10#include "factory/factory.h"
114 case LE:
return "<=";
115 case GE:
return ">=";
124 if (
s[1]==
'\0')
return s[0];
125 else if (
s[2]!=
'\0')
return 0;
128 case '.':
if (
s[1]==
'.')
return DOTDOT;
134 case '+':
if (
s[1]==
'+')
return PLUSPLUS;
138 case '<':
if (
s[1]==
'=')
return LE;
141 case '>':
if (
s[1]==
'=')
return GE;
143 case '!':
if (
s[1]==
'=')
return NOTEQUAL;
210 memset(buffer,0,
sizeof(buffer));
220 Print(
"..., %d char(s)",
l);
243 Print(
" %d x %d (%s)",
269 ((
intvec*)(
v->Data()))->cols());
break;
427 package savePack=currPack;
434 if (
strcmp(what,
"all")==0)
469 Werror(
"%s is undefined",what);
503 package save_p=currPack;
537 WarnS(
"Gerhard, use the option command");
574 rc +=
mm->rows() *
mm->cols();
578 rc+=((
lists)
v->Data())->nr+1;
599 WerrorS(
"write: need at least two arguments");
609 Werror(
"cannot write to %s",
s);
636 Werror(
"can not map from ground field of %s to current ground field",
716 WerrorS(
"argument of a map must have a name");
773 poly
p=(poly)
tmpW.data;
790 Warn(
"possible OVERFLOW in map, max exponent is %ld",
currRing->bitmask/2);
810 theMap->preimage=(
char*)1L;
868 Print(
"//defining: %s as %d-th syzygy module\n",
s,
i+1);
873 Warn(
"cannot define %s",
s);
985 l->m[0].rtyp=u->
Typ();
986 l->m[0].data=u->
Data();
989 l->m[0].attribute=*a;
996 l->m[0].attribute=
NULL;
1034 if (weights!=
NULL)
delete weights;
1058 if (weights!=
NULL)
delete weights;
1065#define BREAK_LINE_LENGTH 80
1165 res->m[
i].data = (
void *)
save->set;
1177 res->m[
i].data = (
void *)
save->set;
1203 const char *
id =
name->name;
1208 WerrorS(
"object to declare is not a name");
1218 Werror(
"can not define `%s` in other package",
name->name);
1271 tmp.data=
at->CopyA();
1279 WerrorS(
"branchTo can only occur in a proc");
1290 short *t=(
short*)
omAlloc(
l*
sizeof(
short));
1294 for(
i=1;
i<
l;
i++,
h=
h->next)
1299 Werror(
"arg %d is not a string",
i);
1308 Werror(
"arg %d is not a type name",
i);
1315 Werror(
"last(%d.) arg.(%s) is not a proc(but %s(%d)), nesting=%d",
1328 if(
pi->data.s.body==
NULL )
1453 WerrorS(
"object with a different type exists");
1471 Warn(
"'%s': no such identifier\n",
v->
name);
1474 package frompack=v->req_packhdl;
1502 Werror(
"`%s` not found",
v->Name());
1520 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1546 Werror(
"cannot export:%s of internal type %d",
v->
name,
v->rtyp);
1597 WerrorS(
"no ring active (9)");
1639 WarnS(
"package not found\n");
1660 #ifndef TEST_ZN_AS_ZP
1671 r->cf->has_simple_Inverse=1;
1684 r->block0 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1685 r->block1 = (
int *)
omAlloc0(3 *
sizeof(
int *));
1704 if ((r==
NULL)||(r->VarOffset==
NULL))
1743 L->
m[0].
data=(
void *)(
long)r->cf->ch;
1749 for(
i=0;
i<r->N;
i++)
1772 if (r->block1[
i]-r->block0[
i] >=0 )
1774 j=r->block1[
i]-r->block0[
i];
1777 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
1779 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j];
1781 else switch (r->order[
i])
1790 for(;
j>=0;
j--) (*iv)[
j]=1;
1800 LLL->
m[1].
data=(
void *)iv;
1801 LL->m[
i].data=(
void *)LLL;
1815 L->
m[3].
data=(
void *)q;
1834 L->
m[0].
data=(
void *)0;
1868 L->
m[0].
data=(
void *)0;
1912 LL->m[1].data=(
void *) C->modExponent;
1941 LL->m[1].data=(
void *)
R->cf->modExponent;
1957 WerrorS(
"ring with polynomial data must be the base ring or compatible");
1970 else if ( C->extRing!=
NULL )
1980 Lc->m[0].data=(
void*)(
long)C->m_nfCharQ;
1987 Lc->m[1].data=(
void*)
Lv;
1998 Loo->m[1].data=(
void *)iv;
2001 Lo->m[0].data=(
void*)
Loo;
2004 Lc->m[2].data=(
void*)
Lo;
2010 res->data=(
void*)
Lc;
2015 res->data=(
void *)(
long)C->ch;
2029 for(
i=0;
i<r->N;
i++)
2056 assume( r->block0[
i] == r->block1[
i] );
2057 const int s = r->block0[
i];
2063 else if (r->block1[
i]-r->block0[
i] >=0 )
2065 int bl=
j=r->block1[
i]-r->block0[
i];
2073 j+=r->wvhdl[
i][
bl+1];
2076 if ((r->wvhdl!=
NULL) && (r->wvhdl[
i]!=
NULL))
2078 for(;
j>=0;
j--) (*iv)[
j]=r->wvhdl[
i][
j+(
j>
bl)];
2080 else switch (r->order[
i])
2089 for(;
j>=0;
j--) (*iv)[
j]=1;
2099 LLL->
m[1].
data=(
void *)iv;
2100 LL->m[
i].data=(
void *)LLL;
2107 if (r->qideal==
NULL)
2138 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2156 L->
m[0].
data=(
char*)r->cf; r->cf->ref++;
2171 || (r->qideal !=
NULL)
2178 WerrorS(
"ring with polynomial data must be the base ring or compatible");
2203 else if ( r->cf->extRing!=
NULL )
2213 Lc->m[0].data=(
void*)(
long)r->cf->m_nfCharQ;
2220 Lc->m[1].data=(
void*)
Lv;
2231 Loo->m[1].data=(
void *)iv;
2234 Lo->m[0].data=(
void*)
Loo;
2237 Lc->m[2].data=(
void*)
Lo;
2248 L->
m[0].
data=(
void *)(
long)r->cf->ch;
2253 L->
m[0].
data=(
void *)r->cf;
2268 WerrorS(
"invalid coeff. field description, expecting 0");
2276 WerrorS(
"invalid coeff. field description, expecting precision list");
2284 WerrorS(
"invalid coeff. field description list, expected list(`int`,`int`)");
2287 int r1=(
int)(
long)
LL->m[0].data;
2288 int r2=(
int)(
long)
LL->m[1].data;
2298 WerrorS(
"invalid coeff. field description, expecting parameter name");
2320 unsigned int modExponent = 1;
2350 modExponent = (
unsigned long)
LL->m[1].data;
2360 WerrorS(
"Wrong ground ring specification (module is 1)");
2363 if (modExponent < 1)
2365 WerrorS(
"Wrong ground ring specification (exponent smaller than 1)");
2374 else if (modExponent > 1)
2377 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
2388 info.exp= modExponent;
2399 info.exp= modExponent;
2413 for(
i=0;
i<
R->N-1;
i++)
2415 for(
j=
i+1;
j<
R->N;
j++)
2468 poly
p=(poly)
v->m[
i].Data();
2474 Werror(
"var name %d must be a string or a ring variable",
i+1);
2480 Werror(
"var name %d must be `string` (not %d)",
i+1,
v->m[
i].Typ());
2487 WerrorS(
"variable must be given as `list`");
2503 for (
int j=0;
j < n-1;
j++)
2510 &&(
strcmp((
char*)
vv->m[0].Data(),
"L")==0))
2519 Werror(
"illegal argument for pseudo ordering L: %d",
vv->m[1].Typ());
2526 if (bitmask!=0) n--;
2542 WerrorS(
"ordering must be list of lists");
2549 if (
strcmp((
char*)
vv->m[0].Data(),
"L")==0)
2558 Werror(
"ordering name must be a (string,intvec), not (string,%s)",
Tok2Cmdname(
vv->m[1].Typ()));
2563 if (
j_in_R==0)
R->block0[0]=1;
2586 int l=
si_max(1,(
int)(
long)
vv->m[1].Data());
2588 for(
int i=0;
i<
l;
i++) (*iv)[
i]=1;
2618 Print(
"R->block0[j_in_R]=%d,N=%d\n",
R->block0[
j_in_R],
R->N);
2677 if (((*iv)[
i]!=1)&&(
iv_len!=1))
2680 Warn(
"ignore weight %d for ord %d (%s) at pos %d\n>>%s<<",
2704 const int s = (*iv)[0];
2715 WerrorS(
"ring order not implemented");
2723 WerrorS(
"ordering name must be a (string,intvec)");
2749 Werror(
"ordering incomplete: size (%d) should be %d",
R->block1[
j_in_R],
R->N);
2755 Werror(
"not enough variables (%d) for ordering block %d, scanned so far:",
R->N,
j_in_R+1);
2785 WerrorS(
"ordering must be given as `list`");
2788 if (bitmask!=0) {
R->bitmask=bitmask;
R->wanted_maxExp=bitmask; }
2820 int ch = (
int)(
long)L->
m[0].
Data();
2830 Warn(
"%d is invalid characteristic of ground field. %d is used.", ch,
l);
2833 #ifndef TEST_ZN_AS_ZP
2844 R->cf->has_simple_Inverse=1;
2865 int ch = (
int)(
long)
LL->m[0].Data();
2875 param.GFPar_name = (
const char*)(((
lists)(
LL->m[1].Data()))->m[0].Data());
2888 WerrorS(
"could not create the specified coefficient field");
2892 if( extRing->qideal !=
NULL )
2912 WerrorS(
"coefficient field must be described by `int` or `list`");
2918 WerrorS(
"could not create coefficient field described by the input!");
2930 #ifdef HAVE_SHIFTBBA
2938 if ((bitmask!=0)&&(
R->wanted_maxExp==0))
R->wanted_maxExp=bitmask;
2951 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
2988 WerrorS(
"coefficient fields must be equal if q-ideal !=0");
3033 WerrorS(
"q-ideal must be given as `ideal`");
3102 int n=(
int)(
long)
b->Data();
3110 if ((d>n) || (d<1) || (n<1))
3198 if ((fullres==
NULL) && (minres==
NULL))
3252 syzstr->fullres = fullres;
3318 res->data=(
char *)iv;
3326 for (
i = n;
i!=0;
i--)
3327 (*iv)[
i-1] =
x[
i + n + 1];
3345 res->data=(
void *)
b;
3371 spec.
mu = (
int)(
long)(
l->m[0].Data( ));
3372 spec.
pg = (
int)(
long)(
l->m[1].Data( ));
3373 spec.
n = (
int)(
long)(
l->m[2].Data( ));
3381 for(
int i=0;
i<spec.
n;
i++ )
3384 spec.
w[
i] = (*mul)[
i];
3415 for(
int i=0;
i<spec.
n;
i++ )
3419 (*mult)[
i] = spec.
w[
i];
3429 L->
m[0].
data = (
void*)(
long)spec.
mu;
3430 L->
m[1].
data = (
void*)(
long)spec.
pg;
3431 L->
m[2].
data = (
void*)(
long)spec.
n;
3482 WerrorS(
"the list is too short" );
3485 WerrorS(
"the list is too long" );
3489 WerrorS(
"first element of the list should be int" );
3492 WerrorS(
"second element of the list should be int" );
3495 WerrorS(
"third element of the list should be int" );
3498 WerrorS(
"fourth element of the list should be intvec" );
3501 WerrorS(
"fifth element of the list should be intvec" );
3504 WerrorS(
"sixth element of the list should be intvec" );
3508 WerrorS(
"first element of the list should be positive" );
3511 WerrorS(
"wrong number of numerators" );
3514 WerrorS(
"wrong number of denominators" );
3517 WerrorS(
"wrong number of multiplicities" );
3521 WerrorS(
"the Milnor number should be positive" );
3524 WerrorS(
"the geometrical genus should be nonnegative" );
3527 WerrorS(
"all numerators should be positive" );
3530 WerrorS(
"all denominators should be positive" );
3533 WerrorS(
"all multiplicities should be positive" );
3537 WerrorS(
"it is not symmetric" );
3540 WerrorS(
"it is not monotonous" );
3544 WerrorS(
"the Milnor number is wrong" );
3547 WerrorS(
"the geometrical genus is wrong" );
3551 WerrorS(
"unspecific error" );
3587 ( fast==2 ? 2 : 1 ) );
3597 ( fast==0 || (*node)->weight<=
smax ) )
3642 (*node)->nf =
search->nf;
3659 if( (*node)->weight<=(
Rational)1 ) pg++;
3660 if( (*node)->weight==
smax ) z++;
3664 node = &((*node)->next);
3715 n = ( z > 0 ? 2*n - 1 : 2*n );
3759 (*den) [
n2] = (*den)[
n1];
3760 (*mult)[
n2] = (*mult)[
n1];
3768 if( fast==0 || fast==1 )
3792 (*L)->m[0].data = (
void*)(
long)
mu;
3809 (*L)->m[0].data = (
void*)(
long)
mu;
3810 (*L)->m[1].data = (
void*)(
long)pg;
3811 (*L)->m[2].data = (
void*)(
long)n;
3812 (*L)->m[3].data = (
void*)
nom;
3813 (*L)->m[4].data = (
void*)
den;
3814 (*L)->m[5].data = (
void*)
mult;
3823 #ifdef SPECTRUM_DEBUG
3824 #ifdef SPECTRUM_PRINT
3825 #ifdef SPECTRUM_IOSTREAM
3826 cout <<
"spectrumCompute\n";
3827 if( fast==0 )
cout <<
" no optimization" << endl;
3828 if( fast==1 )
cout <<
" weight optimization" << endl;
3829 if( fast==2 )
cout <<
" symmetry optimization" << endl;
3832 if( fast==0 )
fputs(
" no optimization\n",
stdout );
3833 if( fast==1 )
fputs(
" weight optimization\n",
stdout );
3834 if( fast==2 )
fputs(
" symmetry optimization\n",
stdout );
3878 #ifdef SPECTRUM_DEBUG
3879 #ifdef SPECTRUM_PRINT
3880 #ifdef SPECTRUM_IOSTREAM
3881 cout <<
"\n computing the Jacobi ideal...\n";
3883 fputs(
"\n computing the Jacobi ideal...\n",
stdout );
3892 #ifdef SPECTRUM_DEBUG
3893 #ifdef SPECTRUM_PRINT
3894 #ifdef SPECTRUM_IOSTREAM
3908 #ifdef SPECTRUM_DEBUG
3909 #ifdef SPECTRUM_PRINT
3910 #ifdef SPECTRUM_IOSTREAM
3912 cout <<
" computing a standard basis..." << endl;
3915 fputs(
" computing a standard basis...\n",
stdout );
3923 #ifdef SPECTRUM_DEBUG
3924 #ifdef SPECTRUM_PRINT
3927 #ifdef SPECTRUM_IOSTREAM
3975 #ifdef SPECTRUM_DEBUG
3976 #ifdef SPECTRUM_PRINT
3977 #ifdef SPECTRUM_IOSTREAM
3978 cout <<
"\n computing the highest corner...\n";
3980 fputs(
"\n computing the highest corner...\n",
stdout );
4004 #ifdef SPECTRUM_DEBUG
4005 #ifdef SPECTRUM_PRINT
4006 #ifdef SPECTRUM_IOSTREAM
4019 #ifdef SPECTRUM_DEBUG
4020 #ifdef SPECTRUM_PRINT
4021 #ifdef SPECTRUM_IOSTREAM
4022 cout <<
"\n computing the newton polygon...\n";
4024 fputs(
"\n computing the newton polygon...\n",
stdout );
4031 #ifdef SPECTRUM_DEBUG
4032 #ifdef SPECTRUM_PRINT
4041 #ifdef SPECTRUM_DEBUG
4042 #ifdef SPECTRUM_PRINT
4043 #ifdef SPECTRUM_IOSTREAM
4044 cout <<
"\n computing the weight corner...\n";
4046 fputs(
"\n computing the weight corner...\n",
stdout );
4056 #ifdef SPECTRUM_DEBUG
4057 #ifdef SPECTRUM_PRINT
4058 #ifdef SPECTRUM_IOSTREAM
4071 #ifdef SPECTRUM_DEBUG
4072 #ifdef SPECTRUM_PRINT
4073 #ifdef SPECTRUM_IOSTREAM
4074 cout <<
"\n computing NF...\n" << endl;
4085 #ifdef SPECTRUM_DEBUG
4086 #ifdef SPECTRUM_PRINT
4088 #ifdef SPECTRUM_IOSTREAM
4116 WerrorS(
"polynomial is zero" );
4119 WerrorS(
"polynomial has constant term" );
4122 WerrorS(
"not a singularity" );
4125 WerrorS(
"the singularity is not isolated" );
4128 WerrorS(
"highest corner cannot be computed" );
4131 WerrorS(
"principal part is degenerate" );
4137 WerrorS(
"unknown error occurred" );
4154 WerrorS(
"only works for local orderings" );
4162 WerrorS(
"does not work in quotient rings" );
4208 WerrorS(
"only works for local orderings" );
4213 WerrorS(
"does not work in quotient rings" );
4272 else if(
l->nr > 5 )
4310 int mu = (
int)(
long)(
l->m[0].Data( ));
4311 int pg = (
int)(
long)(
l->m[1].Data( ));
4312 int n = (
int)(
long)(
l->m[2].Data( ));
4323 if( n !=
num->length( ) )
4327 else if( n !=
den->length( ) )
4351 for(
i=0;
i<n;
i++ )
4353 if( (*
num)[
i] <= 0 )
4357 if( (*
den)[
i] <= 0 )
4361 if( (*
mul)[
i] <= 0 )
4373 for(
i=0,
j=n-1;
i<=
j;
i++,
j-- )
4376 (*den)[
i] != (*den)[
j] ||
4377 (*mul)[
i] != (*mul)[
j] )
4387 for(
i=0,
j=1;
i<n/2;
i++,
j++ )
4389 if( (*
num)[
i]*(*den)[
j] >= (*num)[
j]*(*den)[
i] )
4399 for(
mu=0,
i=0;
i<n;
i++ )
4404 if(
mu != (
int)(
long)(
l->m[0].Data( )) )
4413 for( pg=0,
i=0;
i<n;
i++ )
4415 if( (*
num)[
i]<=(*den)[
i] )
4421 if( pg != (
int)(
long)(
l->m[1].Data( )) )
4450 WerrorS(
"first argument is not a spectrum:" );
4455 WerrorS(
"second argument is not a spectrum:" );
4492 WerrorS(
"first argument is not a spectrum" );
4497 WerrorS(
"second argument should be positive" );
4534 WerrorS(
"first argument is not a spectrum" );
4539 WerrorS(
"second argument is not a spectrum" );
4549 res->data = (
void*)(
long)(
s1.mult_spectrumh(
s2 ));
4551 res->data = (
void*)(
long)(
s1.mult_spectrum(
s2 ));
4582 WerrorS(
"Ground field not implemented!");
4602 LP->
m= (
int)(
long)(
v->Data());
4608 LP->
n= (
int)(
long)(
v->Data());
4614 LP->
m1= (
int)(
long)(
v->Data());
4620 LP->
m2= (
int)(
long)(
v->Data());
4626 LP->
m3= (
int)(
long)(
v->Data());
4629 Print(
"m (constraints) %d\n",LP->
m);
4630 Print(
"n (columns) %d\n",LP->
n);
4654 lres->m[4].data=(
void*)(
long)LP->
m;
4657 lres->m[5].data=(
void*)(
long)LP->
n;
4690 gls= (poly)(arg1->
Data());
4691 int howclean= (
int)(
long)arg3->
Data();
4695 WerrorS(
"Input polynomial is constant!");
4704 rlist->Init( r[0] );
4705 for(
int i=r[0];
i>0;
i--)
4720 WerrorS(
"Ground field not implemented!");
4727 unsigned long int ii = (
unsigned long int)arg2->
Data();
4754 WerrorS(
"The input polynomial must be univariate!");
4764 for (
i= deg;
i >= 0;
i-- )
4779 for (
i=deg;
i >= 0;
i--)
4787 roots->
solver( howclean );
4795 rlist->Init( elem );
4799 for (
j= 0;
j < elem;
j++ )
4808 for (
j= 0;
j < elem;
j++ )
4846 int tdg= (
int)(
long)arg3->
Data();
4853 WerrorS(
"Last input parameter must be > 0!");
4861 if (
m != (
int)
pow((
double)tdg+1,(
double)n) )
4863 Werror(
"Size of second input ideal must be equal to %d!",
4864 (
int)
pow((
double)tdg+1,(
double)n));
4871 WerrorS(
"Ground field not implemented!");
4877 for (
i= 0;
i < n;
i++ )
4886 WerrorS(
"Elements of first input ideal must not be equal to -1, 0, 1!");
4895 WerrorS(
"Elements of first input ideal must be numbers!");
4903 for (
i= 0;
i <
m;
i++ )
4912 WerrorS(
"Elements of second input ideal must be numbers!");
4942 else gls= (
ideal)(
v->Data());
4957 if (gls->m[
j]!=
NULL)
4963 WerrorS(
"Newton polytope not of expected dimension");
4977 unsigned long int ii=(
unsigned long int)
v->Data();
4985 else howclean= (
int)(
long)
v->Data();
5014 WerrorS(
"Error occurred during matrix setup!");
5021 smv=
ures->accessResMat()->getSubDet();
5027 WerrorS(
"Unsuitable input ideal: Minor of resultant matrix is singular!");
5045 int c=
iproots[0]->getAnzElems();
5063 WerrorS(
"Solver was unable to find any roots!");
5104 for (
j= 0;
j < elem;
j++ )
5166 Warn(
"deleting denom_list for ring change to %s",
IDID(
h));
5208 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5213 (*iv)[
i]= - (*iv)[
i];
5222 if((*iv)[
i]>=0) { neg=
FALSE;
break; }
5227 (*iv)[
i]= -(*iv)[
i];
5242 (*iv2)[2]=iv->
length()-2;
5260 (*iv2)[2]=iv->
length()-2;
5301 (*iv)[2] += (*iv2)[2];
5316 int last = 0, o=0, n = 1,
i=0, typ = 1,
j;
5328 R->wanted_maxExp=(*iv)[2]*2+1;
5341 WerrorS(
"invalid combination of orderings");
5349 WerrorS(
"more than one ordering c/C specified");
5355 R->block0=(
int *)
omAlloc0(n*
sizeof(
int));
5356 R->block1=(
int *)
omAlloc0(n*
sizeof(
int));
5362 for (
j=0;
j < n-1;
j++)
5393 R->block0[n] =
last+1;
5396 R->wvhdl[n][
i-2] = (*iv)[
i];
5398 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5411 R->block0[n] =
last+1;
5413 else last += (*iv)[0];
5418 if (weights[
i]==0) weights[
i]=typ;
5430 const int s = (*iv)[2];
5440 const int s = (*iv)[2];
5442 if( 1 <
s ||
s < -1 )
return TRUE;
5458 R->block0[n] =
last+1;
5463 R->wvhdl[n][
i-2]=(*iv)[
i];
5465 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5467 last=
R->block0[n]-1;
5472 R->block0[n] =
last+1;
5475 if (
R->block1[n]-
R->block0[n]+2>=iv->
length())
5476 WarnS(
"missing module weights");
5477 for (
i=2;
i<=(
R->block1[n]-
R->block0[n]+2);
i++)
5479 R->wvhdl[n][
i-2]=(*iv)[
i];
5481 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5483 R->wvhdl[n][
i-2]=iv->
length() -3 -(
R->block1[n]-
R->block0[n]);
5486 R->wvhdl[n][
i-1]=(*iv)[
i];
5488 last=
R->block0[n]-1;
5493 R->block0[n] =
last+1;
5501 if (weights[
last]==0) weights[
last]=(*iv)[
i]*typ;
5503 last=
R->block0[n]-1;
5510 if (
Mtyp==-1) typ = -1;
5514 R->wvhdl[n][
i-2]=(*iv)[
i];
5516 R->block0[n] =
last+1;
5519 for(
i=
R->block1[n];
i>=
R->block0[n];
i--)
5521 if (weights[
i]==0) weights[
i]=typ;
5531 Werror(
"Internal Error: Unknown ordering %d", (*iv)[1]);
5538 Werror(
"mismatch of number of vars (%d) and ordering (>=%d vars)",
5546 for(
i=1;
i<=
R->N;
i++)
5547 {
if (weights[
i]<0) {
R->OrdSgn=-1;
break; }}
5561 if (
R->block1[n] !=
R->N)
5572 R->block0[n] <=
R->N)
5574 R->block1[n] =
R->N;
5578 Werror(
"mismatch of number of vars (%d) and ordering (%d vars)",
5597 *
p = (
char*)sl->
name;
5650 const int P =
pn->listLength();
5659 const int pars =
pnn->listLength();
5665 WerrorS(
"parameter expected");
5684 int ch = (
int)(
long)
pn->Data();
5695 if ((ch<2)||(ch!=
ch2))
5697 Warn(
"%d is invalid as characteristic of the ground field. 32003 is used.", ch);
5700 #ifndef TEST_ZN_AS_ZP
5711 cf->has_simple_Inverse=1;
5719 const int pars =
pnn->listLength();
5736 if ((ch!=0) && (ch!=
IsPrime(ch)))
5738 WerrorS(
"too many parameters");
5746 WerrorS(
"parameter expected");
5765 else if ((
pn->name !=
NULL)
5772 float_len=(
int)(
long)
pnn->Data();
5773 float_len2=float_len;
5777 float_len2=(
int)(
long)
pnn->Data();
5802 param.par_name=(
const char*)
"i";
5804 param.par_name = (
const char*)
pnn->name;
5812 else if ((
pn->name !=
NULL) && (
strcmp(
pn->name,
"integer") == 0))
5816 unsigned int modExponent = 1;
5828 modExponent = (
long)
pnn->Data();
5848 WerrorS(
"Wrong ground ring specification (module is 1)");
5851 if (modExponent < 1)
5853 WerrorS(
"Wrong ground ring specification (exponent smaller than 1");
5858 if (modExponent > 1 &&
cf ==
NULL)
5860 if ((
mpz_cmp_ui(modBase, 2) == 0) && (modExponent <= 8*
sizeof(
unsigned long)))
5871 WerrorS(
"modulus must not be 0 or parameter not allowed");
5877 info.exp= modExponent;
5886 WerrorS(
"modulus must not be 0 or parameter not allowed");
5892 info.exp= modExponent;
5903 if (r->qideal==
NULL)
5910 else if (
IDELEMS(r->qideal)==1)
5919 WerrorS(
"algebraic extension ring must have one minpoly");
5925 WerrorS(
"Wrong or unknown ground field specification");
5931 Print(
"pn[%p]: type: %d [%s]: %p, name: %s", (
void*)
p,
p->Typ(),
Tok2Cmdname(
p->Typ()),
p->Data(), (
p->name ==
NULL?
"NULL" :
p->name) );
5953 WerrorS(
"Invalid ground field specification");
5965 int l=
rv->listLength();
5977 WerrorS(
"name of ring variable expected");
6035 int l=
rv->listLength();
6047 WerrorS(
"name of ring variable expected");
6067 Werror(
"variable %d (%s) not in basering",
j+1,
R->names[
j]);
6080 for(
j=
R->block0[
i];
j<=
R->block1[
i];
j++)
6102 R->wvhdl[
i][perm[
j]-
R->block0[
i]]=
6129 R->order[
j-1]=
R->order[
j];
6130 R->block0[
j-1]=
R->block0[
j];
6131 R->block1[
j-1]=
R->block1[
j];
6133 R->wvhdl[
j-1]=
R->wvhdl[
j];
6141 while (
R->order[n]==0) n--;
6144 if (
R->block1[n] !=
R->N)
6155 R->block0[n] <=
R->N)
6157 R->block1[n] =
R->N;
6161 Werror(
"mismatch of number of vars (%d) and ordering (%d vars) in block %d",
6162 R->N,
R->block1[n],n);
6191 if ((r->ref<=0)&&(r->order!=
NULL))
6201 if (
j==0)
WarnS(
"killing the basering for level 0");
6206 while (r->idroot!=
NULL)
6209 killhdl2(r->idroot,&(r->idroot),r);
6256 Warn(
"deleting denom_list for ring change from %s",
IDID(
h));
6333 for(
i=
I->nrows*
I->ncols-1;
i>=0;
i--)
6345 switch (
p->language)
6354 if(
p->libname!=
NULL)
6355 Print(
",%s",
p->libname);
6370 tmp_in.data=(
void*)(
long)(*aa)[
i];
6378 Werror(
"apply fails at index %d",
i+1);
6408 res->data=(
void *)
l;
6415 for(
int i=0;
i<=
aa->nr;
i++)
6427 Werror(
"apply fails at index %d",
i+1);
6458 WerrorS(
"first argument to `apply` must allow an index");
6504 snprintf(
ss,len,
"parameter def %s;return(%s);\n",a,
s);
6569 snprintf(
buf,250,
"wrong length of parameters(%d), expected ",t);
6572 for(
int i=1;
i<=
T[0];
i++)
6595 for(
int i=1;
i<=
l;
i++,args=args->
next)
6601 || (t!=args->
Typ()))
6624 Print(
" %s (%s) -> %s",
Rational pow(const Rational &a, int e)
struct for passing initialization parameters to naInitChar
void atSet(idhdl root, char *name, void *data, int typ)
void * atGet(idhdl root, const char *name, int t, void *defaultReturnValue)
static int si_max(const int a, const int b)
static int si_min(const int a, const int b)
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
unsigned char * proc[NUM_PROC]
poly singclap_resultant(poly f, poly g, poly x, const ring r)
ideal singclap_factorize(poly f, intvec **v, int with_exps, const ring r)
matrix singclap_irrCharSeries(ideal I, const ring r)
int * Zp_roots(poly p, const ring r)
idhdl get(const char *s, int lev)
void show(int mat=0, int spaces=0) const
virtual ideal getMatrix()
complex root finder for univariate polynomials based on laguers algorithm
gmp_complex * getRoot(const int i)
void fillContainer(number *_coeffs, number *_ievpoint, const int _var, const int _tdg, const rootType _rt, const int _anz)
bool solver(const int polishmode=PM_NONE)
Linear Programming / Linear Optimization using Simplex - Algorithm.
BOOLEAN mapFromMatrix(matrix m)
matrix mapToMatrix(matrix m)
Class used for (list of) interpreter objects.
void CleanUp(ring r=currRing)
INLINE_THIS void Init(int l=0)
Base class for solving 0-dim poly systems using u-resultant.
resMatrixBase * accessResMat()
vandermonde system solver for interpolating polynomials from their values
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE long n_Int(number &n, const coeffs r)
conversion of n to an int; 0 if not possible in Z/pZ: the representing int lying in (-p/2 ....
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
@ n_R
single prescision (6,6) real numbers
@ n_Q
rational (GMP) numbers
@ n_Znm
only used if HAVE_RINGS is defined
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
@ n_Zn
only used if HAVE_RINGS is defined
@ n_long_R
real floating point (GMP) numbers
@ n_Z2m
only used if HAVE_RINGS is defined
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
@ n_Z
only used if HAVE_RINGS is defined
@ n_long_C
complex floating point (GMP) numbers
static FORCE_INLINE BOOLEAN nCoeff_is_numeric(const coeffs r)
static FORCE_INLINE void n_MPZ(mpz_t result, number &n, const coeffs r)
conversion of n to a GMP integer; 0 if not possible
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static FORCE_INLINE char const ** n_ParameterNames(const coeffs r)
Returns a (const!) pointer to (const char*) names of parameters.
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
const unsigned short fftable[]
static FORCE_INLINE void nSetChar(const coeffs r)
initialisations after each ring change
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
static FORCE_INLINE char * nCoeffName(const coeffs cf)
static FORCE_INLINE number n_InitMPZ(mpz_t n, const coeffs r)
conversion of a GMP integer to number
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
static FORCE_INLINE BOOLEAN nCoeff_is_long_C(const coeffs r)
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Creation data needed for finite fields.
const CanonicalForm int s
const Variable & v
< [in] a sqrfree bivariate poly
int search(const CFArray &A, const CanonicalForm &F, int i, int j)
search for F in A between index i and j
char name(const Variable &v)
void WerrorS(const char *s)
VAR char my_yylinebuf[80]
char *(* fe_fgets_stdin)(const char *pr, char *s, int size)
void newBuffer(char *s, feBufferTypes t, procinfo *pi, int lineno)
ideal maMapIdeal(const ideal map_id, const ring preimage_r, const ideal image_id, const ring image_r, const nMapFunc nMap)
polynomial map for ideals/module/matrix map_id: the ideal to map map_r: the base ring for map_id imag...
int iiTestConvert(int inputType, int outputType)
const char * iiTwoOps(int t)
const char * Tok2Cmdname(int tok)
static int RingDependend(int t)
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
void hIndMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hDimSolve(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hIndAllMult(scmon pure, int Npure, scfmon rad, int Nrad, varset var, int Nvar)
void hKill(monf xmem, int Nvar)
void hDelete(scfmon ev, int ev_length)
void hPure(scfmon stc, int a, int *Nstc, varset var, int Nvar, scmon pure, int *Npure)
void hSupp(scfmon stc, int Nstc, varset var, int *Nvar)
void hLexR(scfmon rad, int Nrad, varset var, int Nvar)
scfmon hInit(ideal S, ideal Q, int *Nexist)
void hRadical(scfmon rad, int *Nrad, int Nvar)
#define idDelete(H)
delete an ideal
void idGetNextChoise(int r, int end, BOOLEAN *endch, int *choise)
static BOOLEAN idIsZeroDim(ideal i)
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
#define idMaxIdeal(D)
initialise the maximal ideal (at 0)
int idGetNumberOfChoise(int t, int d, int begin, int end, int *choise)
void idInitChoise(int r, int beg, int end, BOOLEAN *endch, int *choise)
STATIC_VAR int * multiplicity
static BOOLEAN length(leftv result, leftv arg)
intvec * ivCopy(const intvec *o)
#define IMATELEM(M, I, J)
int IsCmd(const char *n, int &tok)
BOOLEAN iiExprArith1(leftv res, leftv a, int op)
BOOLEAN jjPROC(leftv res, leftv u, leftv v)
BOOLEAN iiAssign(leftv l, leftv r, BOOLEAN toplevel)
BOOLEAN iiConvert(int inputType, int outputType, int index, leftv input, leftv output, const struct sConvertTypes *dConvertTypes)
idhdl ggetid(const char *n)
void killhdl2(idhdl h, idhdl *ih, ring r)
idhdl enterid(const char *s, int lev, int t, idhdl *root, BOOLEAN init, BOOLEAN search)
VAR proclevel * procstack
idhdl packFindHdl(package r)
EXTERN_VAR omBin sleftv_bin
INST_VAR sleftv iiRETURNEXPR
char * iiGetLibProcBuffer(procinfo *pi, int part)
procinfo * iiInitSingularProcinfo(procinfov pi, const char *libname, const char *procname, int, long pos, BOOLEAN pstatic)
lists rDecompose(const ring r)
@ semicListWrongNumberOfNumerators
@ semicListFirstElementWrongType
@ semicListSecondElementWrongType
@ semicListFourthElementWrongType
@ semicListWrongNumberOfDenominators
@ semicListThirdElementWrongType
@ semicListWrongNumberOfMultiplicities
@ semicListFifthElementWrongType
@ semicListSixthElementWrongType
BOOLEAN iiApplyINTVEC(leftv res, leftv a, int op, leftv proc)
BOOLEAN jjVARIABLES_P(leftv res, leftv u)
lists rDecompose_list_cf(const ring r)
int iiOpsTwoChar(const char *s)
BOOLEAN spaddProc(leftv result, leftv first, leftv second)
BOOLEAN jjMINRES(leftv res, leftv v)
BOOLEAN killlocals_list(int v, lists L)
BOOLEAN iiParameter(leftv p)
STATIC_VAR BOOLEAN iiNoKeepRing
int iiDeclCommand(leftv sy, leftv name, int lev, int t, idhdl *root, BOOLEAN isring, BOOLEAN init_b)
static void rRenameVars(ring R)
void iiCheckPack(package &p)
BOOLEAN iiCheckTypes(leftv args, const short *type_list, int report)
check a list of arguemys against a given field of types return TRUE if the types match return FALSE (...
BOOLEAN iiApply(leftv res, leftv a, int op, leftv proc)
void list_cmd(int typ, const char *what, const char *prefix, BOOLEAN iterate, BOOLEAN fullname)
VAR BOOLEAN iiDebugMarker
ring rInit(leftv pn, leftv rv, leftv ord)
leftv iiMap(map theMap, const char *what)
int iiRegularity(lists L)
BOOLEAN rDecompose_CF(leftv res, const coeffs C)
static void rDecomposeC_41(leftv h, const coeffs C)
void iiMakeResolv(resolvente r, int length, int rlen, char *name, int typ0, intvec **weights)
BOOLEAN iiARROW(leftv r, char *a, char *s)
BOOLEAN semicProc3(leftv res, leftv u, leftv v, leftv w)
BOOLEAN syBetti1(leftv res, leftv u)
BOOLEAN iiApplyLIST(leftv res, leftv a, int op, leftv proc)
static void rDecomposeC(leftv h, const ring R)
int exprlist_length(leftv v)
BOOLEAN mpKoszul(leftv res, leftv c, leftv b, leftv id)
poly iiHighCorner(ideal I, int ak)
BOOLEAN spectrumfProc(leftv result, leftv first)
lists listOfRoots(rootArranger *self, const unsigned int oprec)
static void jjINT_S_TO_ID(int n, int *e, leftv res)
lists scIndIndset(ideal S, BOOLEAN all, ideal Q)
BOOLEAN jjCHARSERIES(leftv res, leftv u)
void rDecomposeCF(leftv h, const ring r, const ring R)
BOOLEAN iiApplyIDEAL(leftv, leftv, int, leftv)
static void list1(const char *s, idhdl h, BOOLEAN c, BOOLEAN fullname)
void list_error(semicState state)
BOOLEAN mpJacobi(leftv res, leftv a)
const char * iiTwoOps(int t)
BOOLEAN iiBranchTo(leftv, leftv args)
BOOLEAN jjBETTI2_ID(leftv res, leftv u, leftv v)
BOOLEAN iiTestAssume(leftv a, leftv b)
void iiSetReturn(const leftv source)
BOOLEAN iiAssignCR(leftv r, leftv arg)
BOOLEAN spmulProc(leftv result, leftv first, leftv second)
spectrumState spectrumCompute(poly h, lists *L, int fast)
idhdl rFindHdl(ring r, idhdl n)
syStrategy syConvList(lists li)
BOOLEAN spectrumProc(leftv result, leftv first)
BOOLEAN iiDefaultParameter(leftv p)
void rComposeC(lists L, ring R)
BOOLEAN iiCheckRing(int i)
#define BREAK_LINE_LENGTH
static void rDecomposeRing_41(leftv h, const coeffs C)
spectrumState spectrumStateFromList(spectrumPolyList &speclist, lists *L, int fast)
BOOLEAN syBetti2(leftv res, leftv u, leftv w)
ring rSubring(ring org_ring, sleftv *rv)
BOOLEAN kWeight(leftv res, leftv id)
static leftv rOptimizeOrdAsSleftv(leftv ord)
BOOLEAN rSleftvOrdering2Ordering(sleftv *ord, ring R)
static BOOLEAN rComposeOrder(const lists L, const BOOLEAN check_comp, ring R)
spectrum spectrumFromList(lists l)
static idhdl rSimpleFindHdl(const ring r, const idhdl root, const idhdl n)
static void iiReportTypes(int nr, int t, const short *T)
void rDecomposeRing(leftv h, const ring R)
BOOLEAN jjRESULTANT(leftv res, leftv u, leftv v, leftv w)
static BOOLEAN iiInternalExport(leftv v, int toLev)
static void rDecompose_23456(const ring r, lists L)
void copy_deep(spectrum &spec, lists l)
void killlocals_rec(idhdl *root, int v, ring r)
semicState list_is_spectrum(lists l)
static void killlocals0(int v, idhdl *localhdl, const ring r)
BOOLEAN semicProc(leftv res, leftv u, leftv v)
ring rCompose(const lists L, const BOOLEAN check_comp, const long bitmask, const int isLetterplace)
BOOLEAN iiApplyBIGINTMAT(leftv, leftv, int, leftv)
BOOLEAN jjBETTI2(leftv res, leftv u, leftv v)
const char * lastreserved
static BOOLEAN rSleftvList2StringArray(leftv sl, char **p)
lists syConvRes(syStrategy syzstr, BOOLEAN toDel, int add_row_shift)
BOOLEAN iiWRITE(leftv, leftv v)
void paPrint(const char *n, package p)
static resolvente iiCopyRes(resolvente r, int l)
BOOLEAN kQHWeight(leftv res, leftv v)
void rComposeRing(lists L, ring R)
BOOLEAN iiExport(leftv v, int toLev)
BOOLEAN jjBETTI(leftv res, leftv u)
void spectrumPrintError(spectrumState state)
lists getList(spectrum &spec)
BOOLEAN jjVARIABLES_ID(leftv res, leftv u)
static BOOLEAN rComposeVar(const lists L, ring R)
const struct sValCmd1 dArith1[]
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
VAR denominator_list DENOMINATOR_LIST
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type,...
char * lString(lists l, BOOLEAN typed, int dim)
BOOLEAN lRingDependend(lists L)
resolvente liFindRes(lists L, int *len, int *typ0, intvec ***weights)
lists liMakeResolv(resolvente r, int length, int reallen, int typ0, intvec **weights, int add_row_shift)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
static matrix mu(matrix A, const ring R)
matrix mpNew(int r, int c)
create a r x c zero-matrix
matrix mp_Copy(matrix a, const ring r)
copies matrix a (from ring r to r)
#define MATELEM(mat, i, j)
1-based access to matrix
void mult(unsigned long *result, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
ideal loNewtonPolytope(const ideal id)
EXTERN_VAR size_t gmp_output_digits
uResultant::resMatType determineMType(int imtype)
mprState mprIdealCheck(const ideal theIdeal, const char *name, uResultant::resMatType mtype, BOOLEAN rmatrix=false)
char * complexToStr(gmp_complex &c, const unsigned int oprec, const coeffs src)
gmp_float sqrt(const gmp_float &a)
void setGMPFloatDigits(size_t digits, size_t rest)
Set size of mantissa digits - the number of output digits (basis 10) the size of mantissa consists of...
BOOLEAN nuLagSolve(leftv res, leftv arg1, leftv arg2, leftv arg3)
find the (complex) roots an univariate polynomial Determines the roots of an univariate polynomial us...
BOOLEAN nuVanderSys(leftv res, leftv arg1, leftv arg2, leftv arg3)
COMPUTE: polynomial p with values given by v at points p1,..,pN derived from p; more precisely: consi...
BOOLEAN nuMPResMat(leftv res, leftv arg1, leftv arg2)
returns module representing the multipolynomial resultant matrix Arguments 2: ideal i,...
BOOLEAN loSimplex(leftv res, leftv args)
Implementation of the Simplex Algorithm.
BOOLEAN loNewtonP(leftv res, leftv arg1)
compute Newton Polytopes of input polynomials
BOOLEAN nuUResSolve(leftv res, leftv args)
solve a multipolynomial system using the u-resultant Input ideal must be 0-dimensional and (currRing-...
The main handler for Singular numbers which are suitable for Singular polynomials.
#define nPrint(a)
only for debug, over any initalized currRing
#define SHORT_REAL_LENGTH
#define omFreeSize(addr, size)
#define omCheckAddr(addr)
#define omReallocSize(addr, o_size, size)
#define omCheckAddrSize(addr, size)
#define omFreeBin(addr, bin)
#define omFreeBinAddr(addr)
#define omRealloc0Size(addr, o_size, size)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
static int pLength(poly a)
#define __pp_Mult_nn(p, n, r)
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
static void p_Setm(poly p, const ring r)
static void p_Delete(poly *p, const ring r)
static poly p_Init(const ring r, omBin bin)
static poly p_Copy(poly p, const ring r)
returns a copy of p
static long p_Totaldegree(poly p, const ring r)
#define __p_Mult_nn(p, n, r)
void rChangeCurrRing(ring r)
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Compatibility layer for legacy polynomial operations (over currRing)
static long pTotaldegree(poly p)
#define pIsConstant(p)
like above, except that Comp must be 0
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
#define pGetVariables(p, e)
#define pGetExp(p, i)
Exponent.
#define pCopy(p)
return a copy of the poly
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
void PrintS(const char *s)
void Werror(const char *fmt,...)
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
const char * rSimpleOrdStr(int ord)
int rTypeOfMatrixOrder(const intvec *order)
ring rAssure_HasComp(const ring r)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
BOOLEAN rCheckIV(const intvec *iv)
rRingOrder_t rOrderName(char *ordername)
void rDelete(ring r)
unconditionally deletes fields in r
ring rDefault(const coeffs cf, int N, char **n, int ord_size, rRingOrder_t *ord, int *block0, int *block1, int **wvhdl, unsigned long bitmask)
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise,...
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_R(const ring r)
static BOOLEAN rField_is_Zp_a(const ring r)
static BOOLEAN rField_is_Z(const ring r)
static BOOLEAN rField_is_Zp(const ring r)
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
static BOOLEAN rField_is_long_C(const ring r)
static int rBlocks(const ring r)
static ring rIncRefCnt(ring r)
static BOOLEAN rField_is_Zn(const ring r)
static int rPar(const ring r)
(r->cf->P)
static int rInternalChar(const ring r)
static BOOLEAN rIsLPRing(const ring r)
@ ringorder_a64
for int64 weights
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
@ ringorder_IS
Induced (Schreyer) ordering.
static BOOLEAN rField_is_Q_a(const ring r)
static BOOLEAN rField_is_Q(const ring r)
static void rDecRefCnt(ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
static BOOLEAN rField_is_long_R(const ring r)
static BOOLEAN rField_is_numeric(const ring r)
static BOOLEAN rField_is_GF(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
#define rField_is_Ring(R)
int status int void size_t count
int status int void * buf
BOOLEAN slWrite(si_link l, leftv v)
ideal idInit(int idsize, int rank)
initialise an ideal / module
intvec * id_QHomWeight(ideal id, const ring r)
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
BOOLEAN hasAxis(ideal J, int k, const ring r)
int hasOne(ideal J, const ring r)
BOOLEAN ringIsLocal(const ring r)
static BOOLEAN hasConstTerm(poly h, const ring r)
poly computeWC(const newtonPolygon &np, Rational max_weight, const ring r)
static BOOLEAN hasLinearTerm(poly h, const ring r)
void computeNF(ideal stdJ, poly hc, poly wc, spectrumPolyList *NF, const ring r)
INST_VAR sleftv sLastPrinted
intvec * syBetti(resolvente res, int length, int *regularity, intvec *weights, BOOLEAN tomin, int *row_shift)
void syMinimizeResolvente(resolvente res, int length, int first)
void syKillComputation(syStrategy syzstr, ring r=currRing)
resolvente syReorder(resolvente res, int length, syStrategy syzstr, BOOLEAN toCopy=TRUE, resolvente totake=NULL)
intvec * syBettiOfComputation(syStrategy syzstr, BOOLEAN minim=TRUE, int *row_shift=NULL, intvec *weights=NULL)
void syKillEmptyEntres(resolvente res, int length)
struct for passing initialization parameters to naInitChar
THREAD_VAR double(* wFunctional)(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)
void wCall(poly *s, int sl, int *x, double wNsqr, const ring R)
double wFunctionalBuch(int *degw, int *lpol, int npol, double *rel, double wx, double wNsqr)