded up when stored in the .xz headers.

Specify the number of literal context bits. The minimum is 0 and the maxi-
mum is 4; the default is 3. In addition, the sum of /c and /p must not ex-
ceed 4.

All bytes that cannot be encoded as matches are encoded as literals. That
is, literals are simply 8-bit bytes that are encoded one at a time.

The literal coding makes an assumption that the highest /c bits of the previ-
ous uncompressed byte correlate with the next byte. For example, in

2022-08-22 12



XZ(1)

Tukaani

Ip=ip

pb=pb

mf=mf

XZ Utils XZ(1)

typical English text, an upper-case letter is often followed by a lower-case
letter, and a lower-case letter is usually followed by another lower-case let-
ter. In the US-ASCII character set, the highest three bits are 010 for upper-
case letters and 011 for lower-case letters. When Ic is at least 3, the literal
coding can take advantage of this property in the uncompressed data.

The default value (3) is usually good. If you want maximum compression,
test le=4. Sometimes it helps a little, and sometimes it makes compression
worse. If it makes it worse, test le=2 too.

Specify the number of literal position bits. The minimum is 0 and the max-
imum is 4; the default is O.

Lp affects what kind of alignment in the uncompressed data is assumed
when encoding literals. See pb below for more information about align-
ment.

Specify the number of position bits. The minimum is 0 and the maximum
18 4; the default is 2.

Pb affects what kind of alignment in the uncompressed data is assumed in
general. The default means four-byte alignment (2° pp=2"2=4), which is of-
ten a good choice when there’s no better guess.

When the alignment is known, setting pb accordingly may reduce the file
size a little. For example, with text files having one-byte alignment (US-
ASCII, ISO-8859-*, UTF-8), setting pb=0 can improve compression
slightly. For UTF-16 text, pb=1 is a good choice. If the alignment is an
odd number like 3 bytes, pb=0 might be the best choice.

Even though the assumed alignment can be adjusted with pb and Ip,
LZMAT1 and LZMAZ2? still slightly favor 16-byte alignment. It might be
worth taking into account when designing file formats that are likely to be
often compressed with LZMAT1 or LZMA2.

Match finder has a major effect on encoder speed, memory usage, and com-
pression ratio. Usually Hash Chain match finders are faster than Binary
Tree match finders. The default depends on the preset: 0 uses he3, 1-3 use
hc4, and the rest use bt4.

The following match finders are supported. The memory usage formulas
below are rough approximations, which are closest to the reality when dict
is a power of two.

hc3 Hash Chain with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict *7.5 (if dict <= 16 MiB);
dict * 5.5 + 64 MiB (if dict > 16 MiB)

hcd4 Hash Chain with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4
Memory usage:
dict * 7.5 (if dict <= 32 MiB);

2022-08-22 13



XZ(1)

Tukaani

XZ Utils

dict * 6.5 (if dict > 32 MiB)

bt2 Binary Tree with 2-byte hashing
Minimum value for nice: 2
Memory usage: dict * 9.5

bt3 Binary Tree with 2- and 3-byte hashing
Minimum value for nice: 3
Memory usage:
dict * 11.5 (if dict <= 16 MiB);
dict * 9.5 + 64 MiB (if dict > 16 MiB)

bt4 Binary Tree with 2-, 3-, and 4-byte hashing
Minimum value for nice: 4
Memory usage:
dict * 11.5 (if dict <= 32 MiB);
dict * 10.5 (if dict > 32 MiB)

mode=mode

XZ(1)

Compression mode specifies the method to analyze the data produced by
the match finder. Supported modes are fast and normal. The default is

fast for presets 0-3 and normal for presets 4-9.

Usually fast is used with Hash Chain match finders and normal with Bi-

nary Tree match finders. This is also what the presets do.

nice=nice

Specify what is considered to be a nice length for a match. Once a match
of at least nice bytes is found, the algorithm stops looking for possibly bet-

ter matches.

Nice can be 2-273 bytes. Higher values tend to give better compression ra-

tio at the expense of speed. The default depends on the preset.

depth=depth

Specify the maximum search depth in the match finder. The default is the
special value of 0, which makes the compressor determine a reasonable

depth from mf and nice.

Reasonable depth for Hash Chains is 4-100 and 16—1000 for Binary Trees.
Using very high values for depth can make the encoder extremely slow
with some files. Avoid setting the depth over 1000 unless you are prepared

to interrupt the compression in case it is taking far too long.

When decoding raw streams (——format=raw), LZMA?2 needs only the dictionary

size. LZMA1 needs also Ic, Ip, and pb.

——x86[=options]
——powerpc[=options]
——ia64[=options]
——arm[=options])
——armthumb([=options]

2022-08-22

14



XZ(1)

Tukaani

XZ Utils XZ(1)

——sparc[=options]

Add a branch/call/jump (BCJ) filter to the filter chain. These filters can be used only
as a non-last filter in the filter chain.

A BCIJ filter converts relative addresses in the machine code to their absolute coun-
terparts. This doesn’t change the size of the data, but it increases redundancy, which
can help LZMA?2 to produce 0-15 % smaller .xz file. The BCJ filters are always re-
versible, so using a BC]J filter for wrong type of data doesn’t cause any data loss, al-
though it may make the compression ratio slightly worse.

It is fine to apply a BCJ filter on a whole executable; there’s no need to apply it only
on the executable section. Applying a BCJ filter on an archive that contains both ex-
ecutable and non-executable files may or may not give good results, so it generally
isn’t good to blindly apply a BCJ filter when compressing binary packages for distri-
bution.

These BCIJ filters are very fast and use insignificant amount of memory. If a BCJ fil-
ter improves compression ratio of a file, it can improve decompression speed at the
same time. This is because, on the same hardware, the decompression speed of
LZMAZ2 is roughly a fixed number of bytes of compressed data per second.

These BCIJ filters have known problems related to the compression ratio:

* Some types of files containing executable code (for example, object files, static
libraries, and Linux kernel modules) have the addresses in the instructions filled
with filler values. These BCIJ filters will still do the address conversion, which
will make the compression worse with these files.

* Applying a BCJ filter on an archive containing multiple similar executables can
make the compression ratio worse than not using a BCJ filter. This is because
the BCIJ filter doesn’t detect the boundaries of the executable files, and doesn’t
reset the address conversion counter for each executable.

Both of the above problems will be fixed in the future in a new filter. The old BCJ
filters will still be useful in embedded systems, because the decoder of the new filter
will be bigger and use more memory.

Different instruction sets have different alignment:

Filter Alignment  Notes

x86 1 32-bit or 64-bit x86
PowerPC 4 Big endian only
ARM 4 Little endian only
ARM-Thumb 2 Little endian only
1A-64 16 Big or little endian
SPARC 4 Big or little endian

Since the BCJ-filtered data is usually compressed with LZMA?2, the compression ra-
tio may be improved slightly if the LZMA?2 options are set to match the alignment of
the selected BC]J filter. For example, with the IA-64 filter, it’s good to set pb=4 with
LZMA2 (2°4=16). The x86 filter is an exception; it’s usually good to stick to
LZMAZ2’s default four-byte alignment when compressing x86 executables.

2022-08-22 15



XZ Utils XZ(1)

All BClI filters support the same options:

start=offset

Specify the start offset that is used when converting between relative and
absolute addresses. The offset must be a multiple of the alignment of the
filter (see the table above). The default is zero. In practice, the default is
good; specifying a custom offset is almost never useful.

——delta[=options]
Add the Delta filter to the filter chain. The Delta filter can be only used as a non-last
filter in the filter chain.

Currently only simple byte-wise delta calculation is supported. It can be useful
when compressing, for example, uncompressed bitmap images or uncompressed
PCM audio. However, special purpose algorithms may give significantly better re-
sults than Delta + LZMA2. This is true especially with audio, which compresses
faster and better, for example, with flac(1).

Supported options:

dist=distance

Specify the distance of the delta calculation in bytes. distance must be
1-256. The default is 1.

For example, with dist=2 and eight-byte input A1 B1 A2 B3 A3 B5 A4 B7,
the output will be A1 B1 01 02 01 02 01 02.

Suppress warnings and notices. Specify this twice to suppress errors too. This op-
tion has no effect on the exit status. That is, even if a warning was suppressed, the
exit status to indicate a warning is still used.

Be verbose. If standard error is connected to a terminal, xz will display a progress
indicator. Specifying ——verbose twice will give even more verbose output.

The progress indicator shows the following information:

Completion percentage is shown if the size of the input file is known. That is,
the percentage cannot be shown in pipes.

Amount of compressed data produced (compressing) or consumed (decompress-
ing).

Amount of uncompressed data consumed (compressing) or produced (decom-
pressing).

Compression ratio, which is calculated by dividing the amount of compressed
data processed so far by the amount of uncompressed data processed so far.

Compression or decompression speed. This is measured as the amount of un-
compressed data consumed (compression) or produced (decompression) per sec-
ond. It is shown after a few seconds have passed since xz started processing the
file.

XZ(1)
Other options
—q, ——quiet
—v, —verbose
Tukaani

2022-08-22 16



XZ(1) XZ Utils XZ(1)

* Elapsed time in the format M:SS or H:MM:SS.

* Estimated remaining time is shown only when the size of the input file is known
and a couple of seconds have already passed since xz started processing the file.
The time is shown in a less precise format which never has any colons, for exam-
ple, 2 min 30 s.

When standard error is not a terminal, ——verbose will make xz print the filename,
compressed size, uncompressed size, compression ratio, and possibly also the speed
and elapsed time on a single line to standard error after compressing or decompress-
ing the file. The speed and elapsed time are included only when the operation took
at least a few seconds. If the operation didn’t finish, for example, due to user inter-
ruption, also the completion percentage is printed if the size of the input file is
known.

—Q, ——no-warn
Don’t set the exit status to 2 even if a condition worth a warning was detected. This
option doesn’t affect the verbosity level, thus both ——quiet and ——no—warn have to
be used to not display warnings and to not alter the exit status.

—-robot
Print messages in a machine-parsable format. This is intended to ease writing front-
ends that want to use xz instead of liblzma, which may be the case with various
scripts. The output with this option enabled is meant to be stable across xz releases.
See the section ROBOT MODE for details.

——info-memory
Display, in human-readable format, how much physical memory (RAM) and how
many processor threads xz thinks the system has and the memory usage limits for
compression and decompression, and exit successfully.

—h, —help
Display a help message describing the most commonly used options, and exit suc-
cessfully.

—-H, ——long-help

Display a help message describing all features of xz, and exit successfully

-V, ——version
Display the version number of xz and liblzma in human readable format. To get ma-
chine-parsable output, specify ——robot before ——version.

ROBOT MODE
The robot mode is activated with the ——robot option. It makes the output of xz easier to
parse by other programs. Currently ——robot is supported only together with ——version,
——info-memory, and ——list. It will be supported for compression and decompression in the
future.

Version
xz ——robot ——version will print the version number of xz and liblzma in the following for-
mat:

XZ_VERSION=XYYYZZZS
LIBLZMA_VERSION=XYYYZZZS

Tukaani 2022-08-22 17



XZ(1)

Yyy

777

XZ Utils XZ(1)

Major version.
Minor version. Even numbers are stable. Odd numbers are alpha or beta versions.
Patch level for stable releases or just a counter for development releases.

Stability. O is alpha, 1 is beta, and 2 is stable. S should be always 2 when YYY is
even.

XYYYZZZS are the same on both lines if Xz and liblzma are from the same XZ Utils release.

Examples: 4.999.9beta is 49990091 and 5.0.0 is 50000002.

Memory limit information
xz ——robot ——info—-memory prints a single line with three tab-separated columns:

1. Total amount of physical memory (RAM) in bytes

2. Memory usage limit for compression in bytes. A special value of zero indicates the de-
fault setting, which for single-threaded mode is the same as no limit.

3.  Memory usage limit for decompression in bytes. A special value of zero indicates the
default setting, which for single-threaded mode is the same as no limit.

In the future, the output of xz ——robot ——info—memory may have more columns, but never
more than a single line.

List mode
xz ——robot —-list uses tab-separated output. The first column of every line has a string that
indicates the type of the information found on that line:

Tukaani

name This is always the first line when starting to list a file. The second column on the
line is the filename.

file This line contains overall information about the .xz file. This line is always printed
after the name line.

stream This line type is used only when ——verbose was specified. There are as many
stream lines as there are streams in the .xz file.

block This line type is used only when ——verbose was specified. There are as many block
lines as there are blocks in the .xz file. The block lines are shown after all the
stream lines; different line types are not interleaved.

summary
This line type is used only when ——verbose was specified twice. This line is printed
after all block lines. Like the file line, the summary line contains overall informa-
tion about the .xz file.

totals This line is always the very last line of the list output. It shows the total counts and

sizes.

The columns of the file lines:

2. Number of streams in the file

2022-08-22 18



XZ(1)

Tukaani

S kW

8.

XZ Utils XZ(1)

Total number of blocks in the stream(s)

Compressed size of the file

Uncompressed size of the file

Compression ratio, for example, 0.123. If ratio is over 9.999, three dashes
(——-) are displayed instead of the ratio.

Comma-separated list of integrity check names. The following strings are used
for the known check types: None, CRC32, CRC64, and SHA-256. For un-
known check types, Unknown—N is used, where N is the Check ID as a deci-
mal number (one or two digits).

Total size of stream padding in the file

The columns of the stream lines:

2.

S0 XN AW

0.

Stream number (the first stream is 1)

Number of blocks in the stream

Compressed start offset

Uncompressed start offset

Compressed size (does not include stream padding)
Uncompressed size

Compression ratio

Name of the integrity check

Size of stream padding

The columns of the block lines:

2.

S0 XN AW

0.

Number of the stream containing this block

Block number relative to the beginning of the stream (the first block is 1)
Block number relative to the beginning of the file

Compressed start offset relative to the beginning of the file
Uncompressed start offset relative to the beginning of the file

Total compressed size of the block (includes headers)

Uncompressed size

Compression ratio

Name of the integrity check

If ——verbose was specified twice, additional columns are included on the block lines. These
are not displayed with a single ——verbose, because getting this information requires many
seeks and can thus be slow:

11.
12.
13.

14.

15.

16.

Value of the integrity check in hexadecimal

Block header size

Block flags: ¢ indicates that compressed size is present, and u indicates that un-
compressed size is present. If the flag is not set, a dash (=) is shown instead to
keep the string length fixed. New flags may be added to the end of the string in
the future.

Size of the actual compressed data in the block (this excludes the block header,
block padding, and check fields)

Amount of memory (in bytes) required to decompress this block with this xz
version

Filter chain. Note that most of the options used at compression time cannot be
known, because only the options that are needed for decompression are stored
in the .xz headers.

The columns of the summary lines:

2.

Amount of memory (in bytes) required to decompress this file with this xz ver-
sion

2022-08-22 19



XZ(1) XZ Utils XZ(1)

3. yes or no indicating if all block headers have both compressed size and uncom-
pressed size stored in them

Since xz 5.1.2alpha:

4.  Minimum Xz version required to decompress the file

The columns of the totals line:
2. Number of streams
Number of blocks
Compressed size
Uncompressed size
Average compression ratio
Comma-separated list of integrity check names that were present in the files
Stream padding size
Number of files. This is here to keep the order of the earlier columns the same
as on file lines.

e e i

If ——verbose was specified twice, additional columns are included on the totals line:
10. Maximum amount of memory (in bytes) required to decompress the files with
this Xz version
11. yes or no indicating if all block headers have both compressed size and uncom-
pressed size stored in them
Since xz 5.1.2alpha:
12. Minimum xz version required to decompress the file

Future versions may add new line types and new columns can be added to the existing line
types, but the existing columns won’t be changed.

EXIT STATUS
0 All is good.
1 An error occurred.
2 Something worth a warning occurred, but no actual errors occurred.

Notices (not warnings or errors) printed on standard error don’t affect the exit status.

ENVIRONMENT
Xz parses space-separated lists of options from the environment variables XZ_DEFAULTS
and XZ_OPT, in this order, before parsing the options from the command line. Note that
only options are parsed from the environment variables; all non-options are silently ignored.
Parsing is done with getopt_long(3) which is used also for the command line arguments.

XZ_DEFAULTS
User-specific or system-wide default options. Typically this is set in a shell initial-
ization script to enable xz’s memory usage limiter by default. Excluding shell ini-

tialization scripts and similar special cases, scripts must never set or unset XZ_DE-
FAULTS.

XZ_OPT
This is for passing options to Xz when it is not possible to set the options directly on
the xz command line. This is the case when xz is run by a script or tool, for exam-
ple, GNU tar(1):

X7Z_OPT=-2v tar caf foo.tar.xz foo

Tukaani 2022-08-22 20



XZ(1) XZ Utils XZ(1)

Scripts may use XZ_OPT, for example, to set script-specific default compression
options. It is still recommended to allow users to override XZ_OPT if that is rea-
sonable. For example, in sh(1) scripts one may use something like this:

XZ_OPT=${XZ_OPT-"-T7e"}
export XZ_OPT

LZMA UTILS COMPATIBILITY
The command line syntax of xz is practically a superset of lzma, unlzma, and lzcat as found
from LZMA Utils 4.32.x. In most cases, it is possible to replace LZMA Utils with XZ Ultils
without breaking existing scripts. There are some incompatibilities though, which may some-
times cause problems.

Compression preset levels
The numbering of the compression level presets is not identical in xz and LZMA Utils. The
most important difference is how dictionary sizes are mapped to different presets. Dictionary
size is roughly equal to the decompressor memory usage.

Level XZ LZMA Utils
-0 256 KiB N/A
-1 1 MiB 64 KiB
-2 2 MiB 1 MiB
-3 4 MiB 512 KiB
-4 4 MiB 1 MiB
-5 8 MiB 2 MiB
-6 8 MiB 4 MiB
=7 16 MiB 8 MiB
-8 32 MiB 16 MiB
-9 64 MiB 32 MiB

The dictionary size differences affect the compressor memory usage too, but there are some
other differences between LZMA Utils and XZ Utils, which make the difference even bigger:

Level XZ LZMA Utils 4.32.x
-0 3 MiB N/A
-1 9 MiB 2 MiB
-2 17 MiB 12 MiB
-3 32 MiB 12 MiB
-4 48 MiB 16 MiB
-5 94 MiB 26 MiB
-6 94 MiB 45 MiB
=7 186 MiB 83 MiB
-8 370 MiB 159 MiB
-9 674 MiB 311 MiB

The default preset level in LZMA Utils is =7 while in XZ Utils it is —6, so both use an 8 MiB
dictionary by default.

Streamed vs. non-streamed .1zma files
The uncompressed size of the file can be stored in the .Jzma header. LZMA Utils does that
when compressing regular files. The alternative is to mark that uncompressed size is un-
known and use end-of-payload marker to indicate where the decompressor should stop.
LZMA Utils uses this method when uncompressed size isn’t known, which is the case, for

Tukaani 2022-08-22 21



XZ(1)

XZ Utils XZ(1)

example, in pipes.

xz supports decompressing .Jzma files with or without end-of-payload marker, but all .Jzma
files created by xz will use end-of-payload marker and have uncompressed size marked as un-
known in the .Jzma header. This may be a problem in some uncommon situations. For ex-
ample, a .Jzma decompressor in an embedded device might work only with files that have
known uncompressed size. If you hit this problem, you need to use LZMA Utils or LZMA
SDK to create .lzma files with known uncompressed size.

Unsupported .1zma files

The .Jzma format allows Ic values up to 8, and Ip values up to 4. LZMA Utils can decom-
press files with any Ic and Ip, but always creates files with le=3 and Ip=0. Creating files with
other lc and [p is possible with xz and with LZMA SDK.

The implementation of the LZMAI1 filter in liblzma requires that the sum of /c and Ip must
not exceed 4. Thus, .lzma files, which exceed this limitation, cannot be decompressed with
XZ.

LZMA Utils creates only .Jzma files which have a dictionary size of 2°n (a power of 2) but
accepts files with any dictionary size. liblzma accepts only .Jzma files which have a dictio-
nary size of 2°n or 2°n + 2%(n—1). This is to decrease false positives when detecting .Jzma
files.

These limitations shouldn’t be a problem in practice, since practically all .lzma files have
been compressed with settings that liblzma will accept.

Trailing garbage

When decompressing, LZMA Utils silently ignore everything after the first .Jlzma stream. In
most situations, this is a bug. This also means that LZMA Utils don’t support decompressing
concatenated .Jzma files.

If there is data left after the first .JJzma stream, xz considers the file to be corrupt unless
——single—stream was used. This may break obscure scripts which have assumed that trailing
garbage is ignored.

NOTES

Compressed output may vary

The exact compressed output produced from the same uncompressed input file may vary be-
tween XZ Utils versions even if compression options are identical. This is because the en-
coder can be improved (faster or better compression) without affecting the file format. The
output can vary even between different builds of the same XZ Utils version, if different build
options are used.

The above means that once ——rsyncable has been implemented, the resulting files won’t nec-
essarily be rsyncable unless both old and new files have been compressed with the same xz
version. This problem can be fixed if a part of the encoder implementation is frozen to keep
rsyncable output stable across xz versions.

Embedded .xz decompressors

Tukaani

Embedded .xz decompressor implementations like X7 Embedded don’t necessarily support
files created with integrity check types other than none and crc32. Since the default is
——check=crc64, you must use ——check=none or ——check=crc32 when creating files for em-
bedded systems.

2022-08-22 22



XZ(1) XZ Utils XZ(1)

Outside embedded systems, all .xz format decompressors support all the check types, or at
least are able to decompress the file without verifying the integrity check if the particular
check is not supported.

X7 Embedded supports BCI filters, but only with the default start offset.
EXAMPLES

Basics
Compress the file foo into foo.xz using the default compression level (—6), and remove foo if
compression is successful:

xz foo
Decompress bar.xz into bar and don’t remove bar.xz even if decompression is successful:
xz —-dk bar.xz

Create baz.tar.xz with the preset —4e (—4 ——extreme), which is slower than the default —6,
but needs less memory for compression and decompression (48 MiB and 5 MiB, respec-
tively):

tar cf - baz | xz —4e > baz.tar.xz

A mix of compressed and uncompressed files can be decompressed to standard output with a
single command:

xz —-dcf a.txt b.txt.xz c.txt d.txt.lzma > abcd.txt

Parallel compression of many files
On GNU and *BSD, find(1) and xargs(1) can be used to parallelize compression of many
files:

find . -type £ \! —name ’*.xz’ —-print0 \
| xargs -0r -P4 -nl6 xz -T1

The —P option to xargs(1) sets the number of parallel xz processes. The best value for the —n
option depends on how many files there are to be compressed. If there are only a couple of
files, the value should probably be 1; with tens of thousands of files, 100 or even more may be
appropriate to reduce the number of Xz processes that xargs(1) will eventually create.

The option —T1 for xz is there to force it to single-threaded mode, because xargs(1) is used to
control the amount of parallelization.

Robot mode
Calculate how many bytes have been saved in total after compressing multiple files:

xz —-robot —--list *.xz | awk ’/“totals/{print $5-$4}’

A script may want to know that it is using new enough xz. The following sh(1) script checks
that the version number of the xz tool is at least 5.0.0. This method is compatible with old
beta versions, which didn’t support the ——robot option:

if ! eval "$(xz —--robot —--version 2> /dev/null)" ||
[ "$XZ_VERSION" -1t 50000002 ]; then
echo "Your xz is too old."

Tukaani 2022-08-22 23



XZ(1)

XZ Utils XZ(1)

fi
unset XZ_VERSION LIBLZMA_VERSION

Set a memory usage limit for decompression using XZ_OPT, but if a limit has already been
set, don’t increase it:

NEWLIM=$ ( (123 << 20)) # 123 MiB

OLDLIM=$ (xz —-robot --info-memory | cut -£3)

if [ $OLDLIM -eq 0 —-o $OLDLIM —gt SNEWLIM ]; then
XZ_OPT="$XZ_OPT —--memlimit-decompress=S$SNEWLIM"
export XZ_OPT

fi

Custom compressor filter chains

Tukaani

The simplest use for custom filter chains is customizing a LZMA?2 preset. This can be useful,
because the presets cover only a subset of the potentially useful combinations of compression
settings.

The CompCPU columns of the tables from the descriptions of the options —0 ... =9 and ——ex-
treme are useful when customizing LZMA?2 presets. Here are the relevant parts collected
from those two tables:

Preset  CompCPU

-0 0
-1 1
-2 2
-3 3
-4 4
-5 5
-6 6
—5Se 7
—6e 8

If you know that a file requires somewhat big dictionary (for example, 32 MiB) to compress
well, but you want to compress it quicker than xz —8 would do, a preset with a low Com-
pCPU value (for example, 1) can be modified to use a bigger dictionary:

xz ——lzma2=preset=1,dict=32MiB foo.tar

With certain files, the above command may be faster than xz —6 while compressing signifi-
cantly better. However, it must be emphasized that only some files benefit from a big dictio-
nary while keeping the CompCPU value low. The most obvious situation, where a big dictio-
nary can help a lot, is an archive containing very similar files of at least a few megabytes
each. The dictionary size has to be significantly bigger than any individual file to allow
LZMAZ2 to take full advantage of the similarities between consecutive files.

If very high compressor and decompressor memory usage is fine, and the file being com-
pressed is at least several hundred megabytes, it may be useful to use an even bigger dictio-
nary than the 64 MiB that xz -9 would use:

Xz —-vv ——lzma2=dict=192MiB big_foo.tar

Using —vv (——verbose ——verbose) like in the above example can be useful to see the mem-
ory requirements of the compressor and decompressor. Remember that using a dictionary

2022-08-22 24



XZ(1)

XZ Utils XZ(1)

bigger than the size of the uncompressed file is waste of memory, so the above command isn’t
useful for small files.

Sometimes the compression time doesn’t matter, but the decompressor memory usage has to
be kept low, for example, to make it possible to decompress the file on an embedded system.
The following command uses —6e (—6 ——extreme) as a base and sets the dictionary to only
64 KiB. The resulting file can be decompressed with XZ Embedded (that’s why there is
——check=crec32) using about 100 KiB of memory.

xz ——-check=crc32 --lzma2=preset=6e,dict=64KiB foo

If you want to squeeze out as many bytes as possible, adjusting the number of literal context
bits (Ic) and number of position bits (pb) can sometimes help. Adjusting the number of lit-
eral position bits (/p) might help too, but usually /c and pb are more important. For example,
a source code archive contains mostly US-ASCII text, so something like the following might
give slightly (like 0.1 %) smaller file than xz —6e (try also without lc=4):

xz ——lzmal=preset=6e,pb=0,1c=4 source_code.tar

Using another filter together with LZMA?2 can improve compression with certain file types.
For example, to compress a x86-32 or x86-64 shared library using the x86 BC]J filter:

XZ ——x86 ——lzma2 libfoo.so

Note that the order of the filter options is significant. If ——x86 is specified after ——lzma2, xz
will give an error, because there cannot be any filter after LZMAZ2, and also because the x86
BCI filter cannot be used as the last filter in the chain.

The Delta filter together with LZMA?2 can give good results with bitmap images. It should
usually beat PNG, which has a few more advanced filters than simple delta but uses Deflate
for the actual compression.

The image has to be saved in uncompressed format, for example, as uncompressed TIFF. The
distance parameter of the Delta filter is set to match the number of bytes per pixel in the im-
age. For example, 24-bit RGB bitmap needs dist=3, and it is also good to pass pb=0 to
LZMAZ2 to accommodate the three-byte alignment:

xz ——delta=dist=3 —--lzma2=pb=0 foo.tiff

If multiple images have been put into a single archive (for example, .tar), the Delta filter will
work on that too as long as all images have the same number of bytes per pixel.

SEE ALSO

Tukaani

xzdec(1), xzdiff(1), xzgrep(1), xzless(1), xzmore(1), gzip(1), bzip2(1), 7z(1)

XZ Utils: <https://tukaani.org/xz/>
X7 Embedded: <https://tukaani.org/xz/embedded.html>
LZMA SDK: <http://7-zip.org/sdk.htm]>

2022-08-22 25



