My Project
Loading...
Searching...
No Matches
kutil.cc
Go to the documentation of this file.
1/****************************************
2* Computer Algebra System SINGULAR *
3****************************************/
4/*
5* ABSTRACT: kernel: utils for kStd
6*/
7
8// #define PDEBUG 2
9// #define PDIV_DEBUG
10#define KUTIL_CC
11
12#define MYTEST 0
13
14//All vs Just strategy over rings:
15// 1 - Just
16// 0 - All
17#define ALL_VS_JUST 0
18//Extended Spoly Strategy:
19// 0 - new gen sig
20// 1 - ann*old sig
21#define EXT_POLY_NEW 0
22
23#include "kernel/mod2.h"
24
25#include "misc/mylimits.h"
26#include "misc/options.h"
27#include "polys/nc/nc.h"
28#include "polys/nc/sca.h"
29#include "polys/weight.h" /* for kDebugPrint: maxdegreeWecart*/
30
31#include <stdlib.h>
32#include <string.h>
33
34#ifdef KDEBUG
35#undef KDEBUG
36#define KDEBUG 2
37#endif
38
39#ifdef DEBUGF5
40#undef DEBUGF5
41//#define DEBUGF5 1
42#endif
43
44// define if enterL, enterT should use memmove instead of doing it manually
45// on topgun, this is slightly faster (see monodromy_l.tst, homog_gonnet.sing)
46#ifndef SunOS_4
47#define ENTER_USE_MEMMOVE
48#endif
49
50// define, if the my_memmove inlines should be used instead of
51// system memmove -- it does not seem to pay off, though
52// #define ENTER_USE_MYMEMMOVE
53
55#include "polys/kbuckets.h"
56#include "coeffs/numbers.h"
57#include "kernel/polys.h"
59#include "kernel/ideals.h"
63
64#ifdef HAVE_SHIFTBBA
65#include "polys/shiftop.h"
66#endif
67
68#include "polys/prCopy.h"
69
70#ifdef HAVE_RATGRING
72#endif
73
74#ifdef KDEBUG
75#undef KDEBUG
76#define KDEBUG 2
77#endif
78
79#ifdef DEBUGF5
80#undef DEBUGF5
81#define DEBUGF5 2
82#endif
83
85
86
87#ifdef ENTER_USE_MYMEMMOVE
88inline void _my_memmove_d_gt_s(unsigned long* d, unsigned long* s, long l)
89{
90 REGISTER unsigned long* _dl = (unsigned long*) d;
91 REGISTER unsigned long* _sl = (unsigned long*) s;
92 REGISTER long _i = l - 1;
93
94 do
95 {
96 _dl[_i] = _sl[_i];
97 _i--;
98 }
99 while (_i >= 0);
100}
101
102inline void _my_memmove_d_lt_s(unsigned long* d, unsigned long* s, long l)
103{
104 REGISTER long _ll = l;
105 REGISTER unsigned long* _dl = (unsigned long*) d;
106 REGISTER unsigned long* _sl = (unsigned long*) s;
107 REGISTER long _i = 0;
108
109 do
110 {
111 _dl[_i] = _sl[_i];
112 _i++;
113 }
114 while (_i < _ll);
115}
116
117inline void _my_memmove(void* d, void* s, long l)
118{
119 unsigned long _d = (unsigned long) d;
120 unsigned long _s = (unsigned long) s;
121 unsigned long _l = ((l) + SIZEOF_LONG - 1) >> LOG_SIZEOF_LONG;
122
123 if (_d > _s) _my_memmove_d_gt_s(_d, _s, _l);
124 else _my_memmove_d_lt_s(_d, _s, _l);
125}
126
127#undef memmove
128#define memmove(d,s,l) _my_memmove(d, s, l)
129#endif
130
131static poly redMora (poly h,int maxIndex,kStrategy strat);
132static poly redBba (poly h,int maxIndex,kStrategy strat);
133
134#ifdef HAVE_RINGS
135#define pDivComp_EQUAL 2
136#define pDivComp_LESS 1
137#define pDivComp_GREATER -1
138#define pDivComp_INCOMP 0
139/* Checks the relation of LM(p) and LM(q)
140 LM(p) = LM(q) => return pDivComp_EQUAL
141 LM(p) | LM(q) => return pDivComp_LESS
142 LM(q) | LM(p) => return pDivComp_GREATER
143 else return pDivComp_INCOMP */
144static inline int pDivCompRing(poly p, poly q)
145{
146 if ((currRing->pCompIndex < 0)
148 {
149 BOOLEAN a=FALSE, b=FALSE;
150 int i;
151 unsigned long la, lb;
152 unsigned long divmask = currRing->divmask;
153 for (i=0; i<currRing->VarL_Size; i++)
154 {
155 la = p->exp[currRing->VarL_Offset[i]];
156 lb = q->exp[currRing->VarL_Offset[i]];
157 if (la != lb)
158 {
159 if (la < lb)
160 {
161 if (b) return pDivComp_INCOMP;
162 if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))
163 return pDivComp_INCOMP;
164 a = TRUE;
165 }
166 else
167 {
168 if (a) return pDivComp_INCOMP;
169 if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask))
170 return pDivComp_INCOMP;
171 b = TRUE;
172 }
173 }
174 }
175 if (a) return pDivComp_LESS;
176 if (b) return pDivComp_GREATER;
177 if (!a & !b) return pDivComp_EQUAL;
178 }
179 return pDivComp_INCOMP;
180}
181#endif
182
183static inline int pDivComp(poly p, poly q)
184{
185 if ((currRing->pCompIndex < 0)
187 {
188#ifdef HAVE_RATGRING
190 {
192 q,currRing,
193 currRing->real_var_start, currRing->real_var_end))
194 return 0;
195 return pLmCmp(q,p); // ONLY FOR GLOBAL ORDER!
196 }
197#endif
198 BOOLEAN a=FALSE, b=FALSE;
199 int i;
200 unsigned long la, lb;
201 unsigned long divmask = currRing->divmask;
202 for (i=0; i<currRing->VarL_Size; i++)
203 {
204 la = p->exp[currRing->VarL_Offset[i]];
205 lb = q->exp[currRing->VarL_Offset[i]];
206 if (la != lb)
207 {
208 if (la < lb)
209 {
210 if (b) return 0;
211 if (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask))
212 return 0;
213 a = TRUE;
214 }
215 else
216 {
217 if (a) return 0;
218 if (((la & divmask) ^ (lb & divmask)) != ((la - lb) & divmask))
219 return 0;
220 b = TRUE;
221 }
222 }
223 }
224 if (a) { /*assume(pLmCmp(q,p)==1);*/ return 1; }
225 if (b) { /*assume(pLmCmp(q,p)==-1);*/return -1; }
226 /*assume(pLmCmp(q,p)==0);*/
227 }
228 return 0;
229}
230
231#ifdef HAVE_SHIFTBBA
232static inline int pLPDivComp(poly p, poly q)
233{
234 if ((currRing->pCompIndex < 0) || (__p_GetComp(p,currRing) == __p_GetComp(q,currRing)))
235 {
236 // maybe there is a more performant way to do this? This will get called quite often in bba.
237 if (_p_LPLmDivisibleByNoComp(p, q, currRing)) return 1;
238 if (_p_LPLmDivisibleByNoComp(q, p, currRing)) return -1;
239 }
240
241 return 0;
242}
243#endif
244
245
249
250static void deleteHCBucket(LObject *L, kStrategy strat)
251{
252 if ((strat->kNoether!=NULL)
253 && (L->bucket != NULL))
254 {
255 for (int i=1; i<= (int) L->bucket->buckets_used; i++)
256 {
257 poly p=L->bucket->buckets[i];
258 if(p!=NULL)
259 {
260 if (p_Cmp(p,strat->kNoetherTail(), L->tailRing) == -1)
261 {
262 L->bucket->buckets[i]=NULL;
263 L->bucket->buckets_length[i]=0;
264 }
265 else
266 {
267 do
268 {
269 if (p_Cmp(pNext(p),strat->kNoetherTail(), L->tailRing) == -1)
270 {
271 p_Delete(&pNext(p), L->tailRing);
272 L->bucket->buckets_length[i]=pLength(L->bucket->buckets[i]);
273 break;
274 }
275 pIter(p);
276 } while(p!=NULL);
277 }
278 }
279 }
280 int i=L->bucket->buckets_used;
281 while ((i>0)&&(L->bucket->buckets[i]==NULL))
282 {
283 i--;
284 L->bucket->buckets_used=i;
285 }
286 }
287}
288
289/*2
290*deletes higher monomial of p, re-compute ecart and length
291*works only for orderings with ecart =pFDeg(end)-pFDeg(start)
292*/
294{
295 if (strat->kNoether!=NULL)
296 {
297 kTest_L(L,strat);
298 poly p1;
299 poly p = L->GetLmTailRing();
300 int l = 1;
301
302 if (!fromNext && p_Cmp(p,strat->kNoetherTail(), L->tailRing) == -1)
303 {
304 if (L->bucket != NULL) kBucketDestroy(&L->bucket);
305 L->Delete();
306 L->Clear();
307 L->ecart = -1;
308 return;
309 }
310 if (L->bucket != NULL)
311 {
312 deleteHCBucket(L,strat);
313 return;
314 }
316 p1 = p;
317 while (pNext(p1)!=NULL)
318 {
319 if (p_LmCmp(pNext(p1), strat->kNoetherTail(), L->tailRing) == -1)
320 {
321 cut=(pNext(p1)!=NULL);
322 if (cut)
323 {
324 p_Delete(&pNext(p1), L->tailRing);
325
326 if (p1 == p)
327 {
328 if (L->t_p != NULL)
329 {
330 assume(L->p != NULL && p == L->t_p);
331 pNext(L->p) = NULL;
332 }
333 L->max_exp = NULL;
334 }
335 else if (fromNext)
336 L->max_exp = p_GetMaxExpP(pNext(L->p), L->tailRing ); // p1;
337 //if (L->pLength != 0)
338 L->pLength = l;
339 // Hmmm when called from updateT, then only
340 // reset ecart when cut
341 if (fromNext)
342 L->ecart = L->pLDeg() - L->GetpFDeg();
343 }
344 break;
345 }
346 l++;
347 pIter(p1);
348 }
349 if ((!fromNext) && cut)
350 {
351 L->SetpFDeg();
352 L->ecart = L->pLDeg(strat->LDegLast) - L->GetpFDeg();
353 }
354 kTest_L(L,strat);
355 }
356}
357
358void deleteHC(poly* p, int* e, int* l,kStrategy strat)
359{
360 LObject L(*p, currRing, strat->tailRing);
361
362 deleteHC(&L, strat);
363 *p = L.p;
364 *e = L.ecart;
365 *l = L.length;
366 if (L.t_p != NULL) p_LmFree(L.t_p, strat->tailRing);
367}
368
369/*2
370*tests if p.p=monomial*unit and cancels the unit
371*/
373{
374 if(rHasGlobalOrdering (currRing)) return;
375 if(TEST_OPT_CANCELUNIT) return;
376
377 ring r = L->tailRing;
378 poly p = L->GetLmTailRing();
379 if(p_GetComp(p, r) != 0 && !p_OneComp(p, r)) return;
380
381 number lc=NULL; /*dummy, is always set if rField_is_Ring(r) */
382 if (rField_is_Ring(r) /*&& (rHasLocalOrMixedOrdering(r))*/)
383 lc = pGetCoeff(p);
384
385 // Leading coef have to be a unit
386 // example 2x+4x2 should be simplified to 2x*(1+2x)
387 // and 2 is not a unit in Z
388 //if ( !(n_IsUnit(pGetCoeff(p), r->cf)) ) return;
389
390 poly h = pNext(p);
391 int i;
392
394 {
395 loop
396 {
397 if (h==NULL)
398 {
399 p_Delete(&pNext(p), r);
400 if (!inNF)
401 {
403 if (L->p != NULL)
404 {
405 pSetCoeff(L->p,eins);
406 if (L->t_p != NULL)
407 pSetCoeff0(L->t_p,eins);
408 }
409 else
410 pSetCoeff(L->t_p,eins);
411 /* p and t_p share the same coeff, if both are !=NULL */
412 /* p==NULL==t_p cannot happen here */
413 }
414 L->ecart = 0;
415 L->length = 1;
416 //if (L->pLength > 0)
417 L->pLength = 1;
418 L->max_exp = NULL;
419
420 if (L->t_p != NULL && pNext(L->t_p) != NULL)
421 p_Delete(&pNext(L->t_p),r);
422 if (L->p != NULL && pNext(L->p) != NULL)
423 pNext(L->p) = NULL;
424 return;
425 }
426 i = rVar(r);
427 loop
428 {
429 if (p_GetExp(p,i,r) > p_GetExp(h,i,r)) return; // does not divide
430 i--;
431 if (i == 0) break; // does divide, try next monom
432 }
433 //wrp(p); PrintS(" divide ");wrp(h); PrintLn();
434 // Note: As long as qring j forbidden if j contains integer (i.e. ground rings are
435 // domains), no zerodivisor test needed CAUTION
436 if (!n_DivBy(pGetCoeff(h),lc,r->cf))
437 {
438 return;
439 }
440 pIter(h);
441 }
442 }
443 else
444 {
445 loop
446 {
447 if (h==NULL)
448 {
449 p_Delete(&pNext(p), r);
450 if (!inNF)
451 {
452 number eins=nInit(1);
453 if (L->p != NULL)
454 {
455 pSetCoeff(L->p,eins);
456 if (L->t_p != NULL)
457 pSetCoeff0(L->t_p,eins);
458 }
459 else
460 pSetCoeff(L->t_p,eins);
461 /* p and t_p share the same coeff, if both are !=NULL */
462 /* p==NULL==t_p cannot happen here */
463 }
464 L->ecart = 0;
465 L->length = 1;
466 //if (L->pLength > 0)
467 L->pLength = 1;
468 L->max_exp = NULL;
469
470 if (L->t_p != NULL && pNext(L->t_p) != NULL)
471 p_Delete(&pNext(L->t_p),r);
472 if (L->p != NULL && pNext(L->p) != NULL)
473 pNext(L->p) = NULL;
474
475 return;
476 }
477 i = rVar(r);
478 loop
479 {
480 if (p_GetExp(p,i,r) > p_GetExp(h,i,r)) return; // does not divide
481 i--;
482 if (i == 0) break; // does divide, try next monom
483 }
484 //wrp(p); PrintS(" divide ");wrp(h); PrintLn();
485 pIter(h);
486 }
487 }
488}
489
490/*2
491*pp is the new element in s
492*returns TRUE (in strat->kAllAxis) if
493*-HEcke is allowed
494*-we are in the last componente of the vector
495*-on all axis are monomials (all elements in NotUsedAxis are FALSE)
496*returns FALSE for pLexOrderings,
497*assumes in module case an ordering of type c* !!
498* HEckeTest is only called with strat->kAllAxis==FALSE !
499*/
500void HEckeTest (poly pp,kStrategy strat)
501{
502 int j,p;
503
504 if (currRing->pLexOrder
506 || (strat->ak >1)
508 {
509 return;
510 }
512 if (p!=0)
513 strat->NotUsedAxis[p] = FALSE;
514 else return; /*nothing new*/
515 /*- the leading term of pp is a power of the p-th variable -*/
516 for (j=(currRing->N);j>0; j--)
517 {
518 if (strat->NotUsedAxis[j])
519 {
520 strat->kAllAxis=FALSE;
521 return;
522 }
523 }
524 strat->kAllAxis=TRUE;
525}
526
527/*2
528*utilities for TSet, LSet
529*/
530inline static intset initec (const int maxnr)
531{
532 return (intset)omAlloc(maxnr*sizeof(int));
533}
534
535inline static unsigned long* initsevS (const int maxnr)
536{
537 return (unsigned long*)omAlloc0(maxnr*sizeof(unsigned long));
538}
539inline static int* initS_2_R (const int maxnr)
540{
541 return (int*)omAlloc0(maxnr*sizeof(int));
542}
543
544static inline void enlargeT (TSet &T, TObject** &R, unsigned long* &sevT,
545 int &length, const int incr)
546{
547 assume(T!=NULL);
548 assume(sevT!=NULL);
549 assume(R!=NULL);
550 assume((length+incr) > 0);
551
552 int i;
553 T = (TSet)omRealloc0Size(T, length*sizeof(TObject),
554 (length+incr)*sizeof(TObject));
555
556 sevT = (unsigned long*) omReallocSize(sevT, length*sizeof(long*),
557 (length+incr)*sizeof(long*));
558
559 R = (TObject**)omRealloc0Size(R,length*sizeof(TObject*),
560 (length+incr)*sizeof(TObject*));
561 for (i=length-1;i>=0;i--) R[T[i].i_r] = &(T[i]);
562 length += incr;
563}
564
565void cleanT (kStrategy strat)
566{
567 int i,j;
568 poly p;
569 assume(currRing == strat->tailRing || strat->tailRing != NULL);
570
571 pShallowCopyDeleteProc p_shallow_copy_delete =
572 (strat->tailRing != currRing ?
574 NULL);
575 for (j=0; j<=strat->tl; j++)
576 {
577 p = strat->T[j].p;
578 strat->T[j].p=NULL;
579 if (strat->T[j].max_exp != NULL)
580 {
581 p_LmFree(strat->T[j].max_exp, strat->tailRing);
582 }
583 i = -1;
584 loop
585 {
586 i++;
587 if (i>strat->sl)
588 {
589 if (strat->T[j].t_p != NULL)
590 {
591 p_Delete(&(strat->T[j].t_p), strat->tailRing);
593 }
594 else
595 {
596#ifdef HAVE_SHIFTBBA
597 if (currRing->isLPring && strat->T[j].shift > 0)
598 {
599 pNext(p) = NULL; // pNext(p) points to the unshifted tail, don't try to delete it here
600 }
601#endif
602 pDelete(&p);
603 }
604 break;
605 }
606 if (p == strat->S[i])
607 {
608 if (strat->T[j].t_p != NULL)
609 {
610 if (p_shallow_copy_delete!=NULL)
611 {
612 pNext(p) = p_shallow_copy_delete(pNext(p),strat->tailRing,currRing,
613 currRing->PolyBin);
614 }
615 p_LmFree(strat->T[j].t_p, strat->tailRing);
616 }
617 break;
618 }
619 }
620 }
621 strat->tl=-1;
622}
623
625{
626 int i,j;
627 poly p;
628 assume(currRing == strat->tailRing || strat->tailRing != NULL);
629
630 pShallowCopyDeleteProc p_shallow_copy_delete =
631 (strat->tailRing != currRing ?
633 NULL);
634 for (j=0; j<=strat->tl; j++)
635 {
636 p = strat->T[j].p;
637 strat->T[j].p=NULL;
638 if (strat->T[j].max_exp != NULL)
639 {
640 p_LmFree(strat->T[j].max_exp, strat->tailRing);
641 }
642 i = -1;
643 loop
644 {
645 i++;
646 if (i>strat->sl)
647 {
648 if (strat->T[j].t_p != NULL)
649 {
650 p_Delete(&(strat->T[j].t_p), strat->tailRing);
652 }
653 else
654 {
655 //pDelete(&p);
656 p = NULL;
657 }
658 break;
659 }
660 if (p == strat->S[i])
661 {
662 if (strat->T[j].t_p != NULL)
663 {
664 assume(p_shallow_copy_delete != NULL);
665 pNext(p) = p_shallow_copy_delete(pNext(p),strat->tailRing,currRing,
666 currRing->PolyBin);
667 p_LmFree(strat->T[j].t_p, strat->tailRing);
668 }
669 break;
670 }
671 }
672 }
673 strat->tl=-1;
674}
675
676//LSet initL ()
677//{
678// int i;
679// LSet l = (LSet)omAlloc(setmaxL*sizeof(LObject));
680// return l;
681//}
682
683static inline void enlargeL (LSet* L,int* length,const int incr)
684{
685 assume((*L)!=NULL);
686 assume(((*length)+incr)>0);
687
688 *L = (LSet)omReallocSize((*L),(*length)*sizeof(LObject),
689 ((*length)+incr)*sizeof(LObject));
690 (*length) += incr;
691}
692
694{
695 strat->pairtest = (BOOLEAN *)omAlloc0((strat->sl+2)*sizeof(BOOLEAN));
696}
697
698/*2
699*test whether (p1,p2) or (p2,p1) is in L up position length
700*it returns TRUE if yes and the position k
701*/
702BOOLEAN isInPairsetL(int length,poly p1,poly p2,int* k,kStrategy strat)
703{
704 LObject *p=&(strat->L[length]);
705
706 *k = length;
707 loop
708 {
709 if ((*k) < 0) return FALSE;
710 if (((p1 == (*p).p1) && (p2 == (*p).p2))
711 || ((p1 == (*p).p2) && (p2 == (*p).p1)))
712 return TRUE;
713 (*k)--;
714 p--;
715 }
716}
717
718int kFindInT(poly p, TSet T, int tlength)
719{
720 int i;
721
722 for (i=0; i<=tlength; i++)
723 {
724 if (T[i].p == p) return i;
725 }
726 return -1;
727}
728
729int kFindInT(poly p, kStrategy strat)
730{
731 int i;
732 do
733 {
734 i = kFindInT(p, strat->T, strat->tl);
735 if (i >= 0) return i;
736 strat = strat->next;
737 }
738 while (strat != NULL);
739 return -1;
740}
741
742#ifdef HAVE_SHIFTBBA
743int kFindInTShift(poly p, TSet T, int tlength)
744{
745 int i;
746
747 for (i=0; i<=tlength; i++)
748 {
749 // in the Letterplace ring the LMs in T and L are copies thus we have to use pEqualPolys() instead of ==
750 if (pEqualPolys(T[i].p, p)) return i;
751 }
752 return -1;
753}
754#endif
755
756#ifdef HAVE_SHIFTBBA
757int kFindInTShift(poly p, kStrategy strat)
758{
759 int i;
760 do
761 {
762 i = kFindInTShift(p, strat->T, strat->tl);
763 if (i >= 0) return i;
764 strat = strat->next;
765 }
766 while (strat != NULL);
767 return -1;
768}
769#endif
770
771#ifdef KDEBUG
772
774{
775 if (t_p != NULL) p_wrp(t_p, tailRing);
776 else if (p != NULL) p_wrp(p, currRing, tailRing);
777 else ::wrp(NULL);
778}
779
780#define kFalseReturn(x) do { if (!x) return FALSE;} while (0)
781
782// check that Lm's of a poly from T are "equal"
783static const char* kTest_LmEqual(poly p, poly t_p, ring tailRing)
784{
785 int i;
786 for (i=1; i<=tailRing->N; i++)
787 {
788 if (p_GetExp(p, i, currRing) != p_GetExp(t_p, i, tailRing))
789 return "Lm[i] different";
790 }
791 if (p_GetComp(p, currRing) != p_GetComp(t_p, tailRing))
792 return "Lm[0] different";
793 if (pNext(p) != pNext(t_p))
794 return "Lm.next different";
795 if (pGetCoeff(p) != pGetCoeff(t_p))
796 return "Lm.coeff different";
797 return NULL;
798}
799
801BOOLEAN kTest_T(TObject * T, kStrategy strat, int i, char TN)
802{
803 ring tailRing = T->tailRing;
805 if (strat_tailRing == NULL) strat_tailRing = tailRing;
806 r_assume(strat_tailRing == tailRing);
807
808 poly p = T->p;
809 // ring r = currRing;
810
811 if (T->p == NULL && T->t_p == NULL && i >= 0)
812 return dReportError("%c[%d].poly is NULL", TN, i);
813
814 if (T->p!=NULL)
815 {
816 nTest(pGetCoeff(T->p));
817 if ((T->t_p==NULL)&&(pNext(T->p)!=NULL)) p_Test(pNext(T->p),currRing);
818 }
819 if (T->t_p!=NULL)
820 {
821 nTest(pGetCoeff(T->t_p));
822 if (pNext(T->t_p)!=NULL) p_Test(pNext(T->t_p),strat_tailRing);
823 }
824 if ((T->p!=NULL)&&(T->t_p!=NULL)) assume(pGetCoeff(T->p)==pGetCoeff(T->t_p));
825
826 if (T->tailRing != currRing)
827 {
828 if (T->t_p == NULL && i > 0)
829 return dReportError("%c[%d].t_p is NULL", TN, i);
830 pFalseReturn(p_Test(T->t_p, T->tailRing));
831 if (T->p != NULL) pFalseReturn(p_LmTest(T->p, currRing));
832 if ((T->p != NULL) && (T->t_p != NULL))
833 {
834 const char* msg = kTest_LmEqual(T->p, T->t_p, T->tailRing);
835 if (msg != NULL)
836 return dReportError("%c[%d] %s", TN, i, msg);
837 // r = T->tailRing;
838 p = T->t_p;
839 }
840 if (T->p == NULL)
841 {
842 p = T->t_p;
843 // r = T->tailRing;
844 }
845 if (T->t_p != NULL && i >= 0 && TN == 'T')
846 {
847 if (pNext(T->t_p) == NULL)
848 {
849 if (T->max_exp != NULL)
850 return dReportError("%c[%d].max_exp is not NULL as it should be", TN, i);
851 }
852 else
853 {
854 if (T->max_exp == NULL)
855 return dReportError("%c[%d].max_exp is NULL", TN, i);
856 if (pNext(T->max_exp) != NULL)
857 return dReportError("pNext(%c[%d].max_exp) != NULL", TN, i);
858
859 pFalseReturn(p_CheckPolyRing(T->max_exp, tailRing));
860 omCheckBinAddrSize(T->max_exp, (omSizeWOfBin(tailRing->PolyBin))*SIZEOF_LONG);
861#if KDEBUG > 0
862 if (! sloppy_max)
863 {
864 poly test_max = p_GetMaxExpP(pNext(T->t_p), tailRing);
865 p_Setm(T->max_exp, tailRing);
866 p_Setm(test_max, tailRing);
867 BOOLEAN equal = p_ExpVectorEqual(T->max_exp, test_max, tailRing);
868 if (! equal)
869 return dReportError("%c[%d].max out of sync", TN, i);
870 p_LmFree(test_max, tailRing);
871 }
872#endif
873 }
874 }
875 }
876 else
877 {
878 if (T->p == NULL && i > 0)
879 return dReportError("%c[%d].p is NULL", TN, i);
880#ifdef HAVE_SHIFTBBA
881 if (currRing->isLPring && T->shift > 0)
882 {
883 // in this case, the order is not correct. test LM and tail separately
886 }
887 else
888#endif
889 {
891 }
892 }
893
894 if ((i >= 0) && (T->pLength != 0)
895 && (! rIsSyzIndexRing(currRing)) && (T->pLength != pLength(p)))
896 {
897 int l=T->pLength;
898 T->pLength=pLength(p);
899 return dReportError("%c[%d] pLength error: has %d, specified to have %d",
900 TN, i , pLength(p), l);
901 }
902
903 // check FDeg, for elements in L and T
904 if (i >= 0 && (TN == 'T' || TN == 'L'))
905 {
906 // FDeg has ir element from T of L set
907 if (strat->homog && (T->FDeg != T->pFDeg()))
908 {
909 int d=T->FDeg;
910 T->FDeg=T->pFDeg();
911 return dReportError("%c[%d] FDeg error: has %d, specified to have %d",
912 TN, i , T->pFDeg(), d);
913 }
914 }
915
916 // check is_normalized for elements in T
917 if (i >= 0 && TN == 'T')
918 {
919 if (T->is_normalized && ! nIsOne(pGetCoeff(p)))
920 return dReportError("T[%d] is_normalized error", i);
921
922 }
923 return TRUE;
924}
925
927 BOOLEAN testp, int lpos, TSet T, int tlength)
928{
930 if (L->p!=NULL)
931 {
932 if ((L->t_p==NULL)
933 &&(pNext(L->p)!=NULL)
934 &&(pGetCoeff(pNext(L->p))!=NULL)) /* !=strat->tail*/
935 {
936 p_Test(pNext(L->p),currRing);
937 nTest(pGetCoeff(L->p));
938 }
939 }
940 if (L->t_p!=NULL)
941 {
942 if ((pNext(L->t_p)!=NULL)
943 &&(pGetCoeff(pNext(L->t_p))!=NULL)) /* !=strat->tail*/
944 {
945 p_Test(pNext(L->t_p),strat_tailRing);
946 nTest(pGetCoeff(L->t_p));
947 }
948 }
949 if ((L->p!=NULL)&&(L->t_p!=NULL)) assume(pGetCoeff(L->p)==pGetCoeff(L->t_p));
950
951 if (testp)
952 {
953 poly pn = NULL;
954 if (L->bucket != NULL)
955 {
956 kFalseReturn(kbTest(L->bucket));
957 r_assume(L->bucket->bucket_ring == L->tailRing);
958 if (L->p != NULL && pNext(L->p) != NULL)
959 {
960 pn = pNext(L->p);
961 pNext(L->p) = NULL;
962 }
963 }
964 kFalseReturn(kTest_T(L, strat, lpos, 'L'));
965 if (pn != NULL)
966 pNext(L->p) = pn;
967
968 ring r;
969 poly p;
970 L->GetLm(p, r);
971 if (L->sev != 0L)
972 {
973 if (p_GetShortExpVector(p, r) != L->sev)
974 {
975 return dReportError("L[%d] wrong sev: has %lo, specified to have %lo",
976 lpos, p_GetShortExpVector(p, r), L->sev);
977 }
978 }
979 }
980 if (L->p1 == NULL)
981 {
982 // L->p2 either NULL or "normal" poly
983 pFalseReturn(pp_Test(L->p2, currRing, L->tailRing));
984 }
985 else if (tlength > 0 && T != NULL && (lpos >=0))
986 {
987 // now p1 and p2 must be != NULL and must be contained in T
988 int i;
989#ifdef HAVE_SHIFTBBA
990 if (rIsLPRing(currRing))
991 i = kFindInTShift(L->p1, T, tlength);
992 else
993#endif
994 i = kFindInT(L->p1, T, tlength);
995 if (i < 0)
996 return dReportError("L[%d].p1 not in T",lpos);
997#ifdef HAVE_SHIFTBBA
998 if (rIsLPRing(currRing))
999 {
1000 if (rField_is_Ring(currRing)) return TRUE; // m*shift(q) is not in T
1001 i = kFindInTShift(L->p2, T, tlength);
1002 }
1003 else
1004#endif
1005 i = kFindInT(L->p2, T, tlength);
1006 if (i < 0)
1007 return dReportError("L[%d].p2 not in T",lpos);
1008 }
1009 return TRUE;
1010}
1011
1013{
1014 int i;
1015 // test P
1016 kFalseReturn(kTest_L(&(strat->P), strat,
1017 (strat->P.p != NULL && pNext(strat->P.p)!=strat->tail),
1018 -1, strat->T, strat->tl));
1019
1020 // test T
1021 if (strat->T != NULL)
1022 {
1023 for (i=0; i<=strat->tl; i++)
1024 {
1025 kFalseReturn(kTest_T(&(strat->T[i]), strat, i, 'T'));
1026 if (strat->sevT[i] != pGetShortExpVector(strat->T[i].p))
1027 return dReportError("strat->sevT[%d] out of sync", i);
1028 }
1029 }
1030
1031 // test L
1032 if (strat->L != NULL)
1033 {
1034 for (i=0; i<=strat->Ll; i++)
1035 {
1036 kFalseReturn(kTest_L(&(strat->L[i]), strat,
1037 strat->L[i].Next() != strat->tail, i,
1038 strat->T, strat->tl));
1039 // may be unused
1040 //if (strat->use_buckets && strat->L[i].Next() != strat->tail &&
1041 // strat->L[i].Next() != NULL && strat->L[i].p1 != NULL)
1042 //{
1043 // assume(strat->L[i].bucket != NULL);
1044 //}
1045 }
1046 }
1047
1048 // test S
1049 if (strat->S != NULL)
1050 kFalseReturn(kTest_S(strat));
1051
1052 return TRUE;
1053}
1054
1056{
1057 int i;
1058 BOOLEAN ret = TRUE;
1059 for (i=0; i<=strat->sl; i++)
1060 {
1061 if (strat->S[i] != NULL &&
1062 strat->sevS[i] != pGetShortExpVector(strat->S[i]))
1063 {
1064 return dReportError("S[%d] wrong sev: has %o, specified to have %o",
1065 i , pGetShortExpVector(strat->S[i]), strat->sevS[i]);
1066 }
1067 }
1068 return ret;
1069}
1070
1071
1072
1074{
1075 int i, j;
1076 // BOOLEAN ret = TRUE;
1077 kFalseReturn(kTest(strat));
1078
1079 // test strat->R, strat->T[i].i_r
1080 for (i=0; i<=strat->tl; i++)
1081 {
1082 if (strat->T[i].i_r < 0 || strat->T[i].i_r > strat->tl)
1083 return dReportError("strat->T[%d].i_r == %d out of bounds", i,
1084 strat->T[i].i_r);
1085 if (strat->R[strat->T[i].i_r] != &(strat->T[i]))
1086 return dReportError("T[%d].i_r with R out of sync", i);
1087 }
1088 // test containment of S inT
1089 if ((strat->S != NULL)&&(strat->tl>=0))
1090 {
1091 for (i=0; i<=strat->sl; i++)
1092 {
1093 j = kFindInT(strat->S[i], strat->T, strat->tl);
1094 if (j < 0)
1095 return dReportError("S[%d] not in T", i);
1096 if (strat->S_2_R[i] != strat->T[j].i_r)
1097 return dReportError("S_2_R[%d]=%d != T[%d].i_r=%d\n",
1098 i, strat->S_2_R[i], j, strat->T[j].i_r);
1099 }
1100 }
1101 // test strat->L[i].i_r1
1102 #ifdef HAVE_SHIFTBBA
1103 if (!rIsLPRing(currRing)) // in the Letterplace ring we currently don't set/use i_r1 and i_r2
1104 #endif
1105 if (strat->L!=NULL)
1106 {
1107 for (i=0; i<=strat->Ll; i++)
1108 {
1109 if (strat->L[i].p1 != NULL && strat->L[i].p2)
1110 {
1111 if (strat->L[i].i_r1 < 0 ||
1112 strat->L[i].i_r1 > strat->tl ||
1113 strat->L[i].T_1(strat)->p != strat->L[i].p1)
1114 return dReportError("L[%d].i_r1 out of sync", i);
1115 if (strat->L[i].i_r2 < 0 ||
1116 strat->L[i].i_r2 > strat->tl ||
1117 strat->L[i].T_2(strat)->p != strat->L[i].p2)
1118 return dReportError("L[%d].i_r2 out of sync", i);
1119 }
1120 else
1121 {
1122 if (strat->L[i].i_r1 != -1)
1123 return dReportError("L[%d].i_r1 out of sync", i);
1124 if (strat->L[i].i_r2 != -1)
1125 return dReportError("L[%d].i_r2 out of sync", i);
1126 }
1127 if (strat->L[i].i_r != -1)
1128 return dReportError("L[%d].i_r out of sync", i);
1129 }
1130 }
1131 return TRUE;
1132}
1133
1134#endif // KDEBUG
1135
1136/*2
1137*cancels the i-th polynomial in the standardbase s
1138*/
1139void deleteInS (int i,kStrategy strat)
1140{
1141#ifdef ENTER_USE_MEMMOVE
1142 memmove(&(strat->S[i]), &(strat->S[i+1]), (strat->sl - i)*sizeof(poly));
1143 memmove(&(strat->ecartS[i]),&(strat->ecartS[i+1]),(strat->sl - i)*sizeof(int));
1144 memmove(&(strat->sevS[i]),&(strat->sevS[i+1]),(strat->sl - i)*sizeof(unsigned long));
1145 memmove(&(strat->S_2_R[i]),&(strat->S_2_R[i+1]),(strat->sl - i)*sizeof(int));
1146#else
1147 int j;
1148 for (j=i; j<strat->sl; j++)
1149 {
1150 strat->S[j] = strat->S[j+1];
1151 strat->ecartS[j] = strat->ecartS[j+1];
1152 strat->sevS[j] = strat->sevS[j+1];
1153 strat->S_2_R[j] = strat->S_2_R[j+1];
1154 }
1155#endif
1156 if (strat->lenS!=NULL)
1157 {
1158#ifdef ENTER_USE_MEMMOVE
1159 memmove(&(strat->lenS[i]),&(strat->lenS[i+1]),(strat->sl - i)*sizeof(int));
1160#else
1161 for (j=i; j<strat->sl; j++) strat->lenS[j] = strat->lenS[j+1];
1162#endif
1163 }
1164 if (strat->lenSw!=NULL)
1165 {
1166#ifdef ENTER_USE_MEMMOVE
1167 memmove(&(strat->lenSw[i]),&(strat->lenSw[i+1]),(strat->sl - i)*sizeof(wlen_type));
1168#else
1169 for (j=i; j<strat->sl; j++) strat->lenSw[j] = strat->lenSw[j+1];
1170#endif
1171 }
1172 if (strat->fromQ!=NULL)
1173 {
1174#ifdef ENTER_USE_MEMMOVE
1175 memmove(&(strat->fromQ[i]),&(strat->fromQ[i+1]),(strat->sl - i)*sizeof(int));
1176#else
1177 for (j=i; j<strat->sl; j++)
1178 {
1179 strat->fromQ[j] = strat->fromQ[j+1];
1180 }
1181#endif
1182 }
1183 strat->S[strat->sl] = NULL;
1184 strat->sl--;
1185}
1186
1187#ifdef HAVE_SHIFTBBA
1188static BOOLEAN is_shifted_p1(const poly p, const kStrategy strat)
1189{
1190 if (rIsLPRing(currRing)
1191 && (strat->P.p1!=NULL))
1192 {
1193 // clean up strat->P.p1: may be shifted
1194 poly p=strat->P.p1;
1195 int lv=currRing->isLPring;
1197 for (int i=lv;i>0;i--)
1198 {
1199 if (pGetExp(p,i)!=0) { is_shifted=FALSE; break;}
1200 }
1201 if (is_shifted
1202 && (kFindInL1(p, strat)<0)
1203 && (kFindInT(p, strat->T, strat->tl) < 0)
1204 )
1205 {
1206 return TRUE;
1207 }
1208 }
1209 return FALSE;
1210}
1211#endif
1212/*2
1213*cancels the j-th polynomial in the set
1214*/
1215void deleteInL (LSet set, int *length, int j,kStrategy strat)
1216{
1217 if (set[j].lcm!=NULL)
1218 {
1219 kDeleteLcm(&set[j]);
1220 }
1221 if (set[j].sig!=NULL)
1222 {
1223#ifdef HAVE_RINGS
1224 if (pGetCoeff(set[j].sig) != NULL)
1225 pLmDelete(set[j].sig);
1226 else
1227#endif
1228 pLmFree(set[j].sig);
1229 }
1230 if (set[j].p!=NULL)
1231 {
1232 if (pNext(set[j].p) == strat->tail)
1233 {
1234#ifdef HAVE_RINGS
1235 if (pGetCoeff(set[j].p) != NULL)
1236 pLmDelete(set[j].p);
1237 else
1238#endif
1239 pLmFree(set[j].p);
1240 /*- tail belongs to several int spolys -*/
1241 }
1242 else
1243 {
1244 // search p in T, if it is there, do not delete it
1245 if (rHasGlobalOrdering(currRing) || (kFindInT(set[j].p, strat) < 0))
1246 {
1247 // assure that for global orderings kFindInT fails
1248 //assume((rHasLocalOrMixedOrdering(currRing)) && (kFindInT(set[j].p, strat) >= 0));
1249 set[j].Delete();
1250 }
1251 }
1252 }
1253 #ifdef HAVE_SHIFTBBA
1254 if (is_shifted_p1(strat->P.p1,strat))
1255 {
1256 // clean up strat->P.p1: may be shifted
1257 pLmDelete(strat->P.p1);
1258 strat->P.p1=NULL;
1259 }
1260 #endif
1261 if (*length > 0 && j < *length)
1262 {
1263#ifdef ENTER_USE_MEMMOVE
1264 memmove(&(set[j]), &(set[j+1]), (*length - j)*sizeof(LObject));
1265#else
1266 int i;
1267 for (i=j; i < (*length); i++)
1268 set[i] = set[i+1];
1269#endif
1270 }
1271#ifdef KDEBUG
1272 set[*length].Init();
1273#endif
1274 (*length)--;
1275}
1276
1277/*2
1278*enters p at position at in L
1279*/
1280void enterL (LSet *set,int *length, int *LSetmax, LObject p,int at)
1281{
1282 // this should be corrected
1283 assume(p.FDeg == p.pFDeg());
1284
1285 if ((*length)>=0)
1286 {
1287 if ((*length) == (*LSetmax)-1) enlargeL(set,LSetmax,setmaxLinc);
1288 if (at <= (*length))
1289#ifdef ENTER_USE_MEMMOVE
1290 memmove(&((*set)[at+1]), &((*set)[at]), ((*length)-at+1)*sizeof(LObject));
1291#else
1292 for (i=(*length)+1; i>=at+1; i--) (*set)[i] = (*set)[i-1];
1293#endif
1294 }
1295 else at = 0;
1296 (*set)[at] = p;
1297 (*length)++;
1298}
1299
1300/*2
1301* computes the normal ecart;
1302* used in mora case and if pLexOrder & sugar in bba case
1303*/
1305{
1306 h->FDeg = h->pFDeg();
1307 h->ecart = h->pLDeg() - h->FDeg;
1308 // h->length is set by h->pLDeg
1309 h->length=h->pLength=pLength(h->p);
1310}
1311
1313{
1314 h->FDeg = h->pFDeg();
1315 (*h).ecart = 0;
1316 h->length=h->pLength=pLength(h->p);
1317}
1318
1319void initEcartPairBba (LObject* Lp,poly /*f*/,poly /*g*/,int /*ecartF*/,int /*ecartG*/)
1320{
1321 Lp->FDeg = Lp->pFDeg();
1322 (*Lp).ecart = 0;
1323 (*Lp).length = 0;
1324}
1325
1326void initEcartPairMora (LObject* Lp,poly /*f*/,poly /*g*/,int ecartF,int ecartG)
1327{
1328 Lp->FDeg = Lp->pFDeg();
1329 (*Lp).ecart = si_max(ecartF,ecartG);
1330 (*Lp).ecart = (*Lp).ecart- (Lp->FDeg -p_FDeg((*Lp).lcm,currRing));
1331 (*Lp).length = 0;
1332}
1333
1334/*2
1335*if ecart1<=ecart2 it returns TRUE
1336*/
1337static inline BOOLEAN sugarDivisibleBy(int ecart1, int ecart2)
1338{
1339 return (ecart1 <= ecart2);
1340}
1341
1342#ifdef HAVE_RINGS
1343/*2
1344* put the pair (s[i],p) into the set B, ecart=ecart(p) (ring case)
1345*/
1346static void enterOnePairRing (int i,poly p,int /*ecart*/, int isFromQ,kStrategy strat, int atR)
1347{
1348 assume(atR >= 0);
1349 assume(i<=strat->sl);
1350 assume(p!=NULL);
1352 #if ALL_VS_JUST
1353 //Over rings, if we construct the strong pair, do not add the spair
1355 {
1356 number s,t,d;
1357 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(strat->S[i]), &s, &t, currRing->cf);
1358
1359 if (!nIsZero(s) && !nIsZero(t)) // evtl. durch divBy tests ersetzen
1360 {
1361 nDelete(&d);
1362 nDelete(&s);
1363 nDelete(&t);
1364 return;
1365 }
1366 nDelete(&d);
1367 nDelete(&s);
1368 nDelete(&t);
1369 }
1370 #endif
1371 int j,compare,compareCoeff;
1372 LObject h;
1373
1374#ifdef KDEBUG
1375 h.ecart=0; h.length=0;
1376#endif
1377 /*- computes the lcm(s[i],p) -*/
1378 if(pHasNotCFRing(p,strat->S[i]))
1379 {
1380 strat->cp++;
1381 return;
1382 }
1383 h.lcm = p_Lcm(p,strat->S[i],currRing);
1384 pSetCoeff0(h.lcm, n_Lcm(pGetCoeff(p), pGetCoeff(strat->S[i]), currRing->cf));
1385 if (nIsZero(pGetCoeff(h.lcm)))
1386 {
1387 strat->cp++;
1388 pLmDelete(h.lcm);
1389 return;
1390 }
1391 // basic chain criterion
1392 /*
1393 *the set B collects the pairs of type (S[j],p)
1394 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p)
1395 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
1396 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
1397 */
1398
1399 for(j = strat->Bl;j>=0;j--)
1400 {
1401 compare=pDivCompRing(strat->B[j].lcm,h.lcm);
1402 compareCoeff = n_DivComp(pGetCoeff(strat->B[j].lcm), pGetCoeff(h.lcm), currRing->cf);
1403 if(compare == pDivComp_EQUAL)
1404 {
1405 //They have the same LM
1407 {
1408 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
1409 {
1410 strat->c3++;
1411 pLmDelete(h.lcm);
1412 return;
1413 }
1414 break;
1415 }
1417 {
1418 deleteInL(strat->B,&strat->Bl,j,strat);
1419 strat->c3++;
1420 }
1422 {
1423 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
1424 {
1425 strat->c3++;
1426 pLmDelete(h.lcm);
1427 return;
1428 }
1429 break;
1430 }
1431 }
1432 if(compareCoeff == compare || compareCoeff == pDivComp_EQUAL)
1433 {
1434 if(compare == pDivComp_LESS)
1435 {
1436 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
1437 {
1438 strat->c3++;
1439 pLmDelete(h.lcm);
1440 return;
1441 }
1442 break;
1443 }
1444 if(compare == pDivComp_GREATER)
1445 {
1446 deleteInL(strat->B,&strat->Bl,j,strat);
1447 strat->c3++;
1448 }
1449 }
1450 }
1451 number s, t;
1452 poly m1, m2, gcd = NULL;
1453 s = pGetCoeff(strat->S[i]);
1454 t = pGetCoeff(p);
1455 k_GetLeadTerms(p,strat->S[i],currRing,m1,m2,currRing);
1456 ksCheckCoeff(&s, &t, currRing->cf);
1457 pSetCoeff0(m1, s);
1458 pSetCoeff0(m2, t);
1459 m2 = pNeg(m2);
1460 p_Test(m1,strat->tailRing);
1461 p_Test(m2,strat->tailRing);
1462 poly si = pCopy(strat->S[i]);
1463 poly pm1 = pp_Mult_mm(pNext(p), m1, strat->tailRing);
1464 poly sim2 = pp_Mult_mm(pNext(si), m2, strat->tailRing);
1465 pDelete(&si);
1466 p_LmDelete(m1, currRing);
1467 p_LmDelete(m2, currRing);
1468 if(sim2 == NULL)
1469 {
1470 if(pm1 == NULL)
1471 {
1472 if(h.lcm != NULL)
1473 {
1474 pLmDelete(h.lcm);
1475 h.lcm=NULL;
1476 }
1477 h.Clear();
1478 if (strat->pairtest==NULL) initPairtest(strat);
1479 strat->pairtest[i] = TRUE;
1480 strat->pairtest[strat->sl+1] = TRUE;
1481 return;
1482 }
1483 else
1484 {
1485 gcd = pm1;
1486 pm1 = NULL;
1487 }
1488 }
1489 else
1490 {
1491 if((pGetComp(strat->S[i]) == 0) && (0 != pGetComp(p)))
1492 {
1493 p_SetCompP(sim2, pGetComp(p), strat->tailRing);
1494 pSetmComp(sim2);
1495 }
1496 //p_Write(pm1,strat->tailRing);p_Write(sim2,strat->tailRing);
1497 gcd = p_Add_q(pm1, sim2, strat->tailRing);
1498 }
1499 p_Test(gcd, strat->tailRing);
1500#ifdef KDEBUG
1501 if (TEST_OPT_DEBUG)
1502 {
1503 wrp(gcd);
1504 PrintLn();
1505 }
1506#endif
1507 h.p = gcd;
1508 h.i_r = -1;
1509 if(h.p == NULL)
1510 {
1511 if (strat->pairtest==NULL) initPairtest(strat);
1512 strat->pairtest[i] = TRUE;
1513 strat->pairtest[strat->sl+1] = TRUE;
1514 return;
1515 }
1516 h.tailRing = strat->tailRing;
1517 int posx;
1518 //h.pCleardenom();
1519 //pSetm(h.p);
1520 h.i_r1 = -1;h.i_r2 = -1;
1521 strat->initEcart(&h);
1522 #if 1
1523 h.p2 = strat->S[i];
1524 h.p1 = p;
1525 #endif
1526 #if 1
1527 if (atR >= 0)
1528 {
1529 h.i_r1 = atR;
1530 h.i_r2 = strat->S_2_R[i];
1531 }
1532 #endif
1533 if (strat->Bl==-1)
1534 posx =0;
1535 else
1536 posx = strat->posInL(strat->B,strat->Bl,&h,strat);
1537 h.sev = pGetShortExpVector(h.p);
1538 if (currRing!=strat->tailRing)
1539 h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing);
1540 if (strat->P.p!=NULL) strat->P.sev = pGetShortExpVector(strat->P.p);
1541 else strat->P.sev=0L;
1542 enterL(&strat->B,&strat->Bl,&strat->Bmax,h,posx);
1543 kTest_TS(strat);
1544}
1545
1546/*2
1547* put the lcm(s[i],p) into the set B
1548*/
1549
1550static BOOLEAN enterOneStrongPoly (int i,poly p,int /*ecart*/, int /*isFromQ*/,kStrategy strat, int atR, bool enterTstrong)
1551{
1552 number d, s, t;
1553 assume(atR >= 0);
1555 poly m1, m2, gcd,si;
1556 if(!enterTstrong)
1557 {
1558 assume(i<=strat->sl);
1559 si = strat->S[i];
1560 }
1561 else
1562 {
1563 assume(i<=strat->tl);
1564 si = strat->T[i].p;
1565 }
1566 //printf("\n--------------------------------\n");
1567 //pWrite(p);pWrite(si);
1568 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(si), &s, &t, currRing->cf);
1569
1570 if (nIsZero(s) || nIsZero(t)) // evtl. durch divBy tests ersetzen
1571 {
1572 nDelete(&d);
1573 nDelete(&s);
1574 nDelete(&t);
1575 return FALSE;
1576 }
1577
1578 k_GetStrongLeadTerms(p, si, currRing, m1, m2, gcd, strat->tailRing);
1579
1581 {
1582 unsigned long sev = pGetShortExpVector(gcd);
1583
1584 for (int j = 0; j < strat->sl; j++)
1585 {
1586 if (j == i)
1587 continue;
1588
1589 if (n_DivBy(d, pGetCoeff(strat->S[j]), currRing->cf)
1590 && !(strat->sevS[j] & ~sev)
1591 && p_LmDivisibleBy(strat->S[j], gcd, currRing))
1592 {
1593 nDelete(&d);
1594 nDelete(&s);
1595 nDelete(&t);
1596 return FALSE;
1597 }
1598 }
1599 }
1600
1601 //p_Test(m1,strat->tailRing);
1602 //p_Test(m2,strat->tailRing);
1603 /*if(!enterTstrong)
1604 {
1605 while (! kCheckStrongCreation(atR, m1, i, m2, strat) )
1606 {
1607 memset(&(strat->P), 0, sizeof(strat->P));
1608 kStratChangeTailRing(strat);
1609 strat->P = *(strat->R[atR]);
1610 p_LmFree(m1, strat->tailRing);
1611 p_LmFree(m2, strat->tailRing);
1612 p_LmFree(gcd, currRing);
1613 k_GetStrongLeadTerms(p, si, currRing, m1, m2, gcd, strat->tailRing);
1614 }
1615 }*/
1616 pSetCoeff0(m1, s);
1617 pSetCoeff0(m2, t);
1618 pSetCoeff0(gcd, d);
1619 p_Test(m1,strat->tailRing);
1620 p_Test(m2,strat->tailRing);
1621 //printf("\n===================================\n");
1622 //pWrite(m1);pWrite(m2);pWrite(gcd);
1623#ifdef KDEBUG
1624 if (TEST_OPT_DEBUG)
1625 {
1626 // Print("t = %d; s = %d; d = %d\n", nInt(t), nInt(s), nInt(d));
1627 PrintS("m1 = ");
1628 p_wrp(m1, strat->tailRing);
1629 PrintS(" ; m2 = ");
1630 p_wrp(m2, strat->tailRing);
1631 PrintS(" ; gcd = ");
1632 wrp(gcd);
1633 PrintS("\n--- create strong gcd poly: ");
1634 Print("\n p: %d", i);
1635 wrp(p);
1636 Print("\n strat->S[%d]: ", i);
1637 wrp(si);
1638 PrintS(" ---> ");
1639 }
1640#endif
1641
1642 pNext(gcd) = p_Add_q(pp_Mult_mm(pNext(p), m1, strat->tailRing), pp_Mult_mm(pNext(si), m2, strat->tailRing), strat->tailRing);
1643 p_LmDelete(m1, strat->tailRing);
1644 p_LmDelete(m2, strat->tailRing);
1645#ifdef KDEBUG
1646 if (TEST_OPT_DEBUG)
1647 {
1648 wrp(gcd);
1649 PrintLn();
1650 }
1651#endif
1652
1653 LObject h;
1654 h.p = gcd;
1655 h.tailRing = strat->tailRing;
1656 int posx;
1657 strat->initEcart(&h);
1658 h.sev = pGetShortExpVector(h.p);
1659 h.i_r1 = -1;h.i_r2 = -1;
1660 if (currRing!=strat->tailRing)
1661 h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing);
1662 if(!enterTstrong)
1663 {
1664 #if 1
1665 h.p1 = p;h.p2 = strat->S[i];
1666 #endif
1667 if (atR >= 0)
1668 {
1669 h.i_r2 = strat->S_2_R[i];
1670 h.i_r1 = atR;
1671 }
1672 else
1673 {
1674 h.i_r1 = -1;
1675 h.i_r2 = -1;
1676 }
1677 if (strat->Ll==-1)
1678 posx =0;
1679 else
1680 posx = strat->posInL(strat->L,strat->Ll,&h,strat);
1681 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx);
1682 }
1683 else
1684 {
1685 if(h.IsNull()) return FALSE;
1686 //int red_result;
1687 //reduzieren ist teur!!!
1688 //if(strat->L != NULL)
1689 //red_result = strat->red(&h,strat);
1690 if(!h.IsNull())
1691 {
1692 enterT(h, strat,-1);
1693 //int pos = posInS(strat,strat->sl,h.p,h.ecart);
1694 //strat->enterS(h,pos,strat,-1);
1695 }
1696 }
1697 return TRUE;
1698}
1699
1701{
1702 if(strat->sl < 0) return FALSE;
1703 int i;
1704 for(i=0;i<strat->sl;i++)
1705 {
1706 //Construct the gcd pair between h and S[i]
1707 number d, s, t;
1708 poly m1, m2, gcd;
1709 d = n_ExtGcd(pGetCoeff(h->p), pGetCoeff(strat->S[i]), &s, &t, currRing->cf);
1710 if (nIsZero(s) || nIsZero(t)) // evtl. durch divBy tests ersetzen
1711 {
1712 nDelete(&d);
1713 nDelete(&s);
1714 nDelete(&t);
1715 }
1716 else
1717 {
1718 k_GetStrongLeadTerms(h->p, strat->S[i], currRing, m1, m2, gcd, strat->tailRing);
1719 pSetCoeff0(m1, s);
1720 pSetCoeff0(m2, t);
1721 pSetCoeff0(gcd, d);
1722 pNext(gcd) = p_Add_q(pp_Mult_mm(pNext(h->p), m1, strat->tailRing), pp_Mult_mm(pNext(strat->S[i]), m2, strat->tailRing), strat->tailRing);
1723 poly pSigMult = p_Copy(h->sig,currRing);
1724 poly sSigMult = p_Copy(strat->sig[i],currRing);
1727 p_LmDelete(m1, strat->tailRing);
1728 p_LmDelete(m2, strat->tailRing);
1730 if(pairsig!= NULL && pLtCmp(pairsig,h->sig) == 0)
1731 {
1732 pDelete(&h->p);
1733 h->p = gcd;
1734 pDelete(&h->sig);
1735 h->sig = pairsig;
1736 pNext(h->sig) = NULL;
1737 strat->initEcart(h);
1738 h->sev = pGetShortExpVector(h->p);
1739 h->sevSig = pGetShortExpVector(h->sig);
1740 h->i_r1 = -1;h->i_r2 = -1;
1741 if(h->lcm != NULL)
1742 {
1743 pLmDelete(h->lcm);
1744 h->lcm = NULL;
1745 }
1746 if (currRing!=strat->tailRing)
1747 h->t_p = k_LmInit_currRing_2_tailRing(h->p, strat->tailRing);
1748 return TRUE;
1749 }
1750 //Delete what you didn't use
1751 pDelete(&gcd);
1752 pDelete(&pairsig);
1753 }
1754 }
1755 return FALSE;
1756}
1757
1758static BOOLEAN enterOneStrongPolySig (int i,poly p,poly sig,int /*ecart*/, int /*isFromQ*/,kStrategy strat, int atR)
1759{
1760 number d, s, t;
1761 assume(atR >= 0);
1762 poly m1, m2, gcd,si;
1763 assume(i<=strat->sl);
1764 si = strat->S[i];
1765 //printf("\n--------------------------------\n");
1766 //pWrite(p);pWrite(si);
1767 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(si), &s, &t, currRing->cf);
1768
1769 if (nIsZero(s) || nIsZero(t)) // evtl. durch divBy tests ersetzen
1770 {
1771 nDelete(&d);
1772 nDelete(&s);
1773 nDelete(&t);
1774 return FALSE;
1775 }
1776
1777 k_GetStrongLeadTerms(p, si, currRing, m1, m2, gcd, strat->tailRing);
1778 //p_Test(m1,strat->tailRing);
1779 //p_Test(m2,strat->tailRing);
1780 /*if(!enterTstrong)
1781 {
1782 while (! kCheckStrongCreation(atR, m1, i, m2, strat) )
1783 {
1784 memset(&(strat->P), 0, sizeof(strat->P));
1785 kStratChangeTailRing(strat);
1786 strat->P = *(strat->R[atR]);
1787 p_LmFree(m1, strat->tailRing);
1788 p_LmFree(m2, strat->tailRing);
1789 p_LmFree(gcd, currRing);
1790 k_GetStrongLeadTerms(p, si, currRing, m1, m2, gcd, strat->tailRing);
1791 }
1792 }*/
1793 pSetCoeff0(m1, s);
1794 pSetCoeff0(m2, t);
1795 pSetCoeff0(gcd, d);
1796 p_Test(m1,strat->tailRing);
1797 p_Test(m2,strat->tailRing);
1798 //printf("\n===================================\n");
1799 //pWrite(m1);pWrite(m2);pWrite(gcd);
1800#ifdef KDEBUG
1801 if (TEST_OPT_DEBUG)
1802 {
1803 // Print("t = %d; s = %d; d = %d\n", nInt(t), nInt(s), nInt(d));
1804 PrintS("m1 = ");
1805 p_wrp(m1, strat->tailRing);
1806 PrintS(" ; m2 = ");
1807 p_wrp(m2, strat->tailRing);
1808 PrintS(" ; gcd = ");
1809 wrp(gcd);
1810 PrintS("\n--- create strong gcd poly: ");
1811 Print("\n p: %d", i);
1812 wrp(p);
1813 Print("\n strat->S[%d]: ", i);
1814 wrp(si);
1815 PrintS(" ---> ");
1816 }
1817#endif
1818
1819 pNext(gcd) = p_Add_q(pp_Mult_mm(pNext(p), m1, strat->tailRing), pp_Mult_mm(pNext(si), m2, strat->tailRing), strat->tailRing);
1820
1821#ifdef KDEBUG
1822 if (TEST_OPT_DEBUG)
1823 {
1824 wrp(gcd);
1825 PrintLn();
1826 }
1827#endif
1828
1829 //Check and set the signatures
1830 poly pSigMult = p_Copy(sig,currRing);
1831 poly sSigMult = p_Copy(strat->sig[i],currRing);
1834 p_LmDelete(m1, strat->tailRing);
1835 p_LmDelete(m2, strat->tailRing);
1836 poly pairsig;
1837 if(pLmCmp(pSigMult,sSigMult) == 0)
1838 {
1839 //Same lm, have to add them
1841 //This might be zero
1842 }
1843 else
1844 {
1845 //Set the sig to either pSigMult or sSigMult
1846 if(pLtCmp(pSigMult,sSigMult)==1)
1847 {
1848 pairsig = pSigMult;
1849 pDelete(&sSigMult);
1850 }
1851 else
1852 {
1853 pairsig = sSigMult;
1854 pDelete(&pSigMult);
1855 }
1856 }
1857
1858 LObject h;
1859 h.p = gcd;
1860 h.tailRing = strat->tailRing;
1861 h.sig = pairsig;
1862 int posx;
1863 strat->initEcart(&h);
1864 h.sev = pGetShortExpVector(h.p);
1865 h.i_r1 = -1;h.i_r2 = -1;
1866 if (currRing!=strat->tailRing)
1867 h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing);
1868 if(h.sig == NULL)
1869 {
1870 //sigdrop since we loose the signature
1871 strat->sigdrop = TRUE;
1872 //Try to reduce it as far as we can via redRing
1873 int red_result = redRing(&h,strat);
1874 if(red_result == 0)
1875 {
1876 // Cancel the sigdrop
1877 p_Delete(&h.sig,currRing);h.sig = NULL;
1878 strat->sigdrop = FALSE;
1879 return FALSE;
1880 }
1881 else
1882 {
1883 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
1884 #if 1
1885 strat->enterS(h,0,strat,strat->tl);
1886 #endif
1887 return FALSE;
1888 }
1889 }
1890 if(!nGreaterZero(pGetCoeff(h.sig)))
1891 {
1892 h.sig = pNeg(h.sig);
1893 h.p = pNeg(h.p);
1894 }
1895
1896 if(rField_is_Ring(currRing) && pLtCmp(h.sig,sig) == -1)
1897 {
1898 strat->sigdrop = TRUE;
1899 // Completely reduce it
1900 int red_result = redRing(&h,strat);
1901 if(red_result == 0)
1902 {
1903 // Reduced to 0
1904 strat->sigdrop = FALSE;
1905 p_Delete(&h.sig,currRing);h.sig = NULL;
1906 return FALSE;
1907 }
1908 else
1909 {
1910 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
1911 // 0 - add just the original poly causing the sigdrop, 1 - add also this
1912 #if 1
1913 strat->enterS(h,0,strat, strat->tl+1);
1914 #endif
1915 return FALSE;
1916 }
1917 }
1918 //Check for sigdrop
1919 if(gcd != NULL && pLtCmp(sig,pairsig) > 0 && pLtCmp(strat->sig[i],pairsig) > 0)
1920 {
1921 strat->sigdrop = TRUE;
1922 //Enter this element to S
1923 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
1924 strat->enterS(h,strat->sl+1,strat,strat->tl+1);
1925 }
1926 #if 1
1927 h.p1 = p;h.p2 = strat->S[i];
1928 #endif
1929 if (atR >= 0)
1930 {
1931 h.i_r2 = strat->S_2_R[i];
1932 h.i_r1 = atR;
1933 }
1934 else
1935 {
1936 h.i_r1 = -1;
1937 h.i_r2 = -1;
1938 }
1939 if (strat->Ll==-1)
1940 posx =0;
1941 else
1942 posx = strat->posInLSba(strat->L,strat->Ll,&h,strat);
1943 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx);
1944 return TRUE;
1945}
1946#endif
1947
1948/*2
1949* put the pair (s[i],p) into the set B, ecart=ecart(p)
1950*/
1951
1952void enterOnePairNormal (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1)
1953{
1954 assume(i<=strat->sl);
1955
1956 int l,j,compare;
1957 LObject Lp;
1958 Lp.i_r = -1;
1959
1960#ifdef KDEBUG
1961 Lp.ecart=0; Lp.length=0;
1962#endif
1963 /*- computes the lcm(s[i],p) -*/
1964 Lp.lcm = pInit();
1965
1966#ifndef HAVE_RATGRING
1967 pLcm(p,strat->S[i],Lp.lcm);
1968#elif defined(HAVE_RATGRING)
1969 if (rIsRatGRing(currRing))
1970 pLcmRat(p,strat->S[i],Lp.lcm, currRing->real_var_start); // int rat_shift
1971 else
1972 pLcm(p,strat->S[i],Lp.lcm);
1973#endif
1974 pSetm(Lp.lcm);
1975
1976
1977 if (strat->sugarCrit && ALLOW_PROD_CRIT(strat))
1978 {
1979 if (strat->fromT && (strat->ecartS[i]>ecart))
1980 {
1981 pLmFree(Lp.lcm);
1982 return;
1983 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
1984 }
1985 if((!((strat->ecartS[i]>0)&&(ecart>0)))
1986 && pHasNotCF(p,strat->S[i]))
1987 {
1988 /*
1989 *the product criterion has applied for (s,p),
1990 *i.e. lcm(s,p)=product of the leading terms of s and p.
1991 *Suppose (s,r) is in L and the leading term
1992 *of p divides lcm(s,r)
1993 *(==> the leading term of p divides the leading term of r)
1994 *but the leading term of s does not divide the leading term of r
1995 *(notice that tis condition is automatically satisfied if r is still
1996 *in S), then (s,r) can be cancelled.
1997 *This should be done here because the
1998 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
1999 *
2000 *Moreover, skipping (s,r) holds also for the noncommutative case.
2001 */
2002 strat->cp++;
2003 pLmFree(Lp.lcm);
2004 return;
2005 }
2006 Lp.ecart = si_max(ecart,strat->ecartS[i]);
2007 /*
2008 *the set B collects the pairs of type (S[j],p)
2009 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
2010 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
2011 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
2012 */
2013 {
2014 j = strat->Bl;
2015 loop
2016 {
2017 if (j < 0) break;
2018 compare=pDivComp(strat->B[j].lcm,Lp.lcm);
2019 if ((compare==1)
2020 &&(sugarDivisibleBy(strat->B[j].ecart,Lp.ecart)))
2021 {
2022 strat->c3++;
2023 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
2024 {
2025 pLmFree(Lp.lcm);
2026 return;
2027 }
2028 break;
2029 }
2030 else
2031 if ((compare ==-1)
2032 && sugarDivisibleBy(Lp.ecart,strat->B[j].ecart))
2033 {
2034 deleteInL(strat->B,&strat->Bl,j,strat);
2035 strat->c3++;
2036 }
2037 j--;
2038 }
2039 }
2040 }
2041 else /*sugarcrit*/
2042 {
2043 if (ALLOW_PROD_CRIT(strat))
2044 {
2045 if (strat->fromT && (strat->ecartS[i]>ecart))
2046 {
2047 pLmFree(Lp.lcm);
2048 return;
2049 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
2050 }
2051 // if currRing->nc_type!=quasi (or skew)
2052 // TODO: enable productCrit for super commutative algebras...
2053 if(/*(strat->ak==0) && productCrit(p,strat->S[i])*/
2054 pHasNotCF(p,strat->S[i]))
2055 {
2056 /*
2057 *the product criterion has applied for (s,p),
2058 *i.e. lcm(s,p)=product of the leading terms of s and p.
2059 *Suppose (s,r) is in L and the leading term
2060 *of p divides lcm(s,r)
2061 *(==> the leading term of p divides the leading term of r)
2062 *but the leading term of s does not divide the leading term of r
2063 *(notice that tis condition is automatically satisfied if r is still
2064 *in S), then (s,r) can be canceled.
2065 *This should be done here because the
2066 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
2067 */
2068 strat->cp++;
2069 pLmFree(Lp.lcm);
2070 return;
2071 }
2072 /*
2073 *the set B collects the pairs of type (S[j],p)
2074 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
2075 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
2076 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
2077 */
2078 for(j = strat->Bl;j>=0;j--)
2079 {
2080 compare=pDivComp(strat->B[j].lcm,Lp.lcm);
2081 if (compare==1)
2082 {
2083 strat->c3++;
2084 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
2085 {
2086 pLmFree(Lp.lcm);
2087 return;
2088 }
2089 break;
2090 }
2091 else
2092 if (compare ==-1)
2093 {
2094 deleteInL(strat->B,&strat->Bl,j,strat);
2095 strat->c3++;
2096 }
2097 }
2098 }
2099 }
2100 /*
2101 *the pair (S[i],p) enters B if the spoly != 0
2102 */
2103 /*- compute the short s-polynomial -*/
2104 if (strat->fromT && !TEST_OPT_INTSTRATEGY)
2105 pNorm(p);
2106
2107 if ((strat->S[i]==NULL) || (p==NULL))
2108 return;
2109
2110 if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0))
2111 Lp.p=NULL;
2112 else
2113 {
2114 #ifdef HAVE_PLURAL
2115 if ( rIsPluralRing(currRing) )
2116 {
2117 if(pHasNotCF(p, strat->S[i]))
2118 {
2119 if(ncRingType(currRing) == nc_lie)
2120 {
2121 // generalized prod-crit for lie-type
2122 strat->cp++;
2123 Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i], currRing);
2124 }
2125 else
2126 if( ALLOW_PROD_CRIT(strat) )
2127 {
2128 // product criterion for homogeneous case in SCA
2129 strat->cp++;
2130 Lp.p = NULL;
2131 }
2132 else
2133 {
2134 Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing);
2135 nc_CreateShortSpoly(strat->S[i], p, currRing);
2136 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2137 pNext(Lp.p) = strat->tail; // !!!
2138 }
2139 }
2140 else
2141 {
2142 Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing);
2143 nc_CreateShortSpoly(strat->S[i], p, currRing);
2144
2145 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2146 pNext(Lp.p) = strat->tail; // !!!
2147 }
2148 }
2149 else
2150 #endif
2151 {
2153 Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing);
2154 }
2155 }
2156 if (Lp.p == NULL)
2157 {
2158 /*- the case that the s-poly is 0 -*/
2159 if (strat->pairtest==NULL) initPairtest(strat);
2160 strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/
2161 strat->pairtest[strat->sl+1] = TRUE;
2162 /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/
2163 /*
2164 *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is
2165 *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not
2166 *divide lcm(r,p)). In the last case (s,r) can be canceled if the leading
2167 *term of p divides the lcm(s,r)
2168 *(this canceling should be done here because
2169 *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit)
2170 *the first case is handled in chainCrit
2171 */
2172 if (Lp.lcm!=NULL) pLmFree(Lp.lcm);
2173 }
2174 else
2175 {
2176 /*- the pair (S[i],p) enters B -*/
2177 Lp.p1 = strat->S[i];
2178 Lp.p2 = p;
2179
2180 if (
2182// || (rIsPluralRing(currRing) && (ncRingType(currRing) != nc_lie))
2183 )
2184 {
2185 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2186 pNext(Lp.p) = strat->tail; // !!!
2187 }
2188
2189 if (atR >= 0)
2190 {
2191 Lp.i_r1 = strat->S_2_R[i];
2192 Lp.i_r2 = atR;
2193 }
2194 else
2195 {
2196 Lp.i_r1 = -1;
2197 Lp.i_r2 = -1;
2198 }
2199 strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart);
2200
2202 {
2205 && (Lp.p->coef!=NULL))
2206 nDelete(&(Lp.p->coef));
2207 }
2208
2209 l = strat->posInL(strat->B,strat->Bl,&Lp,strat);
2210 enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l);
2211 }
2212}
2213
2214/// p_HasNotCF for the IDLIFT case and syzComp==1: ignore component
2215static inline BOOLEAN p_HasNotCF_Lift(poly p1, poly p2, const ring r)
2216{
2217 int i = rVar(r);
2218 loop
2219 {
2220 if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
2221 return FALSE;
2222 i--;
2223 if (i == 0)
2224 return TRUE;
2225 }
2226}
2227
2228/*2
2229* put the pair (s[i],p) into the set B, ecart=ecart(p) for idLift(I,T)
2230* (in the special case: idLift for ideals, i.e. strat->syzComp==1)
2231* (prod.crit applies)
2232*/
2233
2234static void enterOnePairLift (int i,poly p,int ecart, int isFromQ,kStrategy strat, int atR = -1)
2235{
2236 assume(ALLOW_PROD_CRIT(strat));
2238 assume(i<=strat->sl);
2239 assume(strat->syzComp==1);
2240
2241 if ((strat->S[i]==NULL) || (p==NULL))
2242 return;
2243
2244 int l,j,compare;
2245 LObject Lp;
2246 Lp.i_r = -1;
2247
2248#ifdef KDEBUG
2249 Lp.ecart=0; Lp.length=0;
2250#endif
2251 /*- computes the lcm(s[i],p) -*/
2252 Lp.lcm = p_Lcm(p,strat->S[i],currRing);
2253
2254 if (strat->sugarCrit)
2255 {
2256 if((!((strat->ecartS[i]>0)&&(ecart>0)))
2257 && p_HasNotCF_Lift(p,strat->S[i],currRing))
2258 {
2259 /*
2260 *the product criterion has applied for (s,p),
2261 *i.e. lcm(s,p)=product of the leading terms of s and p.
2262 *Suppose (s,r) is in L and the leading term
2263 *of p divides lcm(s,r)
2264 *(==> the leading term of p divides the leading term of r)
2265 *but the leading term of s does not divide the leading term of r
2266 *(notice that tis condition is automatically satisfied if r is still
2267 *in S), then (s,r) can be cancelled.
2268 *This should be done here because the
2269 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
2270 *
2271 *Moreover, skipping (s,r) holds also for the noncommutative case.
2272 */
2273 strat->cp++;
2274 pLmFree(Lp.lcm);
2275 return;
2276 }
2277 else
2278 Lp.ecart = si_max(ecart,strat->ecartS[i]);
2279 if (strat->fromT && (strat->ecartS[i]>ecart))
2280 {
2281 pLmFree(Lp.lcm);
2282 return;
2283 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
2284 }
2285 /*
2286 *the set B collects the pairs of type (S[j],p)
2287 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
2288 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
2289 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
2290 */
2291 {
2292 j = strat->Bl;
2293 loop
2294 {
2295 if (j < 0) break;
2296 compare=pDivComp(strat->B[j].lcm,Lp.lcm);
2297 if ((compare==1)
2298 &&(sugarDivisibleBy(strat->B[j].ecart,Lp.ecart)))
2299 {
2300 strat->c3++;
2301 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
2302 {
2303 pLmFree(Lp.lcm);
2304 return;
2305 }
2306 break;
2307 }
2308 else
2309 if ((compare ==-1)
2310 && sugarDivisibleBy(Lp.ecart,strat->B[j].ecart))
2311 {
2312 deleteInL(strat->B,&strat->Bl,j,strat);
2313 strat->c3++;
2314 }
2315 j--;
2316 }
2317 }
2318 }
2319 else /*sugarcrit*/
2320 {
2321 if(/*(strat->ak==0) && productCrit(p,strat->S[i])*/
2322 p_HasNotCF_Lift(p,strat->S[i],currRing))
2323 {
2324 /*
2325 *the product criterion has applied for (s,p),
2326 *i.e. lcm(s,p)=product of the leading terms of s and p.
2327 *Suppose (s,r) is in L and the leading term
2328 *of p divides lcm(s,r)
2329 *(==> the leading term of p divides the leading term of r)
2330 *but the leading term of s does not divide the leading term of r
2331 *(notice that tis condition is automatically satisfied if r is still
2332 *in S), then (s,r) can be canceled.
2333 *This should be done here because the
2334 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
2335 */
2336 strat->cp++;
2337 pLmFree(Lp.lcm);
2338 return;
2339 }
2340 if (strat->fromT && (strat->ecartS[i]>ecart))
2341 {
2342 pLmFree(Lp.lcm);
2343 return;
2344 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
2345 }
2346 /*
2347 *the set B collects the pairs of type (S[j],p)
2348 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
2349 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
2350 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
2351 */
2352 for(j = strat->Bl;j>=0;j--)
2353 {
2354 compare=pDivComp(strat->B[j].lcm,Lp.lcm);
2355 if (compare==1)
2356 {
2357 strat->c3++;
2358 if ((strat->fromQ==NULL) || (isFromQ==0) || (strat->fromQ[i]==0))
2359 {
2360 pLmFree(Lp.lcm);
2361 return;
2362 }
2363 break;
2364 }
2365 else
2366 if (compare ==-1)
2367 {
2368 deleteInL(strat->B,&strat->Bl,j,strat);
2369 strat->c3++;
2370 }
2371 }
2372 }
2373 /*
2374 *the pair (S[i],p) enters B if the spoly != 0
2375 */
2376 /*- compute the short s-polynomial -*/
2377 if (strat->fromT && !TEST_OPT_INTSTRATEGY)
2378 pNorm(p);
2379
2380 if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0))
2381 Lp.p=NULL;
2382 else
2383 {
2385 Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing);
2386 }
2387 if (Lp.p == NULL)
2388 {
2389 /*- the case that the s-poly is 0 -*/
2390 if (strat->pairtest==NULL) initPairtest(strat);
2391 strat->pairtest[i] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/
2392 strat->pairtest[strat->sl+1] = TRUE;
2393 /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/
2394 /*
2395 *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is
2396 *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not
2397 *divide lcm(r,p)). In the last case (s,r) can be canceled if the leading
2398 *term of p divides the lcm(s,r)
2399 *(this canceling should be done here because
2400 *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit)
2401 *the first case is handled in chainCrit
2402 */
2403 if (Lp.lcm!=NULL) pLmFree(Lp.lcm);
2404 }
2405 else
2406 {
2407 /*- the pair (S[i],p) enters B -*/
2408 Lp.p1 = strat->S[i];
2409 Lp.p2 = p;
2410
2411 pNext(Lp.p) = strat->tail; // !!!
2412
2413 if (atR >= 0)
2414 {
2415 Lp.i_r1 = strat->S_2_R[i];
2416 Lp.i_r2 = atR;
2417 }
2418 else
2419 {
2420 Lp.i_r1 = -1;
2421 Lp.i_r2 = -1;
2422 }
2423 strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart);
2424
2426 {
2429 && (Lp.p->coef!=NULL))
2430 nDelete(&(Lp.p->coef));
2431 }
2432
2433 l = strat->posInL(strat->B,strat->Bl,&Lp,strat);
2434 enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l);
2435 }
2436}
2437
2438/*2
2439* put the pair (s[i],p) into the set B, ecart=ecart(p)
2440* NOTE: here we need to add the signature-based criteria
2441*/
2442
2443#ifdef DEBUGF5
2444static void enterOnePairSig (int i, poly p, poly pSig, int from, int ecart, int isFromQ, kStrategy strat, int atR = -1)
2445#else
2446static void enterOnePairSig (int i, poly p, poly pSig, int, int ecart, int isFromQ, kStrategy strat, int atR = -1)
2447#endif
2448{
2449 assume(i<=strat->sl);
2450
2451 int l;
2452 poly m1 = NULL,m2 = NULL; // we need the multipliers for the s-polynomial to compute
2453 // the corresponding signatures for criteria checks
2454 LObject Lp;
2455 poly pSigMult = p_Copy(pSig,currRing);
2456 poly sSigMult = p_Copy(strat->sig[i],currRing);
2457 unsigned long pSigMultNegSev,sSigMultNegSev;
2458 Lp.i_r = -1;
2459
2460#ifdef KDEBUG
2461 Lp.ecart=0; Lp.length=0;
2462#endif
2463 /*- computes the lcm(s[i],p) -*/
2464 Lp.lcm = pInit();
2465 k_GetLeadTerms(p,strat->S[i],currRing,m1,m2,currRing);
2466#ifndef HAVE_RATGRING
2467 pLcm(p,strat->S[i],Lp.lcm);
2468#elif defined(HAVE_RATGRING)
2469 if (rIsRatGRing(currRing))
2470 pLcmRat(p,strat->S[i],Lp.lcm, currRing->real_var_start); // int rat_shift
2471 else
2472 pLcm(p,strat->S[i],Lp.lcm);
2473#endif
2474 pSetm(Lp.lcm);
2475
2476 // set coeffs of multipliers m1 and m2
2477 pSetCoeff0(m1, nInit(1));
2478 pSetCoeff0(m2, nInit(1));
2479//#if 1
2480#ifdef DEBUGF5
2481 PrintS("P1 ");
2482 pWrite(pHead(p));
2483 PrintS("P2 ");
2484 pWrite(pHead(strat->S[i]));
2485 PrintS("M1 ");
2486 pWrite(m1);
2487 PrintS("M2 ");
2488 pWrite(m2);
2489#endif
2490 // get multiplied signatures for testing
2491 pSigMult = currRing->p_Procs->pp_Mult_mm(pSigMult,m1,currRing);
2492 pSigMultNegSev = ~p_GetShortExpVector(pSigMult,currRing);
2493 sSigMult = currRing->p_Procs->pp_Mult_mm(sSigMult,m2,currRing);
2494 sSigMultNegSev = ~p_GetShortExpVector(sSigMult,currRing);
2495
2496//#if 1
2497#ifdef DEBUGF5
2498 PrintS("----------------\n");
2501 PrintS("----------------\n");
2502 Lp.checked = 0;
2503#endif
2505//#if 1
2506#if DEBUGF5
2507 Print("IN PAIR GENERATION - COMPARING SIGS: %d\n",sigCmp);
2510#endif
2511 if(sigCmp==0)
2512 {
2513 // printf("!!!! EQUAL SIGS !!!!\n");
2514 // pSig = sSig, delete element due to Rewritten Criterion
2515 pDelete(&pSigMult);
2516 pDelete(&sSigMult);
2518 pLmDelete(Lp.lcm);
2519 else
2520 pLmFree(Lp.lcm);
2521 pDelete (&m1);
2522 pDelete (&m2);
2523 return;
2524 }
2525 // testing by syzCrit = F5 Criterion
2526 // testing by rewCrit1 = Rewritten Criterion
2527 // NOTE: Arri's Rewritten Criterion is tested below, we need Lp.p for it!
2528 if ( strat->syzCrit(pSigMult,pSigMultNegSev,strat) ||
2529 strat->syzCrit(sSigMult,sSigMultNegSev,strat)
2530 || strat->rewCrit1(sSigMult,sSigMultNegSev,Lp.lcm,strat,i+1)
2531 )
2532 {
2533 pDelete(&pSigMult);
2534 pDelete(&sSigMult);
2536 pLmDelete(Lp.lcm);
2537 else
2538 pLmFree(Lp.lcm);
2539 pDelete (&m1);
2540 pDelete (&m2);
2541 return;
2542 }
2543 /*
2544 *the pair (S[i],p) enters B if the spoly != 0
2545 */
2546 /*- compute the short s-polynomial -*/
2547 if (strat->fromT && !TEST_OPT_INTSTRATEGY)
2548 pNorm(p);
2549
2550 if ((strat->S[i]==NULL) || (p==NULL))
2551 return;
2552
2553 if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0))
2554 Lp.p=NULL;
2555 else
2556 {
2557 #ifdef HAVE_PLURAL
2558 if ( rIsPluralRing(currRing) )
2559 {
2560 if(pHasNotCF(p, strat->S[i]))
2561 {
2562 if(ncRingType(currRing) == nc_lie)
2563 {
2564 // generalized prod-crit for lie-type
2565 strat->cp++;
2566 Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i], currRing);
2567 }
2568 else
2569 if( ALLOW_PROD_CRIT(strat) )
2570 {
2571 // product criterion for homogeneous case in SCA
2572 strat->cp++;
2573 Lp.p = NULL;
2574 }
2575 else
2576 {
2577 Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing);
2578 nc_CreateShortSpoly(strat->S[i], p, currRing);
2579
2580 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2581 pNext(Lp.p) = strat->tail; // !!!
2582 }
2583 }
2584 else
2585 {
2586 Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing);
2587 nc_CreateShortSpoly(strat->S[i], p, currRing);
2588
2589 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2590 pNext(Lp.p) = strat->tail; // !!!
2591 }
2592 }
2593 else
2594 #endif
2595 {
2597 Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing);
2598 }
2599 }
2600 // store from which element this pair comes from for further tests
2601 //Lp.from = strat->sl+1;
2602 if(sigCmp==currRing->OrdSgn)
2603 {
2604 // pSig > sSig
2605 pDelete (&sSigMult);
2606 Lp.sig = pSigMult;
2607 Lp.sevSig = ~pSigMultNegSev;
2608 }
2609 else
2610 {
2611 // pSig < sSig
2612 pDelete (&pSigMult);
2613 Lp.sig = sSigMult;
2614 Lp.sevSig = ~sSigMultNegSev;
2615 }
2616 if (Lp.p == NULL)
2617 {
2618 if (Lp.lcm!=NULL) pLmFree(Lp.lcm);
2619 int pos = posInSyz(strat, Lp.sig);
2620 enterSyz(Lp, strat, pos);
2621 }
2622 else
2623 {
2624 // testing by rewCrit3 = Arris Rewritten Criterion (for F5 nothing happens!)
2625 if (strat->rewCrit3(Lp.sig,~Lp.sevSig,Lp.p,strat,strat->sl+1))
2626 {
2627 pLmFree(Lp.lcm);
2628 pDelete(&Lp.sig);
2629 pDelete (&m1);
2630 pDelete (&m2);
2631 return;
2632 }
2633 // in any case Lp is checked up to the next strat->P which is added
2634 // to S right after this critical pair creation.
2635 // NOTE: this even holds if the 2nd generator gives the bigger signature
2636 // moreover, this improves rewCriterion,
2637 // i.e. strat->checked > strat->from if and only if the 2nd generator
2638 // gives the bigger signature.
2639 Lp.checked = strat->sl+1;
2640 // at this point it is clear that the pair will be added to L, since it has
2641 // passed all tests up to now
2642
2643 // adds buchberger's first criterion
2644 if (pLmCmp(m2,pHead(p)) == 0)
2645 {
2646 Lp.prod_crit = TRUE; // Product Criterion
2647#if 0
2648 int pos = posInSyz(strat, Lp.sig);
2649 enterSyz(Lp, strat, pos);
2650 pDelete (&m1);
2651 pDelete (&m2);
2652 return;
2653#endif
2654 }
2655 pDelete (&m1);
2656 pDelete (&m2);
2657#if DEBUGF5
2658 PrintS("SIGNATURE OF PAIR: ");
2659 pWrite(Lp.sig);
2660#endif
2661 /*- the pair (S[i],p) enters B -*/
2662 Lp.p1 = strat->S[i];
2663 Lp.p2 = p;
2664
2665 if (
2667// || (rIsPluralRing(currRing) && (ncRingType(currRing) != nc_lie))
2668 )
2669 {
2670 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2671 pNext(Lp.p) = strat->tail; // !!!
2672 }
2673
2674 if (atR >= 0)
2675 {
2676 Lp.i_r1 = strat->S_2_R[i];
2677 Lp.i_r2 = atR;
2678 }
2679 else
2680 {
2681 Lp.i_r1 = -1;
2682 Lp.i_r2 = -1;
2683 }
2684 strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart);
2685
2687 {
2690 && (Lp.p->coef!=NULL))
2691 nDelete(&(Lp.p->coef));
2692 }
2693
2694 l = strat->posInLSba(strat->B,strat->Bl,&Lp,strat);
2695 enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l);
2696 }
2697}
2698
2699
2700#ifdef DEBUGF5
2701static void enterOnePairSigRing (int i, poly p, poly pSig, int from, int ecart, int isFromQ, kStrategy strat, int atR = -1)
2702#else
2703static void enterOnePairSigRing (int i, poly p, poly pSig, int, int ecart, int isFromQ, kStrategy strat, int atR = -1)
2704#endif
2705{
2706 #if ALL_VS_JUST
2707 //Over rings, if we construct the strong pair, do not add the spair
2709 {
2710 number s,t,d;
2711 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(strat->S[i]), &s, &t, currRing->cf);
2712
2713 if (!nIsZero(s) && !nIsZero(t)) // evtl. durch divBy tests ersetzen
2714 {
2715 nDelete(&d);
2716 nDelete(&s);
2717 nDelete(&t);
2718 return;
2719 }
2720 nDelete(&d);
2721 nDelete(&s);
2722 nDelete(&t);
2723 }
2724 #endif
2725 assume(i<=strat->sl);
2726 int l;
2727 poly m1 = NULL,m2 = NULL; // we need the multipliers for the s-polynomial to compute
2728 // the corresponding signatures for criteria checks
2729 LObject Lp;
2730 poly pSigMult = p_Copy(pSig,currRing);
2731 poly sSigMult = p_Copy(strat->sig[i],currRing);
2732 unsigned long pSigMultNegSev,sSigMultNegSev;
2733 Lp.i_r = -1;
2734
2735#ifdef KDEBUG
2736 Lp.ecart=0; Lp.length=0;
2737#endif
2738 /*- computes the lcm(s[i],p) -*/
2739 Lp.lcm = pInit();
2740 k_GetLeadTerms(p,strat->S[i],currRing,m1,m2,currRing);
2741#ifndef HAVE_RATGRING
2742 pLcm(p,strat->S[i],Lp.lcm);
2743#elif defined(HAVE_RATGRING)
2744 if (rIsRatGRing(currRing))
2745 pLcmRat(p,strat->S[i],Lp.lcm, currRing->real_var_start); // int rat_shift
2746 else
2747 pLcm(p,strat->S[i],Lp.lcm);
2748#endif
2749 pSetm(Lp.lcm);
2750
2751 // set coeffs of multipliers m1 and m2
2753 {
2754 number s = nCopy(pGetCoeff(strat->S[i]));
2755 number t = nCopy(pGetCoeff(p));
2756 pSetCoeff0(Lp.lcm, n_Lcm(s, t, currRing->cf));
2757 ksCheckCoeff(&s, &t, currRing->cf);
2758 pSetCoeff0(m1,s);
2759 pSetCoeff0(m2,t);
2760 }
2761 else
2762 {
2763 pSetCoeff0(m1, nInit(1));
2764 pSetCoeff0(m2, nInit(1));
2765 }
2766#ifdef DEBUGF5
2767 Print("P1 ");
2768 pWrite(pHead(p));
2769 Print("P2 ");
2770 pWrite(pHead(strat->S[i]));
2771 Print("M1 ");
2772 pWrite(m1);
2773 Print("M2 ");
2774 pWrite(m2);
2775#endif
2776
2777 // get multiplied signatures for testing
2779 if(pSigMult != NULL)
2780 pSigMultNegSev = ~p_GetShortExpVector(pSigMult,currRing);
2782 if(sSigMult != NULL)
2783 sSigMultNegSev = ~p_GetShortExpVector(sSigMult,currRing);
2784//#if 1
2785#ifdef DEBUGF5
2786 Print("----------------\n");
2789 Print("----------------\n");
2790 Lp.checked = 0;
2791#endif
2792 int sigCmp;
2793 if(pSigMult != NULL && sSigMult != NULL)
2794 {
2797 else
2799 }
2800 else
2801 {
2802 if(pSigMult == NULL)
2803 {
2804 if(sSigMult == NULL)
2805 sigCmp = 0;
2806 else
2807 sigCmp = -1;
2808 }
2809 else
2810 sigCmp = 1;
2811 }
2812//#if 1
2813#if DEBUGF5
2814 Print("IN PAIR GENERATION - COMPARING SIGS: %d\n",sigCmp);
2817#endif
2818 //In the ring case we already build the sig
2820 {
2821 if(sigCmp == 0)
2822 {
2823 //sigdrop since we loose the signature
2824 strat->sigdrop = TRUE;
2825 //Try to reduce it as far as we can via redRing
2827 {
2828 poly p1 = p_Copy(p,currRing);
2829 poly p2 = p_Copy(strat->S[i],currRing);
2830 p1 = p_Mult_mm(p1,m1,currRing);
2831 p2 = p_Mult_mm(p2,m2,currRing);
2832 Lp.p = p_Sub(p1,p2,currRing);
2833 if(Lp.p != NULL)
2835 }
2836 int red_result = redRing(&Lp,strat);
2837 if(red_result == 0)
2838 {
2839 // Cancel the sigdrop
2840 p_Delete(&Lp.sig,currRing);Lp.sig = NULL;
2841 strat->sigdrop = FALSE;
2842 return;
2843 }
2844 else
2845 {
2846 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
2847 #if 1
2848 strat->enterS(Lp,0,strat,strat->tl);
2849 #endif
2850 return;
2851 }
2852 }
2854 {
2855 //Same lm, have to subtract
2857 }
2858 else
2859 {
2860 if(sigCmp == 1)
2861 {
2862 Lp.sig = pCopy(pSigMult);
2863 }
2864 if(sigCmp == -1)
2865 {
2866 Lp.sig = pNeg(pCopy(sSigMult));
2867 }
2868 }
2869 Lp.sevSig = p_GetShortExpVector(Lp.sig,currRing);
2870 }
2871
2872 #if 0
2873 if(sigCmp==0)
2874 {
2875 // printf("!!!! EQUAL SIGS !!!!\n");
2876 // pSig = sSig, delete element due to Rewritten Criterion
2877 pDelete(&pSigMult);
2878 pDelete(&sSigMult);
2880 pLmDelete(Lp.lcm);
2881 else
2882 pLmFree(Lp.lcm);
2883 pDelete (&m1);
2884 pDelete (&m2);
2885 return;
2886 }
2887 #endif
2888 // testing by syzCrit = F5 Criterion
2889 // testing by rewCrit1 = Rewritten Criterion
2890 // NOTE: Arri's Rewritten Criterion is tested below, we need Lp.p for it!
2891 if ( strat->syzCrit(pSigMult,pSigMultNegSev,strat) ||
2892 strat->syzCrit(sSigMult,sSigMultNegSev,strat)
2893 // With this rewCrit activated i get a wrong deletion in sba_int_56.tst
2894 //|| strat->rewCrit1(sSigMult,sSigMultNegSev,Lp.lcm,strat,i+1)
2895 )
2896 {
2897 pDelete(&pSigMult);
2898 pDelete(&sSigMult);
2900 pLmDelete(Lp.lcm);
2901 else
2902 pLmFree(Lp.lcm);
2903 pDelete (&m1);
2904 pDelete (&m2);
2905 return;
2906 }
2907 /*
2908 *the pair (S[i],p) enters B if the spoly != 0
2909 */
2910 /*- compute the short s-polynomial -*/
2911 if (strat->fromT && !TEST_OPT_INTSTRATEGY)
2912 pNorm(p);
2913
2914 if ((strat->S[i]==NULL) || (p==NULL))
2915 return;
2916
2917 if ((strat->fromQ!=NULL) && (isFromQ!=0) && (strat->fromQ[i]!=0))
2918 Lp.p=NULL;
2919 else
2920 {
2921 //Build p
2923 {
2924 poly p1 = p_Copy(p,currRing);
2925 poly p2 = p_Copy(strat->S[i],currRing);
2926 p1 = p_Mult_mm(p1,m1,currRing);
2927 p2 = p_Mult_mm(p2,m2,currRing);
2928 Lp.p = p_Sub(p1,p2,currRing);
2929 if(Lp.p != NULL)
2931 }
2932 else
2933 {
2934 #ifdef HAVE_PLURAL
2935 if ( rIsPluralRing(currRing) )
2936 {
2937 if(ncRingType(currRing) == nc_lie)
2938 {
2939 // generalized prod-crit for lie-type
2940 strat->cp++;
2941 Lp.p = nc_p_Bracket_qq(pCopy(p),strat->S[i], currRing);
2942 }
2943 else
2944 if( ALLOW_PROD_CRIT(strat) )
2945 {
2946 // product criterion for homogeneous case in SCA
2947 strat->cp++;
2948 Lp.p = NULL;
2949 }
2950 else
2951 {
2952 Lp.p = // nc_CreateSpoly(strat->S[i],p,currRing);
2953 nc_CreateShortSpoly(strat->S[i], p, currRing);
2954
2955 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
2956 pNext(Lp.p) = strat->tail; // !!!
2957 }
2958 }
2959 else
2960 #endif
2961 {
2963 Lp.p = ksCreateShortSpoly(strat->S[i], p, strat->tailRing);
2964 }
2965 }
2966 }
2967 // store from which element this pair comes from for further tests
2968 //Lp.from = strat->sl+1;
2970 {
2971 //Put the sig to be > 0
2972 if(!nGreaterZero(pGetCoeff(Lp.sig)))
2973 {
2974 Lp.sig = pNeg(Lp.sig);
2975 Lp.p = pNeg(Lp.p);
2976 }
2977 }
2978 else
2979 {
2980 if(sigCmp==currRing->OrdSgn)
2981 {
2982 // pSig > sSig
2983 pDelete (&sSigMult);
2984 Lp.sig = pSigMult;
2985 Lp.sevSig = ~pSigMultNegSev;
2986 }
2987 else
2988 {
2989 // pSig < sSig
2990 pDelete (&pSigMult);
2991 Lp.sig = sSigMult;
2992 Lp.sevSig = ~sSigMultNegSev;
2993 }
2994 }
2995 if (Lp.p == NULL)
2996 {
2997 if (Lp.lcm!=NULL) pLmFree(Lp.lcm);
2998 int pos = posInSyz(strat, Lp.sig);
2999 enterSyz(Lp, strat, pos);
3000 }
3001 else
3002 {
3003 // testing by rewCrit3 = Arris Rewritten Criterion (for F5 nothing happens!)
3004 if (strat->rewCrit3(Lp.sig,~Lp.sevSig,Lp.p,strat,strat->sl+1))
3005 {
3006 pLmFree(Lp.lcm);
3007 pDelete(&Lp.sig);
3008 pDelete (&m1);
3009 pDelete (&m2);
3010 return;
3011 }
3012 // in any case Lp is checked up to the next strat->P which is added
3013 // to S right after this critical pair creation.
3014 // NOTE: this even holds if the 2nd generator gives the bigger signature
3015 // moreover, this improves rewCriterion,
3016 // i.e. strat->checked > strat->from if and only if the 2nd generator
3017 // gives the bigger signature.
3018 Lp.checked = strat->sl+1;
3019 // at this point it is clear that the pair will be added to L, since it has
3020 // passed all tests up to now
3021
3022 // adds buchberger's first criterion
3023 if (pLmCmp(m2,pHead(p)) == 0)
3024 {
3025 Lp.prod_crit = TRUE; // Product Criterion
3026#if 0
3027 int pos = posInSyz(strat, Lp.sig);
3028 enterSyz(Lp, strat, pos);
3029 pDelete (&m1);
3030 pDelete (&m2);
3031 return;
3032#endif
3033 }
3034 pDelete (&m1);
3035 pDelete (&m2);
3036#if DEBUGF5
3037 PrintS("SIGNATURE OF PAIR: ");
3038 pWrite(Lp.sig);
3039#endif
3040 /*- the pair (S[i],p) enters B -*/
3041 Lp.p1 = strat->S[i];
3042 Lp.p2 = p;
3043
3044 if (
3046// || (rIsPluralRing(currRing) && (ncRingType(currRing) != nc_lie))
3048 )
3049 {
3050 assume(pNext(Lp.p)==NULL); // TODO: this may be violated whenever ext.prod.crit. for Lie alg. is used
3051 pNext(Lp.p) = strat->tail; // !!!
3052 }
3053
3054 if (atR >= 0)
3055 {
3056 Lp.i_r1 = strat->S_2_R[i];
3057 Lp.i_r2 = atR;
3058 }
3059 else
3060 {
3061 Lp.i_r1 = -1;
3062 Lp.i_r2 = -1;
3063 }
3064 strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart);
3065
3067 {
3070 && (Lp.p->coef!=NULL))
3071 nDelete(&(Lp.p->coef));
3072 }
3073 // Check for sigdrop
3074 if(rField_is_Ring(currRing) && pLtCmp(Lp.sig,pSig) == -1)
3075 {
3076 strat->sigdrop = TRUE;
3077 // Completely reduce it
3078 int red_result = redRing(&Lp,strat);
3079 if(red_result == 0)
3080 {
3081 // Reduced to 0
3082 strat->sigdrop = FALSE;
3083 p_Delete(&Lp.sig,currRing);Lp.sig = NULL;
3084 return;
3085 }
3086 else
3087 {
3088 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
3089 // 0 - add just the original poly causing the sigdrop, 1 - add also this
3090 #if 1
3091 strat->enterS(Lp,0,strat, strat->tl+1);
3092 #endif
3093 return;
3094 }
3095 }
3096 l = strat->posInLSba(strat->L,strat->Ll,&Lp,strat);
3097 enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,l);
3098 }
3099}
3100
3101/*2
3102* put the pair (s[i],p) into the set L, ecart=ecart(p)
3103* in the case that s forms a SB of (s)
3104*/
3105void enterOnePairSpecial (int i,poly p,int ecart,kStrategy strat, int atR = -1)
3106{
3107 //PrintS("try ");wrp(strat->S[i]);PrintS(" and ");wrp(p);PrintLn();
3108 if(pHasNotCF(p,strat->S[i]))
3109 {
3110 //PrintS("prod-crit\n");
3111 if(ALLOW_PROD_CRIT(strat))
3112 {
3113 //PrintS("prod-crit\n");
3114 strat->cp++;
3115 return;
3116 }
3117 }
3118
3119 int l;
3120 LObject Lp;
3121 Lp.i_r = -1;
3122
3123 Lp.lcm = p_Lcm(p,strat->S[i],currRing);
3124 /*- compute the short s-polynomial -*/
3125
3126 #ifdef HAVE_PLURAL
3128 {
3129 Lp.p = nc_CreateShortSpoly(strat->S[i],p, currRing); // ??? strat->tailRing?
3130 }
3131 else
3132 #endif
3133 Lp.p = ksCreateShortSpoly(strat->S[i],p,strat->tailRing);
3134
3135 if (Lp.p == NULL)
3136 {
3137 //PrintS("short spoly==NULL\n");
3138 pLmFree(Lp.lcm);
3139 }
3140 else
3141 {
3142 /*- the pair (S[i],p) enters L -*/
3143 Lp.p1 = strat->S[i];
3144 Lp.p2 = p;
3145 if (atR >= 0)
3146 {
3147 Lp.i_r1 = strat->S_2_R[i];
3148 Lp.i_r2 = atR;
3149 }
3150 else
3151 {
3152 Lp.i_r1 = -1;
3153 Lp.i_r2 = -1;
3154 }
3155 assume(pNext(Lp.p) == NULL);
3156 pNext(Lp.p) = strat->tail;
3157 strat->initEcartPair(&Lp,strat->S[i],p,strat->ecartS[i],ecart);
3159 {
3162 && (Lp.p->coef!=NULL))
3163 nDelete(&(Lp.p->coef));
3164 }
3165 l = strat->posInL(strat->L,strat->Ll,&Lp,strat);
3166 //Print("-> L[%d]\n",l);
3167 enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,l);
3168 }
3169}
3170
3171/*2
3172* merge set B into L
3173*/
3175{
3176 int j=strat->Ll+strat->Bl+1;
3177 if (j>strat->Lmax)
3178 {
3179 j=((j+setmaxLinc-1)/setmaxLinc)*setmaxLinc-strat->Lmax;
3180 enlargeL(&(strat->L),&(strat->Lmax),j);
3181 }
3182 j = strat->Ll;
3183 int i;
3184 for (i=strat->Bl; i>=0; i--)
3185 {
3186 j = strat->posInL(strat->L,j,&(strat->B[i]),strat);
3187 enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j);
3188 }
3189 strat->Bl = -1;
3190}
3191
3192/*2
3193* merge set B into L
3194*/
3196{
3197 int j=strat->Ll+strat->Bl+1;
3198 if (j>strat->Lmax)
3199 {
3200 j=((j+setmaxLinc-1)/setmaxLinc)*setmaxLinc-strat->Lmax;
3201 enlargeL(&(strat->L),&(strat->Lmax),j);
3202 }
3203 j = strat->Ll;
3204 int i;
3205 for (i=strat->Bl; i>=0; i--)
3206 {
3207 j = strat->posInLSba(strat->L,j,&(strat->B[i]),strat);
3208 enterL(&strat->L,&strat->Ll,&strat->Lmax,strat->B[i],j);
3209 }
3210 strat->Bl = -1;
3211}
3212
3213/*2
3214*the pairset B of pairs of type (s[i],p) is complete now. It will be updated
3215*using the chain-criterion in B and L and enters B to L
3216*/
3217void chainCritNormal (poly p,int ecart,kStrategy strat)
3218{
3219 int i,j,l;
3220
3221 /*
3222 *pairtest[i] is TRUE if spoly(S[i],p) == 0.
3223 *In this case all elements in B such
3224 *that their lcm is divisible by the leading term of S[i] can be canceled
3225 */
3226 if (strat->pairtest!=NULL)
3227 {
3228#ifdef HAVE_SHIFTBBA
3229 // only difference is pLPDivisibleBy instead of pDivisibleBy
3230 if (rIsLPRing(currRing))
3231 {
3232 for (j=0; j<=strat->sl; j++)
3233 {
3234 if (strat->pairtest[j])
3235 {
3236 for (i=strat->Bl; i>=0; i--)
3237 {
3238 if (pLPDivisibleBy(strat->S[j],strat->B[i].lcm))
3239 {
3240 deleteInL(strat->B,&strat->Bl,i,strat);
3241 strat->c3++;
3242 }
3243 }
3244 }
3245 }
3246 }
3247 else
3248#endif
3249 {
3250 /*- i.e. there is an i with pairtest[i]==TRUE -*/
3251 for (j=0; j<=strat->sl; j++)
3252 {
3253 if (strat->pairtest[j])
3254 {
3255 for (i=strat->Bl; i>=0; i--)
3256 {
3257 if (pDivisibleBy(strat->S[j],strat->B[i].lcm))
3258 {
3259 deleteInL(strat->B,&strat->Bl,i,strat);
3260 strat->c3++;
3261 }
3262 }
3263 }
3264 }
3265 }
3266 omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN));
3267 strat->pairtest=NULL;
3268 }
3269 if (strat->Gebauer || strat->fromT)
3270 {
3271 if (strat->sugarCrit)
3272 {
3273 /*
3274 *suppose L[j] == (s,r) and p/lcm(s,r)
3275 *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p)
3276 *and in case the sugar is o.k. then L[j] can be canceled
3277 */
3278 for (j=strat->Ll; j>=0; j--)
3279 {
3280 if (sugarDivisibleBy(ecart,strat->L[j].ecart)
3281 && ((pNext(strat->L[j].p) == strat->tail) || (rHasGlobalOrdering(currRing)))
3282 && pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3283 {
3284 if (strat->L[j].p == strat->tail)
3285 {
3286 deleteInL(strat->L,&strat->Ll,j,strat);
3287 strat->c3++;
3288 }
3289 }
3290 }
3291 /*
3292 *this is GEBAUER-MOELLER:
3293 *in B all elements with the same lcm except the "best"
3294 *(i.e. the last one in B with this property) will be canceled
3295 */
3296 j = strat->Bl;
3297 loop /*cannot be changed into a for !!! */
3298 {
3299 if (j <= 0) break;
3300 i = j-1;
3301 loop
3302 {
3303 if (i < 0) break;
3304 if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm))
3305 {
3306 strat->c3++;
3307 if (sugarDivisibleBy(strat->B[j].ecart,strat->B[i].ecart))
3308 {
3309 deleteInL(strat->B,&strat->Bl,i,strat);
3310 j--;
3311 }
3312 else
3313 {
3314 deleteInL(strat->B,&strat->Bl,j,strat);
3315 break;
3316 }
3317 }
3318 i--;
3319 }
3320 j--;
3321 }
3322 }
3323 else /*sugarCrit*/
3324 {
3325 /*
3326 *suppose L[j] == (s,r) and p/lcm(s,r)
3327 *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p)
3328 *and in case the sugar is o.k. then L[j] can be canceled
3329 */
3330 for (j=strat->Ll; j>=0; j--)
3331 {
3332 if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3333 {
3334 if ((pNext(strat->L[j].p) == strat->tail)||(rHasGlobalOrdering(currRing)))
3335 {
3336 deleteInL(strat->L,&strat->Ll,j,strat);
3337 strat->c3++;
3338 }
3339 }
3340 }
3341 /*
3342 *this is GEBAUER-MOELLER:
3343 *in B all elements with the same lcm except the "best"
3344 *(i.e. the last one in B with this property) will be canceled
3345 */
3346 j = strat->Bl;
3347 loop /*cannot be changed into a for !!! */
3348 {
3349 if (j <= 0) break;
3350 for(i=j-1; i>=0; i--)
3351 {
3352 if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm))
3353 {
3354 strat->c3++;
3355 deleteInL(strat->B,&strat->Bl,i,strat);
3356 j--;
3357 }
3358 }
3359 j--;
3360 }
3361 }
3362 /*
3363 *the elements of B enter L
3364 */
3365 kMergeBintoL(strat);
3366 }
3367 else
3368 {
3369 for (j=strat->Ll; j>=0; j--)
3370 {
3371 #ifdef HAVE_SHIFTBBA
3372 if ((strat->L[j].p1!=NULL) &&
3373 pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3374 #else
3375 if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3376 #endif
3377 {
3378 if ((pNext(strat->L[j].p) == strat->tail)||(rHasGlobalOrdering(currRing)))
3379 {
3380 deleteInL(strat->L,&strat->Ll,j,strat);
3381 strat->c3++;
3382 }
3383 }
3384 }
3385 /*
3386 *this is our MODIFICATION of GEBAUER-MOELLER:
3387 *First the elements of B enter L,
3388 *then we fix a lcm and the "best" element in L
3389 *(i.e the last in L with this lcm and of type (s,p))
3390 *and cancel all the other elements of type (r,p) with this lcm
3391 *except the case the element (s,r) has also the same lcm
3392 *and is on the worst position with respect to (s,p) and (r,p)
3393 */
3394 /*
3395 *B enters to L/their order with respect to B is permutated for elements
3396 *B[i].p with the same leading term
3397 */
3398 kMergeBintoL(strat);
3399 j = strat->Ll;
3400 loop /*cannot be changed into a for !!! */
3401 {
3402 if (j <= 0)
3403 {
3404 /*now L[0] cannot be canceled any more and the tail can be removed*/
3405 if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p;
3406 break;
3407 }
3408 if (strat->L[j].p2 == p)
3409 {
3410 i = j-1;
3411 loop
3412 {
3413 if (i < 0) break;
3414 if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm))
3415 {
3416 /*L[i] could be canceled but we search for a better one to cancel*/
3417 strat->c3++;
3418 if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat)
3419 && (pNext(strat->L[l].p) == strat->tail)
3420 && (!pLmEqual(strat->L[i].p,strat->L[l].p))
3421 && pDivisibleBy(p,strat->L[l].lcm))
3422 {
3423 /*
3424 *"NOT equal(...)" because in case of "equal" the element L[l]
3425 *is "older" and has to be from theoretical point of view behind
3426 *L[i], but we do not want to reorder L
3427 */
3428 strat->L[i].p2 = strat->tail;
3429 /*
3430 *L[l] will be canceled, we cannot cancel L[i] later on,
3431 *so we mark it with "tail"
3432 */
3433 deleteInL(strat->L,&strat->Ll,l,strat);
3434 i--;
3435 }
3436 else
3437 {
3438 deleteInL(strat->L,&strat->Ll,i,strat);
3439 }
3440 j--;
3441 }
3442 i--;
3443 }
3444 }
3445 else if (strat->L[j].p2 == strat->tail)
3446 {
3447 /*now L[j] cannot be canceled any more and the tail can be removed*/
3448 strat->L[j].p2 = p;
3449 }
3450 j--;
3451 }
3452 }
3453}
3454/*2
3455*the pairset B of pairs of type (s[i],p) is complete now. It will be updated
3456*without the chain-criterion in B and L and enters B to L
3457*/
3458void chainCritOpt_1 (poly,int,kStrategy strat)
3459{
3460 if (strat->pairtest!=NULL)
3461 {
3462 omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN));
3463 strat->pairtest=NULL;
3464 }
3465 /*
3466 *the elements of B enter L
3467 */
3468 kMergeBintoL(strat);
3469}
3470/*2
3471*the pairset B of pairs of type (s[i],p) is complete now. It will be updated
3472*using the chain-criterion in B and L and enters B to L
3473*/
3474void chainCritSig (poly p,int /*ecart*/,kStrategy strat)
3475{
3476 int i,j,l;
3477 kMergeBintoLSba(strat);
3478 j = strat->Ll;
3479 loop /*cannot be changed into a for !!! */
3480 {
3481 if (j <= 0)
3482 {
3483 /*now L[0] cannot be canceled any more and the tail can be removed*/
3484 if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p;
3485 break;
3486 }
3487 if (strat->L[j].p2 == p)
3488 {
3489 i = j-1;
3490 loop
3491 {
3492 if (i < 0) break;
3493 if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm))
3494 {
3495 /*L[i] could be canceled but we search for a better one to cancel*/
3496 strat->c3++;
3497 if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat)
3498 && (pNext(strat->L[l].p) == strat->tail)
3499 && (!pLmEqual(strat->L[i].p,strat->L[l].p))
3500 && pDivisibleBy(p,strat->L[l].lcm))
3501 {
3502 /*
3503 *"NOT equal(...)" because in case of "equal" the element L[l]
3504 *is "older" and has to be from theoretical point of view behind
3505 *L[i], but we do not want to reorder L
3506 */
3507 strat->L[i].p2 = strat->tail;
3508 /*
3509 *L[l] will be canceled, we cannot cancel L[i] later on,
3510 *so we mark it with "tail"
3511 */
3512 deleteInL(strat->L,&strat->Ll,l,strat);
3513 i--;
3514 }
3515 else
3516 {
3517 deleteInL(strat->L,&strat->Ll,i,strat);
3518 }
3519 j--;
3520 }
3521 i--;
3522 }
3523 }
3524 else if (strat->L[j].p2 == strat->tail)
3525 {
3526 /*now L[j] cannot be canceled any more and the tail can be removed*/
3527 strat->L[j].p2 = p;
3528 }
3529 j--;
3530 }
3531}
3532#ifdef HAVE_RATGRING
3533void chainCritPart (poly p,int ecart,kStrategy strat)
3534{
3535 int i,j,l;
3536
3537 /*
3538 *pairtest[i] is TRUE if spoly(S[i],p) == 0.
3539 *In this case all elements in B such
3540 *that their lcm is divisible by the leading term of S[i] can be canceled
3541 */
3542 if (strat->pairtest!=NULL)
3543 {
3544 /*- i.e. there is an i with pairtest[i]==TRUE -*/
3545 for (j=0; j<=strat->sl; j++)
3546 {
3547 if (strat->pairtest[j])
3548 {
3549 for (i=strat->Bl; i>=0; i--)
3550 {
3551 if (_p_LmDivisibleByPart(strat->S[j],currRing,
3552 strat->B[i].lcm,currRing,
3553 currRing->real_var_start,currRing->real_var_end))
3554 {
3555 if(TEST_OPT_DEBUG)
3556 {
3557 Print("chain-crit-part: S[%d]=",j);
3558 p_wrp(strat->S[j],currRing);
3559 Print(" divide B[%d].lcm=",i);
3560 p_wrp(strat->B[i].lcm,currRing);
3561 PrintLn();
3562 }
3563 deleteInL(strat->B,&strat->Bl,i,strat);
3564 strat->c3++;
3565 }
3566 }
3567 }
3568 }
3569 omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN));
3570 strat->pairtest=NULL;
3571 }
3572 if (strat->Gebauer || strat->fromT)
3573 {
3574 if (strat->sugarCrit)
3575 {
3576 /*
3577 *suppose L[j] == (s,r) and p/lcm(s,r)
3578 *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p)
3579 *and in case the sugar is o.k. then L[j] can be canceled
3580 */
3581 for (j=strat->Ll; j>=0; j--)
3582 {
3583 if (sugarDivisibleBy(ecart,strat->L[j].ecart)
3584 && ((pNext(strat->L[j].p) == strat->tail) || (rHasGlobalOrdering(currRing)))
3585 && pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3586 {
3587 if (strat->L[j].p == strat->tail)
3588 {
3589 if(TEST_OPT_DEBUG)
3590 {
3591 PrintS("chain-crit-part: pCompareChainPart p=");
3592 p_wrp(p,currRing);
3593 Print(" delete L[%d]",j);
3594 p_wrp(strat->L[j].lcm,currRing);
3595 PrintLn();
3596 }
3597 deleteInL(strat->L,&strat->Ll,j,strat);
3598 strat->c3++;
3599 }
3600 }
3601 }
3602 /*
3603 *this is GEBAUER-MOELLER:
3604 *in B all elements with the same lcm except the "best"
3605 *(i.e. the last one in B with this property) will be canceled
3606 */
3607 j = strat->Bl;
3608 loop /*cannot be changed into a for !!! */
3609 {
3610 if (j <= 0) break;
3611 i = j-1;
3612 loop
3613 {
3614 if (i < 0) break;
3615 if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm))
3616 {
3617 strat->c3++;
3618 if (sugarDivisibleBy(strat->B[j].ecart,strat->B[i].ecart))
3619 {
3620 if(TEST_OPT_DEBUG)
3621 {
3622 Print("chain-crit-part: sugar B[%d].lcm=",j);
3623 p_wrp(strat->B[j].lcm,currRing);
3624 Print(" delete B[%d]",i);
3625 p_wrp(strat->B[i].lcm,currRing);
3626 PrintLn();
3627 }
3628 deleteInL(strat->B,&strat->Bl,i,strat);
3629 j--;
3630 }
3631 else
3632 {
3633 if(TEST_OPT_DEBUG)
3634 {
3635 Print("chain-crit-part: sugar B[%d].lcm=",i);
3636 p_wrp(strat->B[i].lcm,currRing);
3637 Print(" delete B[%d]",j);
3638 p_wrp(strat->B[j].lcm,currRing);
3639 PrintLn();
3640 }
3641 deleteInL(strat->B,&strat->Bl,j,strat);
3642 break;
3643 }
3644 }
3645 i--;
3646 }
3647 j--;
3648 }
3649 }
3650 else /*sugarCrit*/
3651 {
3652 /*
3653 *suppose L[j] == (s,r) and p/lcm(s,r)
3654 *and lcm(s,r)#lcm(s,p) and lcm(s,r)#lcm(r,p)
3655 *and in case the sugar is o.k. then L[j] can be canceled
3656 */
3657 for (j=strat->Ll; j>=0; j--)
3658 {
3659 if (pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3660 {
3661 if ((pNext(strat->L[j].p) == strat->tail)||(rHasGlobalOrdering(currRing)))
3662 {
3663 if(TEST_OPT_DEBUG)
3664 {
3665 PrintS("chain-crit-part: sugar:pCompareChainPart p=");
3666 p_wrp(p,currRing);
3667 Print(" delete L[%d]",j);
3668 p_wrp(strat->L[j].lcm,currRing);
3669 PrintLn();
3670 }
3671 deleteInL(strat->L,&strat->Ll,j,strat);
3672 strat->c3++;
3673 }
3674 }
3675 }
3676 /*
3677 *this is GEBAUER-MOELLER:
3678 *in B all elements with the same lcm except the "best"
3679 *(i.e. the last one in B with this property) will be canceled
3680 */
3681 j = strat->Bl;
3682 loop /*cannot be changed into a for !!! */
3683 {
3684 if (j <= 0) break;
3685 for(i=j-1; i>=0; i--)
3686 {
3687 if (pLmEqual(strat->B[j].lcm,strat->B[i].lcm))
3688 {
3689 if(TEST_OPT_DEBUG)
3690 {
3691 Print("chain-crit-part: equal lcm B[%d].lcm=",j);
3692 p_wrp(strat->B[j].lcm,currRing);
3693 Print(" delete B[%d]\n",i);
3694 }
3695 strat->c3++;
3696 deleteInL(strat->B,&strat->Bl,i,strat);
3697 j--;
3698 }
3699 }
3700 j--;
3701 }
3702 }
3703 /*
3704 *the elements of B enter L
3705 */
3706 kMergeBintoL(strat);
3707 }
3708 else
3709 {
3710 for (j=strat->Ll; j>=0; j--)
3711 {
3712 if (pCompareChainPart(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
3713 {
3714 if ((pNext(strat->L[j].p) == strat->tail)||(rHasGlobalOrdering(currRing)))
3715 {
3716 if(TEST_OPT_DEBUG)
3717 {
3718 PrintS("chain-crit-part: pCompareChainPart p=");
3719 p_wrp(p,currRing);
3720 Print(" delete L[%d]",j);
3721 p_wrp(strat->L[j].lcm,currRing);
3722 PrintLn();
3723 }
3724 deleteInL(strat->L,&strat->Ll,j,strat);
3725 strat->c3++;
3726 }
3727 }
3728 }
3729 /*
3730 *this is our MODIFICATION of GEBAUER-MOELLER:
3731 *First the elements of B enter L,
3732 *then we fix a lcm and the "best" element in L
3733 *(i.e the last in L with this lcm and of type (s,p))
3734 *and cancel all the other elements of type (r,p) with this lcm
3735 *except the case the element (s,r) has also the same lcm
3736 *and is on the worst position with respect to (s,p) and (r,p)
3737 */
3738 /*
3739 *B enters to L/their order with respect to B is permutated for elements
3740 *B[i].p with the same leading term
3741 */
3742 kMergeBintoL(strat);
3743 j = strat->Ll;
3744 loop /*cannot be changed into a for !!! */
3745 {
3746 if (j <= 0)
3747 {
3748 /*now L[0] cannot be canceled any more and the tail can be removed*/
3749 if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p;
3750 break;
3751 }
3752 if (strat->L[j].p2 == p)
3753 {
3754 i = j-1;
3755 loop
3756 {
3757 if (i < 0) break;
3758 if ((strat->L[i].p2 == p) && pLmEqual(strat->L[j].lcm,strat->L[i].lcm))
3759 {
3760 /*L[i] could be canceled but we search for a better one to cancel*/
3761 strat->c3++;
3762 if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat)
3763 && (pNext(strat->L[l].p) == strat->tail)
3764 && (!pLmEqual(strat->L[i].p,strat->L[l].p))
3766 strat->L[l].lcm,currRing,
3767 currRing->real_var_start, currRing->real_var_end))
3768
3769 {
3770 /*
3771 *"NOT equal(...)" because in case of "equal" the element L[l]
3772 *is "older" and has to be from theoretical point of view behind
3773 *L[i], but we do not want to reorder L
3774 */
3775 strat->L[i].p2 = strat->tail;
3776 /*
3777 *L[l] will be canceled, we cannot cancel L[i] later on,
3778 *so we mark it with "tail"
3779 */
3780 if(TEST_OPT_DEBUG)
3781 {
3782 PrintS("chain-crit-part: divisible_by p=");
3783 p_wrp(p,currRing);
3784 Print(" delete L[%d]",l);
3785 p_wrp(strat->L[l].lcm,currRing);
3786 PrintLn();
3787 }
3788 deleteInL(strat->L,&strat->Ll,l,strat);
3789 i--;
3790 }
3791 else
3792 {
3793 if(TEST_OPT_DEBUG)
3794 {
3795 PrintS("chain-crit-part: divisible_by(2) p=");
3796 p_wrp(p,currRing);
3797 Print(" delete L[%d]",i);
3798 p_wrp(strat->L[i].lcm,currRing);
3799 PrintLn();
3800 }
3801 deleteInL(strat->L,&strat->Ll,i,strat);
3802 }
3803 j--;
3804 }
3805 i--;
3806 }
3807 }
3808 else if (strat->L[j].p2 == strat->tail)
3809 {
3810 /*now L[j] cannot be canceled any more and the tail can be removed*/
3811 strat->L[j].p2 = p;
3812 }
3813 j--;
3814 }
3815 }
3816}
3817#endif
3818
3819/*2
3820*(s[0],h),...,(s[k],h) will be put to the pairset L
3821*/
3822void initenterpairs (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR/* = -1*/)
3823{
3824
3825 if ((strat->syzComp==0)
3826 || (pGetComp(h)<=strat->syzComp))
3827 {
3828 int j;
3830
3831 if (pGetComp(h)==0)
3832 {
3833 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
3834 if ((isFromQ)&&(strat->fromQ!=NULL))
3835 {
3836 for (j=0; j<=k; j++)
3837 {
3838 if (!strat->fromQ[j])
3839 {
3840 new_pair=TRUE;
3841 strat->enterOnePair(j,h,ecart,isFromQ,strat, atR);
3842 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3843 }
3844 }
3845 }
3846 else
3847 {
3848 new_pair=TRUE;
3849 for (j=0; j<=k; j++)
3850 {
3851 strat->enterOnePair(j,h,ecart,isFromQ,strat, atR);
3852 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3853 }
3854 }
3855 }
3856 else
3857 {
3858 for (j=0; j<=k; j++)
3859 {
3860 if ((pGetComp(h)==pGetComp(strat->S[j]))
3861 || (pGetComp(strat->S[j])==0))
3862 {
3863 new_pair=TRUE;
3864 strat->enterOnePair(j,h,ecart,isFromQ,strat, atR);
3865 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3866 }
3867 }
3868 }
3869 if (new_pair)
3870 {
3871 #ifdef HAVE_RATGRING
3872 if (currRing->real_var_start>0)
3873 chainCritPart(h,ecart,strat);
3874 else
3875 #endif
3876 strat->chainCrit(h,ecart,strat);
3877 }
3878 kMergeBintoL(strat);
3879 }
3880}
3881
3882/*2
3883*(s[0],h),...,(s[k],h) will be put to the pairset L
3884*using signatures <= only for signature-based standard basis algorithms
3885*/
3886
3887void initenterpairsSig (poly h,poly hSig,int hFrom,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1)
3888{
3889
3890 if ((strat->syzComp==0)
3891 || (pGetComp(h)<=strat->syzComp))
3892 {
3893 int j;
3895
3896 if (pGetComp(h)==0)
3897 {
3898 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
3899 if ((isFromQ)&&(strat->fromQ!=NULL))
3900 {
3901 for (j=0; j<=k; j++)
3902 {
3903 if (!strat->fromQ[j])
3904 {
3905 new_pair=TRUE;
3906 enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3907 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3908 }
3909 }
3910 }
3911 else
3912 {
3913 new_pair=TRUE;
3914 for (j=0; j<=k; j++)
3915 {
3916 enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3917 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3918 }
3919 }
3920 }
3921 else
3922 {
3923 for (j=0; j<=k; j++)
3924 {
3925 if ((pGetComp(h)==pGetComp(strat->S[j]))
3926 || (pGetComp(strat->S[j])==0))
3927 {
3928 new_pair=TRUE;
3929 enterOnePairSig(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3930 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3931 }
3932 }
3933 }
3934
3935 if (new_pair)
3936 {
3937#ifdef HAVE_RATGRING
3938 if (currRing->real_var_start>0)
3939 chainCritPart(h,ecart,strat);
3940 else
3941#endif
3942 strat->chainCrit(h,ecart,strat);
3943 }
3944 }
3945}
3946
3947void initenterpairsSigRing (poly h,poly hSig,int hFrom,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1)
3948{
3949
3950 if ((strat->syzComp==0)
3951 || (pGetComp(h)<=strat->syzComp))
3952 {
3953 int j;
3954
3955 if (pGetComp(h)==0)
3956 {
3957 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
3958 if ((isFromQ)&&(strat->fromQ!=NULL))
3959 {
3960 for (j=0; j<=k && !strat->sigdrop; j++)
3961 {
3962 if (!strat->fromQ[j])
3963 {
3964 enterOnePairSigRing(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3965 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3966 }
3967 }
3968 }
3969 else
3970 {
3971 for (j=0; j<=k && !strat->sigdrop; j++)
3972 {
3973 enterOnePairSigRing(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3974 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3975 }
3976 }
3977 }
3978 else
3979 {
3980 for (j=0; j<=k && !strat->sigdrop; j++)
3981 {
3982 if ((pGetComp(h)==pGetComp(strat->S[j]))
3983 || (pGetComp(strat->S[j])==0))
3984 {
3985 enterOnePairSigRing(j,h,hSig,hFrom,ecart,isFromQ,strat, atR);
3986 //Print("j:%d, Ll:%d\n",j,strat->Ll);
3987 }
3988 }
3989 }
3990
3991#if 0
3992 if (new_pair)
3993 {
3994#ifdef HAVE_RATGRING
3995 if (currRing->real_var_start>0)
3996 chainCritPart(h,ecart,strat);
3997 else
3998#endif
3999 strat->chainCrit(h,ecart,strat);
4000 }
4001#endif
4002 }
4003}
4004#ifdef HAVE_RINGS
4005/*2
4006*the pairset B of pairs of type (s[i],p) is complete now. It will be updated
4007*using the chain-criterion in B and L and enters B to L
4008*/
4009void chainCritRing (poly p,int, kStrategy strat)
4010{
4011 int i,j,l;
4012 /*
4013 *pairtest[i] is TRUE if spoly(S[i],p) == 0.
4014 *In this case all elements in B such
4015 *that their lcm is divisible by the leading term of S[i] can be canceled
4016 */
4017 if (strat->pairtest!=NULL)
4018 {
4019 {
4020 /*- i.e. there is an i with pairtest[i]==TRUE -*/
4021 for (j=0; j<=strat->sl; j++)
4022 {
4023 if (strat->pairtest[j])
4024 {
4025 for (i=strat->Bl; i>=0; i--)
4026 {
4027 if (pDivisibleBy(strat->S[j],strat->B[i].lcm) && n_DivBy(pGetCoeff(strat->B[i].lcm), pGetCoeff(strat->S[j]),currRing->cf))
4028 {
4029#ifdef KDEBUG
4030 if (TEST_OPT_DEBUG)
4031 {
4032 PrintS("--- chain criterion func chainCritRing type 1\n");
4033 PrintS("strat->S[j]:");
4034 wrp(strat->S[j]);
4035 PrintS(" strat->B[i].lcm:");
4036 wrp(strat->B[i].lcm);PrintLn();
4037 pWrite(strat->B[i].p);
4038 pWrite(strat->B[i].p1);
4039 pWrite(strat->B[i].p2);
4040 wrp(strat->B[i].lcm);
4041 PrintLn();
4042 }
4043#endif
4044 deleteInL(strat->B,&strat->Bl,i,strat);
4045 strat->c3++;
4046 }
4047 }
4048 }
4049 }
4050 }
4051 omFreeSize(strat->pairtest,(strat->sl+2)*sizeof(BOOLEAN));
4052 strat->pairtest=NULL;
4053 }
4054 assume(!(strat->Gebauer || strat->fromT));
4055 for (j=strat->Ll; j>=0; j--)
4056 {
4057 if ((strat->L[j].lcm != NULL) && n_DivBy(pGetCoeff(strat->L[j].lcm), pGetCoeff(p), currRing->cf))
4058 {
4059 if (pCompareChain(p,strat->L[j].p1,strat->L[j].p2,strat->L[j].lcm))
4060 {
4061 if ((pNext(strat->L[j].p) == strat->tail) || (rHasGlobalOrdering(currRing)))
4062 {
4063 deleteInL(strat->L,&strat->Ll,j,strat);
4064 strat->c3++;
4065#ifdef KDEBUG
4066 if (TEST_OPT_DEBUG)
4067 {
4068 PrintS("--- chain criterion func chainCritRing type 2\n");
4069 PrintS("strat->L[j].p:");
4070 wrp(strat->L[j].p);
4071 PrintS(" p:");
4072 wrp(p);
4073 PrintLn();
4074 }
4075#endif
4076 }
4077 }
4078 }
4079 }
4080 /*
4081 *this is our MODIFICATION of GEBAUER-MOELLER:
4082 *First the elements of B enter L,
4083 *then we fix a lcm and the "best" element in L
4084 *(i.e the last in L with this lcm and of type (s,p))
4085 *and cancel all the other elements of type (r,p) with this lcm
4086 *except the case the element (s,r) has also the same lcm
4087 *and is on the worst position with respect to (s,p) and (r,p)
4088 */
4089 /*
4090 *B enters to L/their order with respect to B is permutated for elements
4091 *B[i].p with the same leading term
4092 */
4093 kMergeBintoL(strat);
4094 j = strat->Ll;
4095 loop /*cannot be changed into a for !!! */
4096 {
4097 if (j <= 0)
4098 {
4099 /*now L[0] cannot be canceled any more and the tail can be removed*/
4100 if (strat->L[0].p2 == strat->tail) strat->L[0].p2 = p;
4101 break;
4102 }
4103 if (strat->L[j].p2 == p) // Was the element added from B?
4104 {
4105 i = j-1;
4106 loop
4107 {
4108 if (i < 0) break;
4109 // Element is from B and has the same lcm as L[j]
4110 if ((strat->L[i].p2 == p) && n_DivBy(pGetCoeff(strat->L[j].lcm), pGetCoeff(strat->L[i].lcm), currRing->cf)
4111 && pLmEqual(strat->L[j].lcm,strat->L[i].lcm))
4112 {
4113 /*L[i] could be canceled but we search for a better one to cancel*/
4114 strat->c3++;
4115#ifdef KDEBUG
4116 if (TEST_OPT_DEBUG)
4117 {
4118 PrintS("--- chain criterion func chainCritRing type 3\n");
4119 PrintS("strat->L[j].lcm:");
4120 wrp(strat->L[j].lcm);
4121 PrintS(" strat->L[i].lcm:");
4122 wrp(strat->L[i].lcm);
4123 PrintLn();
4124 }
4125#endif
4126 if (isInPairsetL(i-1,strat->L[j].p1,strat->L[i].p1,&l,strat)
4127 && (pNext(strat->L[l].p) == strat->tail)
4128 && (!pLmEqual(strat->L[i].p,strat->L[l].p))
4129 && pDivisibleBy(p,strat->L[l].lcm))
4130 {
4131 /*
4132 *"NOT equal(...)" because in case of "equal" the element L[l]
4133 *is "older" and has to be from theoretical point of view behind
4134 *L[i], but we do not want to reorder L
4135 */
4136 strat->L[i].p2 = strat->tail;
4137 /*
4138 *L[l] will be canceled, we cannot cancel L[i] later on,
4139 *so we mark it with "tail"
4140 */
4141 deleteInL(strat->L,&strat->Ll,l,strat);
4142 i--;
4143 }
4144 else
4145 {
4146 deleteInL(strat->L,&strat->Ll,i,strat);
4147 }
4148 j--;
4149 }
4150 i--;
4151 }
4152 }
4153 else if (strat->L[j].p2 == strat->tail)
4154 {
4155 /*now L[j] cannot be canceled any more and the tail can be removed*/
4156 strat->L[j].p2 = p;
4157 }
4158 j--;
4159 }
4160}
4161#endif
4162
4163#ifdef HAVE_RINGS
4164/*2
4165*(s[0],h),...,(s[k],h) will be put to the pairset L
4166*/
4167void initenterstrongPairs (poly h,int k,int ecart,int isFromQ,kStrategy strat, int atR = -1)
4168{
4169 if (!nIsOne(pGetCoeff(h)))
4170 {
4171 int j;
4173
4174 if (pGetComp(h)==0)
4175 {
4176 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
4177 if ((isFromQ)&&(strat->fromQ!=NULL))
4178 {
4179 for (j=0; j<=k; j++)
4180 {
4181 if (!strat->fromQ[j])
4182 {
4183 new_pair=TRUE;
4184 enterOneStrongPoly(j,h,ecart,isFromQ,strat, atR, FALSE);
4185 }
4186 }
4187 }
4188 else
4189 {
4190 new_pair=TRUE;
4191 for (j=0; j<=k; j++)
4192 {
4193 enterOneStrongPoly(j,h,ecart,isFromQ,strat, atR, FALSE);
4194 }
4195 }
4196 }
4197 else
4198 {
4199 for (j=0; j<=k; j++)
4200 {
4201 if ((pGetComp(h)==pGetComp(strat->S[j]))
4202 || (pGetComp(strat->S[j])==0))
4203 {
4204 new_pair=TRUE;
4205 enterOneStrongPoly(j,h,ecart,isFromQ,strat, atR, FALSE);
4206 }
4207 }
4208 }
4209 if (new_pair)
4210 {
4211 #ifdef HAVE_RATGRING
4212 if (currRing->real_var_start>0)
4213 chainCritPart(h,ecart,strat);
4214 else
4215 #endif
4216 strat->chainCrit(h,ecart,strat);
4217 }
4218 kMergeBintoL(strat);
4219 }
4220}
4221
4222static void initenterstrongPairsSig (poly h,poly hSig, int k,int ecart,int isFromQ,kStrategy strat, int atR = -1)
4223{
4224 const int iCompH = pGetComp(h);
4225 if (!nIsOne(pGetCoeff(h)))
4226 {
4227 int j;
4228
4229 for (j=0; j<=k && !strat->sigdrop; j++)
4230 {
4231 // Print("j:%d, Ll:%d\n",j,strat->Ll);
4232// if (((unsigned long) pGetCoeff(h) % (unsigned long) pGetCoeff(strat->S[j]) != 0) &&
4233// ((unsigned long) pGetCoeff(strat->S[j]) % (unsigned long) pGetCoeff(h) != 0))
4234 if (((iCompH == pGetComp(strat->S[j]))
4235 || (0 == pGetComp(strat->S[j])))
4236 && ((iCompH<=strat->syzComp)||(strat->syzComp==0)))
4237 {
4238 enterOneStrongPolySig(j,h,hSig,ecart,isFromQ,strat, atR);
4239 }
4240 }
4241 }
4242}
4243#endif
4244
4245#ifdef HAVE_RINGS
4246/*2
4247* Generates spoly(0, h) if applicable. Assumes ring has zero divisors
4248*/
4250{
4251 if (nIsOne(pGetCoeff(h))) return;
4252 number gcd;
4253 number zero=n_Init(0,currRing->cf);
4254 bool go = false;
4255 if (n_DivBy(zero, pGetCoeff(h), currRing->cf))
4256 {
4257 gcd = n_Ann(pGetCoeff(h),currRing->cf);
4258 go = true;
4259 }
4260 else
4261 gcd = n_Gcd(zero, pGetCoeff(h), strat->tailRing->cf);
4262 if (go || !nIsOne(gcd))
4263 {
4264 poly p = h->next;
4265 if (!go)
4266 {
4267 number tmp = gcd;
4268 gcd = n_Ann(gcd,currRing->cf);
4269 nDelete(&tmp);
4270 }
4271 p_Test(p,strat->tailRing);
4272 p = __pp_Mult_nn(p, gcd, strat->tailRing);
4273
4274 if (p != NULL)
4275 {
4276 if (TEST_OPT_PROT)
4277 {
4278 PrintS("Z");
4279 }
4280#ifdef KDEBUG
4281 if (TEST_OPT_DEBUG)
4282 {
4283 PrintS("--- create zero spoly: ");
4284 p_wrp(h,currRing,strat->tailRing);
4285 PrintS(" ---> ");
4286 }
4287#endif
4288 poly tmp = pInit();
4290 for (int i = 1; i <= rVar(currRing); i++)
4291 {
4292 pSetExp(tmp, i, p_GetExp(p, i, strat->tailRing));
4293 }
4295 {
4297 }
4299 p = p_LmFreeAndNext(p, strat->tailRing);
4300 pNext(tmp) = p;
4301 LObject Lp;
4302 Lp.Init();
4303 Lp.p = tmp;
4304 Lp.tailRing = strat->tailRing;
4305 int posx;
4306 if (Lp.p!=NULL)
4307 {
4308 strat->initEcart(&Lp);
4309 if (strat->Ll==-1)
4310 posx =0;
4311 else
4312 posx = strat->posInL(strat->L,strat->Ll,&Lp,strat);
4313 Lp.sev = pGetShortExpVector(Lp.p);
4314 if (strat->tailRing != currRing)
4315 {
4316 Lp.t_p = k_LmInit_currRing_2_tailRing(Lp.p, strat->tailRing);
4317 }
4318#ifdef KDEBUG
4319 if (TEST_OPT_DEBUG)
4320 {
4321 p_wrp(tmp,currRing,strat->tailRing);
4322 PrintLn();
4323 }
4324#endif
4325 enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,posx);
4326 }
4327 }
4328 }
4329 nDelete(&zero);
4330 nDelete(&gcd);
4331}
4332
4334{
4335 if (nIsOne(pGetCoeff(h))) return;
4336 number gcd;
4337 number zero=n_Init(0,currRing->cf);
4338 bool go = false;
4339 if (n_DivBy(zero, pGetCoeff(h), currRing->cf))
4340 {
4341 gcd = n_Ann(pGetCoeff(h),currRing->cf);
4342 go = true;
4343 }
4344 else
4345 gcd = n_Gcd(zero, pGetCoeff(h), strat->tailRing->cf);
4346 if (go || !nIsOne(gcd))
4347 {
4348 poly p = h->next;
4349 if (!go)
4350 {
4351 number tmp = gcd;
4352 gcd = n_Ann(gcd,currRing->cf);
4353 nDelete(&tmp);
4354 }
4355 p_Test(p,strat->tailRing);
4356 p = __pp_Mult_nn(p, gcd, strat->tailRing);
4357
4358 if (p != NULL)
4359 {
4360 if (TEST_OPT_PROT)
4361 {
4362 PrintS("Z");
4363 }
4364#ifdef KDEBUG
4365 if (TEST_OPT_DEBUG)
4366 {
4367 PrintS("--- create zero spoly: ");
4368 p_wrp(h,currRing,strat->tailRing);
4369 PrintS(" ---> ");
4370 }
4371#endif
4372 poly tmp = pInit();
4374 for (int i = 1; i <= rVar(currRing); i++)
4375 {
4376 pSetExp(tmp, i, p_GetExp(p, i, strat->tailRing));
4377 }
4379 {
4381 }
4383 p = p_LmFreeAndNext(p, strat->tailRing);
4384 pNext(tmp) = p;
4385 LObject Lp;
4386 Lp.Init();
4387 Lp.p = tmp;
4388 //printf("\nOld\n");pWrite(h);pWrite(hSig);
4389 #if EXT_POLY_NEW
4390 Lp.sig = __pp_Mult_nn(hSig, gcd, currRing);
4391 if(Lp.sig == NULL || nIsZero(pGetCoeff(Lp.sig)))
4392 {
4393 strat->sigdrop = TRUE;
4394 //Try to reduce it as far as we can via redRing
4395 int red_result = redRing(&Lp,strat);
4396 if(red_result == 0)
4397 {
4398 // Cancel the sigdrop
4399 p_Delete(&Lp.sig,currRing);Lp.sig = NULL;
4400 strat->sigdrop = FALSE;
4401 }
4402 else
4403 {
4404 strat->enterS(strat->P,strat->sl+1,strat, strat->tl+1);
4405 #if 1
4406 strat->enterS(Lp,0,strat,strat->tl);
4407 #endif
4408 }
4409 nDelete(&zero);
4410 nDelete(&gcd);
4411 return;
4412 }
4413 #else
4414 Lp.sig = pOne();
4415 if(strat->Ll >= 0)
4416 p_SetComp(Lp.sig,pGetComp(strat->L[0].sig)+1,currRing);
4417 else
4419 #endif
4420 Lp.tailRing = strat->tailRing;
4421 int posx;
4422 if (Lp.p!=NULL)
4423 {
4424 strat->initEcart(&Lp);
4425 if (strat->Ll==-1)
4426 posx =0;
4427 else
4428 posx = strat->posInLSba(strat->L,strat->Ll,&Lp,strat);
4429 Lp.sev = pGetShortExpVector(Lp.p);
4430 if (strat->tailRing != currRing)
4431 {
4432 Lp.t_p = k_LmInit_currRing_2_tailRing(Lp.p, strat->tailRing);
4433 }
4434#ifdef KDEBUG
4435 if (TEST_OPT_DEBUG)
4436 {
4437 p_wrp(tmp,currRing,strat->tailRing);
4438 PrintLn();
4439 }
4440#endif
4441 //pWrite(h);pWrite(hSig);pWrite(Lp.p);pWrite(Lp.sig);printf("\n------------------\n");getchar();
4442 enterL(&strat->L,&strat->Ll,&strat->Lmax,Lp,posx);
4443 }
4444 }
4445 }
4446 nDelete(&gcd);
4447 nDelete(&zero);
4448}
4449#endif
4450
4451#ifdef HAVE_RINGS
4452void clearSbatch (poly h,int k,int pos,kStrategy strat)
4453{
4454 int j = pos;
4455 if ( (!strat->fromT)
4456 && ((strat->syzComp==0)
4457 ||(pGetComp(h)<=strat->syzComp)
4458 ))
4459 {
4460 // Print("start clearS k=%d, pos=%d, sl=%d\n",k,pos,strat->sl);
4461 unsigned long h_sev = pGetShortExpVector(h);
4462 loop
4463 {
4464 if (j > k) break;
4465 clearS(h,h_sev, &j,&k,strat);
4466 j++;
4467 }
4468 // Print("end clearS sl=%d\n",strat->sl);
4469 }
4470}
4471#endif
4472
4473#ifdef HAVE_RINGS
4474/*2
4475* Generates a sufficient set of spolys (maybe just a finite generating
4476* set of the syzygys)
4477*/
4478void superenterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR)
4479{
4481#if HAVE_SHIFTBBA
4482 assume(!rIsLPRing(currRing)); /* LP should use enterpairsShift */
4483#endif
4484 // enter also zero divisor * poly, if this is non zero and of smaller degree
4486 initenterstrongPairs(h, k, ecart, 0, strat, atR);
4487 initenterpairs(h, k, ecart, 0, strat, atR);
4488 clearSbatch(h, k, pos, strat);
4489}
4490
4491void superenterpairsSig (poly h,poly hSig,int hFrom,int k,int ecart,int pos,kStrategy strat, int atR)
4492{
4494 // enter also zero divisor * poly, if this is non zero and of smaller degree
4496 if(strat->sigdrop) return;
4497 initenterpairsSigRing(h, hSig, hFrom, k, ecart, 0, strat, atR);
4498 if(strat->sigdrop) return;
4499 initenterstrongPairsSig(h, hSig, k, ecart, 0, strat, atR);
4500 if(strat->sigdrop) return;
4501 clearSbatch(h, k, pos, strat);
4502}
4503#endif
4504
4505/*2
4506*(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs)
4507*superfluous elements in S will be deleted
4508*/
4509void enterpairs (poly h,int k,int ecart,int pos,kStrategy strat, int atR)
4510{
4511 int j=pos;
4512
4514 initenterpairs(h,k,ecart,0,strat, atR);
4515 if ( (!strat->fromT)
4516 && ((strat->syzComp==0)
4517 ||(pGetComp(h)<=strat->syzComp)))
4518 {
4519 unsigned long h_sev = pGetShortExpVector(h);
4520 loop
4521 {
4522 if (j > k) break;
4523 clearS(h,h_sev, &j,&k,strat);
4524 j++;
4525 }
4526 }
4527}
4528
4529/*2
4530*(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs)
4531*superfluous elements in S will be deleted
4532*this is a special variant of signature-based algorithms including the
4533*signatures for criteria checks
4534*/
4535void enterpairsSig (poly h,poly hSig,int hFrom,int k,int ecart,int pos,kStrategy strat, int atR)
4536{
4537 int j=pos;
4539 initenterpairsSig(h,hSig,hFrom,k,ecart,0,strat, atR);
4540 if ( (!strat->fromT)
4541 && ((strat->syzComp==0)
4542 ||(pGetComp(h)<=strat->syzComp)))
4543 {
4544 unsigned long h_sev = pGetShortExpVector(h);
4545 loop
4546 {
4547 if (j > k) break;
4548 clearS(h,h_sev, &j,&k,strat);
4549 j++;
4550 }
4551 }
4552}
4553
4554/*2
4555*(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs)
4556*superfluous elements in S will be deleted
4557*/
4558void enterpairsSpecial (poly h,int k,int ecart,int pos,kStrategy strat, int atR = -1)
4559{
4560 int j;
4561 const int iCompH = pGetComp(h);
4562
4564 {
4565 for (j=0; j<=k; j++)
4566 {
4567 const int iCompSj = pGetComp(strat->S[j]);
4568 if ((iCompH==iCompSj)
4569 //|| (0==iCompH) // can only happen,if iCompSj==0
4570 || (0==iCompSj))
4571 {
4572 enterOnePairRing(j,h,ecart,FALSE,strat, atR);
4573 }
4574 }
4575 kMergeBintoL(strat);
4576 }
4577 else
4578 {
4579 for (j=0; j<=k; j++)
4580 {
4581 const int iCompSj = pGetComp(strat->S[j]);
4582 if ((iCompH==iCompSj)
4583 //|| (0==iCompH) // can only happen,if iCompSj==0
4584 || (0==iCompSj))
4585 {
4586 enterOnePairSpecial(j,h,ecart,strat, atR);
4587 }
4588 }
4589 }
4590
4591 if (strat->noClearS) return;
4592
4593// #ifdef HAVE_PLURAL
4594/*
4595 if (rIsPluralRing(currRing))
4596 {
4597 j=pos;
4598 loop
4599 {
4600 if (j > k) break;
4601
4602 if (pLmDivisibleBy(h, strat->S[j]))
4603 {
4604 deleteInS(j, strat);
4605 j--;
4606 k--;
4607 }
4608
4609 j++;
4610 }
4611 }
4612 else
4613*/
4614// #endif // ??? Why was the following cancellation disabled for non-commutative rings?
4615 {
4616 j=pos;
4617 loop
4618 {
4619 unsigned long h_sev = pGetShortExpVector(h);
4620 if (j > k) break;
4621 clearS(h,h_sev,&j,&k,strat);
4622 j++;
4623 }
4624 }
4625}
4626
4627/*2
4628*reorders s with respect to posInS,
4629*suc is the first changed index or zero
4630*/
4631
4632void reorderS (int* suc,kStrategy strat)
4633{
4634 int i,j,at,ecart, s2r;
4635 int fq=0;
4636 unsigned long sev;
4637 poly p;
4638 int new_suc=strat->sl+1;
4639 i= *suc;
4640 if (i<0) i=0;
4641
4642 for (; i<=strat->sl; i++)
4643 {
4644 at = posInS(strat,i-1,strat->S[i],strat->ecartS[i]);
4645 if (at != i)
4646 {
4647 if (new_suc > at) new_suc = at;
4648 p = strat->S[i];
4649 ecart = strat->ecartS[i];
4650 sev = strat->sevS[i];
4651 s2r = strat->S_2_R[i];
4652 if (strat->fromQ!=NULL) fq=strat->fromQ[i];
4653 for (j=i; j>=at+1; j--)
4654 {
4655 strat->S[j] = strat->S[j-1];
4656 strat->ecartS[j] = strat->ecartS[j-1];
4657 strat->sevS[j] = strat->sevS[j-1];
4658 strat->S_2_R[j] = strat->S_2_R[j-1];
4659 }
4660 strat->S[at] = p;
4661 strat->ecartS[at] = ecart;
4662 strat->sevS[at] = sev;
4663 strat->S_2_R[at] = s2r;
4664 if (strat->fromQ!=NULL)
4665 {
4666 for (j=i; j>=at+1; j--)
4667 {
4668 strat->fromQ[j] = strat->fromQ[j-1];
4669 }
4670 strat->fromQ[at]=fq;
4671 }
4672 }
4673 }
4675 else *suc=-1;
4676}
4677
4678
4679/*2
4680*looks up the position of p in set
4681*set[0] is the smallest with respect to the ordering-procedure deg/pComp
4682* Assumption: posInS only depends on the leading term
4683* otherwise, bba has to be changed
4684*/
4685int posInS (const kStrategy strat, const int length,const poly p,
4686 const int ecart_p)
4687{
4688 if(length==-1) return 0;
4689 polyset set=strat->S;
4690 int i;
4691 int an = 0;
4692 int en = length;
4693 int cmp_int = currRing->OrdSgn;
4696 && (currRing->real_var_start==0)
4697#endif
4698#if 0
4699 || ((strat->ak>0) && ((currRing->order[0]==ringorder_c)||((currRing->order[0]==ringorder_C))))
4700#endif
4701 )
4702 {
4703 int o=p_Deg(p,currRing);
4704 int oo=p_Deg(set[length],currRing);
4705
4706 if ((oo<o)
4707 || ((o==oo) && (pLmCmp(set[length],p)!= cmp_int)))
4708 return length+1;
4709
4710 loop
4711 {
4712 if (an >= en-1)
4713 {
4714 if ((p_Deg(set[an],currRing)>=o) && (pLmCmp(set[an],p) == cmp_int))
4715 {
4716 return an;
4717 }
4718 return en;
4719 }
4720 i=(an+en) / 2;
4721 if ((p_Deg(set[i],currRing)>=o) && (pLmCmp(set[i],p) == cmp_int)) en=i;
4722 else an=i;
4723 }
4724 }
4725 else
4726 {
4728 {
4729 if (pLmCmp(set[length],p)== -cmp_int)
4730 return length+1;
4731 int cmp;
4732 loop
4733 {
4734 if (an >= en-1)
4735 {
4736 cmp = pLmCmp(set[an],p);
4737 if (cmp == cmp_int) return an;
4738 if (cmp == -cmp_int) return en;
4739 if (n_DivBy(pGetCoeff(p), pGetCoeff(set[an]), currRing->cf)) return en;
4740 return an;
4741 }
4742 i = (an+en) / 2;
4743 cmp = pLmCmp(set[i],p);
4744 if (cmp == cmp_int) en = i;
4745 else if (cmp == -cmp_int) an = i;
4746 else
4747 {
4748 if (n_DivBy(pGetCoeff(p), pGetCoeff(set[i]), currRing->cf)) an = i;
4749 else en = i;
4750 }
4751 }
4752 }
4753 else
4754 if (pLmCmp(set[length],p)== -cmp_int)
4755 return length+1;
4756
4757 loop
4758 {
4759 if (an >= en-1)
4760 {
4761 if (pLmCmp(set[an],p) == cmp_int) return an;
4762 if (pLmCmp(set[an],p) == -cmp_int) return en;
4763 if ((cmp_int!=1)
4764 && ((strat->ecartS[an])>ecart_p))
4765 return an;
4766 return en;
4767 }
4768 i=(an+en) / 2;
4769 if (pLmCmp(set[i],p) == cmp_int) en=i;
4770 else if (pLmCmp(set[i],p) == -cmp_int) an=i;
4771 else
4772 {
4773 if ((cmp_int!=1)
4774 &&((strat->ecartS[i])<ecart_p))
4775 en=i;
4776 else
4777 an=i;
4778 }
4779 }
4780 }
4781}
4782
4783
4784// sorts by degree and pLtCmp
4785// but puts pure monomials at the beginning
4786int posInSMonFirst (const kStrategy strat, const int length,const poly p)
4787{
4788 if (length<0) return 0;
4789 polyset set=strat->S;
4790 if(pNext(p) == NULL)
4791 {
4792 int mon = 0;
4793 for(int i = 0;i<=length;i++)
4794 {
4795 if(set[i] != NULL && pNext(set[i]) == NULL)
4796 mon++;
4797 }
4798 int o = p_Deg(p,currRing);
4799 int op = p_Deg(set[mon],currRing);
4800
4801 if ((op < o)
4802 || ((op == o) && (pLtCmp(set[mon],p) == -1)))
4803 return length+1;
4804 int i;
4805 int an = 0;
4806 int en= mon;
4807 loop
4808 {
4809 if (an >= en-1)
4810 {
4811 op = p_Deg(set[an],currRing);
4812 if ((op < o)
4813 || ((op == o) && (pLtCmp(set[an],p) == -1)))
4814 return en;
4815 return an;
4816 }
4817 i=(an+en) / 2;
4818 op = p_Deg(set[i],currRing);
4819 if ((op < o)
4820 || ((op == o) && (pLtCmp(set[i],p) == -1)))
4821 an=i;
4822 else
4823 en=i;
4824 }
4825 }
4826 else /*if(pNext(p) != NULL)*/
4827 {
4828 int o = p_Deg(p,currRing);
4829 int op = p_Deg(set[length],currRing);
4830
4831 if ((op < o)
4832 || ((op == o) && (pLtCmp(set[length],p) == -1)))
4833 return length+1;
4834 int i;
4835 int an = 0;
4836 for(i=0;i<=length;i++)
4837 if(set[i] != NULL && pNext(set[i]) == NULL)
4838 an++;
4839 int en= length;
4840 loop
4841 {
4842 if (an >= en-1)
4843 {
4844 op = p_Deg(set[an],currRing);
4845 if ((op < o)
4846 || ((op == o) && (pLtCmp(set[an],p) == -1)))
4847 return en;
4848 return an;
4849 }
4850 i=(an+en) / 2;
4851 op = p_Deg(set[i],currRing);
4852 if ((op < o)
4853 || ((op == o) && (pLtCmp(set[i],p) == -1)))
4854 an=i;
4855 else
4856 en=i;
4857 }
4858 }
4859}
4860
4861// sorts by degree and pLtCmp in the block between start,end;
4862// but puts pure monomials at the beginning
4863int posInIdealMonFirst (const ideal F, const poly p,int start,int end)
4864{
4866 end = IDELEMS(F);
4867 if (end<0) return 0;
4868 if(pNext(p) == NULL) return start;
4869 polyset set=F->m;
4870 int o = p_Deg(p,currRing);
4871 int op;
4872 int i;
4873 int an = start;
4874 for(i=start;i<end;i++)
4875 if(set[i] != NULL && pNext(set[i]) == NULL)
4876 an++;
4877 if(an == end-1)
4878 return end;
4879 int en= end;
4880 loop
4881 {
4882 if(an>=en)
4883 return en;
4884 if (an == en-1)
4885 {
4886 op = p_Deg(set[an],currRing);
4887 if ((op < o)
4888 || ((op == o) && (pLtCmp(set[an],p) == -1)))
4889 return en;
4890 return an;
4891 }
4892 i=(an+en) / 2;
4893 op = p_Deg(set[i],currRing);
4894 if ((op < o)
4895 || ((op == o) && (pLtCmp(set[i],p) == -1)))
4896 an=i;
4897 else
4898 en=i;
4899 }
4900}
4901
4902
4903/*2
4904* looks up the position of p in set
4905* the position is the last one
4906*/
4907int posInT0 (const TSet,const int length,LObject &)
4908{
4909 return (length+1);
4910}
4911
4912
4913/*2
4914* looks up the position of p in T
4915* set[0] is the smallest with respect to the ordering-procedure
4916* pComp
4917*/
4918int posInT1 (const TSet set,const int length,LObject &p)
4919{
4920 if (length==-1) return 0;
4921
4922 if (pLmCmp(set[length].p,p.p)!= currRing->OrdSgn) return length+1;
4923
4924 int i;
4925 int an = 0;
4926 int en= length;
4927 int cmp_int=currRing->OrdSgn;
4928
4929 loop
4930 {
4931 if (an >= en-1)
4932 {
4933 if (pLmCmp(set[an].p,p.p) == cmp_int) return an;
4934 return en;
4935 }
4936 i=(an+en) / 2;
4937 if (pLmCmp(set[i].p,p.p) == cmp_int) en=i;
4938 else an=i;
4939 }
4940}
4941
4942/*2
4943* looks up the position of p in T
4944* set[0] is the smallest with respect to the ordering-procedure
4945* length
4946*/
4947int posInT2 (const TSet set,const int length,LObject &p)
4948{
4949 if (length==-1) return 0;
4950 p.GetpLength();
4951 if (set[length].length<p.length) return length+1;
4952
4953 int i;
4954 int an = 0;
4955 int en= length;
4956
4957 loop
4958 {
4959 if (an >= en-1)
4960 {
4961 if (set[an].length>p.length) return an;
4962 return en;
4963 }
4964 i=(an+en) / 2;
4965 if (set[i].length>p.length) en=i;
4966 else an=i;
4967 }
4968}
4969
4970/*2
4971* looks up the position of p in T
4972* set[0] is the smallest with respect to the ordering-procedure
4973* totaldegree,pComp
4974*/
4975int posInT11 (const TSet set,const int length,LObject &p)
4976{
4977 if (length==-1) return 0;
4978
4979 int o = p.GetpFDeg();
4980 int op = set[length].GetpFDeg();
4981 int cmp_int=currRing->OrdSgn;
4982
4983 if ((op < o)
4984 || ((op == o) && (pLmCmp(set[length].p,p.p) != cmp_int)))
4985 return length+1;
4986
4987 int i;
4988 int an = 0;
4989 int en= length;
4990
4991 loop
4992 {
4993 if (an >= en-1)
4994 {
4995 op= set[an].GetpFDeg();
4996 if ((op > o)
4997 || (( op == o) && (pLmCmp(set[an].p,p.p) == cmp_int)))
4998 return an;
4999 return en;
5000 }
5001 i=(an+en) / 2;
5002 op = set[i].GetpFDeg();
5003 if (( op > o)
5004 || (( op == o) && (pLmCmp(set[i].p,p.p) == cmp_int)))
5005 en=i;
5006 else
5007 an=i;
5008 }
5009}
5010
5011#ifdef HAVE_RINGS
5012int posInT11Ring (const TSet set,const int length,LObject &p)
5013{
5014 if (length==-1) return 0;
5015
5016 int o = p.GetpFDeg();
5017 int op = set[length].GetpFDeg();
5018
5019 if ((op < o)
5020 || ((op == o) && (pLtCmpOrdSgnDiffP(set[length].p,p.p))))
5021 return length+1;
5022
5023 int i;
5024 int an = 0;
5025 int en= length;
5026
5027 loop
5028 {
5029 if (an >= en-1)
5030 {
5031 op= set[an].GetpFDeg();
5032 if ((op > o)
5033 || (( op == o) && (pLtCmpOrdSgnEqP(set[an].p,p.p))))
5034 return an;
5035 return en;
5036 }
5037 i=(an+en) / 2;
5038 op = set[i].GetpFDeg();
5039 if (( op > o)
5040 || (( op == o) && (pLtCmpOrdSgnEqP(set[i].p,p.p))))
5041 en=i;
5042 else
5043 an=i;
5044 }
5045}
5046#endif
5047
5048/*2
5049* looks up the position of p in T
5050* set[0] is the smallest with respect to the ordering-procedure
5051* totaldegree,pComp
5052*/
5053int posInT110 (const TSet set,const int length,LObject &p)
5054{
5055 if (length==-1) return 0;
5056 p.GetpLength();
5057
5058 int o = p.GetpFDeg();
5059 int op = set[length].GetpFDeg();
5060 int cmp_int=currRing->OrdSgn;
5061
5062 if (( op < o)
5063 || (( op == o) && (set[length].length<p.length))
5064 || (( op == o) && (set[length].length == p.length)
5065 && (pLmCmp(set[length].p,p.p) != cmp_int)))
5066 return length+1;
5067
5068 int i;
5069 int an = 0;
5070 int en= length;
5071 loop
5072 {
5073 if (an >= en-1)
5074 {
5075 op = set[an].GetpFDeg();
5076 if (( op > o)
5077 || (( op == o) && (set[an].length > p.length))
5078 || (( op == o) && (set[an].length == p.length)
5079 && (pLmCmp(set[an].p,p.p) == cmp_int)))
5080 return an;
5081 return en;
5082 }
5083 i=(an+en) / 2;
5084 op = set[i].GetpFDeg();
5085 if (( op > o)
5086 || (( op == o) && (set[i].length > p.length))
5087 || (( op == o) && (set[i].length == p.length)
5088 && (pLmCmp(set[i].p,p.p) == cmp_int)))
5089 en=i;
5090 else
5091 an=i;
5092 }
5093}
5094
5095#ifdef HAVE_RINGS
5096int posInT110Ring (const TSet set,const int length,LObject &p)
5097{
5098 if (length==-1) return 0;
5099 p.GetpLength();
5100
5101 int o = p.GetpFDeg();
5102 int op = set[length].GetpFDeg();
5103
5104 if (( op < o)
5105 || (( op == o) && (set[length].length<p.length))
5106 || (( op == o) && (set[length].length == p.length)
5107 && (pLtCmpOrdSgnDiffP(set[length].p,p.p))))
5108 return length+1;
5109
5110 int i;
5111 int an = 0;
5112 int en= length;
5113 loop
5114 {
5115 if (an >= en-1)
5116 {
5117 op = set[an].GetpFDeg();
5118 if (( op > o)
5119 || (( op == o) && (set[an].length > p.length))
5120 || (( op == o) && (set[an].length == p.length)
5121 && (pLtCmpOrdSgnEqP(set[an].p,p.p))))
5122 return an;
5123 return en;
5124 }
5125 i=(an+en) / 2;
5126 op = set[i].GetpFDeg();
5127 if (( op > o)
5128 || (( op == o) && (set[i].length > p.length))
5129 || (( op == o) && (set[i].length == p.length)
5130 && (pLtCmpOrdSgnEqP(set[i].p,p.p))))
5131 en=i;
5132 else
5133 an=i;
5134 }
5135}
5136#endif
5137
5138/*2
5139* looks up the position of p in set
5140* set[0] is the smallest with respect to the ordering-procedure
5141* pFDeg
5142*/
5143int posInT13 (const TSet set,const int length,LObject &p)
5144{
5145 if (length==-1) return 0;
5146
5147 int o = p.GetpFDeg();
5148
5149 if (set[length].GetpFDeg() <= o)
5150 return length+1;
5151
5152 int i;
5153 int an = 0;
5154 int en= length;
5155 loop
5156 {
5157 if (an >= en-1)
5158 {
5159 if (set[an].GetpFDeg() > o)
5160 return an;
5161 return en;
5162 }
5163 i=(an+en) / 2;
5164 if (set[i].GetpFDeg() > o)
5165 en=i;
5166 else
5167 an=i;
5168 }
5169}
5170
5171// determines the position based on: 1.) Ecart 2.) pLength
5172int posInT_EcartpLength(const TSet set,const int length,LObject &p)
5173{
5174 if (length==-1) return 0;
5175 int ol = p.GetpLength();
5176 int op=p.ecart;
5177 int oo=set[length].ecart;
5178
5179 if ((oo < op) || ((oo==op) && (set[length].length <= ol)))
5180 return length+1;
5181
5182 int i;
5183 int an = 0;
5184 int en= length;
5185 loop
5186 {
5187 if (an >= en-1)
5188 {
5189 int oo=set[an].ecart;
5190 if((oo > op)
5191 || ((oo==op) && (set[an].pLength > ol)))
5192 return an;
5193 return en;
5194 }
5195 i=(an+en) / 2;
5196 int oo=set[i].ecart;
5197 if ((oo > op)
5198 || ((oo == op) && (set[i].pLength > ol)))
5199 en=i;
5200 else
5201 an=i;
5202 }
5203}
5204
5205/*2
5206* looks up the position of p in set
5207* set[0] is the smallest with respect to the ordering-procedure
5208* maximaldegree, pComp
5209*/
5210int posInT15 (const TSet set,const int length,LObject &p)
5211/*{
5212 *int j=0;
5213 * int o;
5214 *
5215 * o = p.GetpFDeg()+p.ecart;
5216 * loop
5217 * {
5218 * if ((set[j].GetpFDeg()+set[j].ecart > o)
5219 * || ((set[j].GetpFDeg()+set[j].ecart == o)
5220 * && (pLmCmp(set[j].p,p.p) == currRing->OrdSgn)))
5221 * {
5222 * return j;
5223 * }
5224 * j++;
5225 * if (j > length) return j;
5226 * }
5227 *}
5228 */
5229{
5230 if (length==-1) return 0;
5231
5232 int o = p.GetpFDeg() + p.ecart;
5233 int op = set[length].GetpFDeg()+set[length].ecart;
5234 int cmp_int=currRing->OrdSgn;
5235
5236 if ((op < o)
5237 || ((op == o)
5238 && (pLmCmp(set[length].p,p.p) != cmp_int)))
5239 return length+1;
5240
5241 int i;
5242 int an = 0;
5243 int en= length;
5244 loop
5245 {
5246 if (an >= en-1)
5247 {
5248 op = set[an].GetpFDeg()+set[an].ecart;
5249 if (( op > o)
5250 || (( op == o) && (pLmCmp(set[an].p,p.p) == cmp_int)))
5251 return an;
5252 return en;
5253 }
5254 i=(an+en) / 2;
5255 op = set[i].GetpFDeg()+set[i].ecart;
5256 if (( op > o)
5257 || (( op == o) && (pLmCmp(set[i].p,p.p) == cmp_int)))
5258 en=i;
5259 else
5260 an=i;
5261 }
5262}
5263
5264#ifdef HAVE_RINGS
5265int posInT15Ring (const TSet set,const int length,LObject &p)
5266{
5267 if (length==-1) return 0;
5268
5269 int o = p.GetpFDeg() + p.ecart;
5270 int op = set[length].GetpFDeg()+set[length].ecart;
5271
5272 if ((op < o)
5273 || ((op == o)
5274 && (pLtCmpOrdSgnDiffP(set[length].p,p.p))))
5275 return length+1;
5276
5277 int i;
5278 int an = 0;
5279 int en= length;
5280 loop
5281 {
5282 if (an >= en-1)
5283 {
5284 op = set[an].GetpFDeg()+set[an].ecart;
5285 if (( op > o)
5286 || (( op == o) && (pLtCmpOrdSgnEqP(set[an].p,p.p))))
5287 return an;
5288 return en;
5289 }
5290 i=(an+en) / 2;
5291 op = set[i].GetpFDeg()+set[i].ecart;
5292 if (( op > o)
5293 || (( op == o) && (pLtCmpOrdSgnEqP(set[i].p,p.p))))
5294 en=i;
5295 else
5296 an=i;
5297 }
5298}
5299#endif
5300
5301/*2
5302* looks up the position of p in set
5303* set[0] is the smallest with respect to the ordering-procedure
5304* pFDeg+ecart, ecart, pComp
5305*/
5306int posInT17 (const TSet set,const int length,LObject &p)
5307/*
5308*{
5309* int j=0;
5310* int o;
5311*
5312* o = p.GetpFDeg()+p.ecart;
5313* loop
5314* {
5315* if ((pFDeg(set[j].p)+set[j].ecart > o)
5316* || (((pFDeg(set[j].p)+set[j].ecart == o)
5317* && (set[j].ecart < p.ecart)))
5318* || ((pFDeg(set[j].p)+set[j].ecart == o)
5319* && (set[j].ecart==p.ecart)
5320* && (pLmCmp(set[j].p,p.p)==currRing->OrdSgn)))
5321* return j;
5322* j++;
5323* if (j > length) return j;
5324* }
5325* }
5326*/
5327{
5328 if (length==-1) return 0;
5329
5330 int o = p.GetpFDeg() + p.ecart;
5331 int op = set[length].GetpFDeg()+set[length].ecart;
5332 int cmp_int=currRing->OrdSgn;
5333
5334 if ((op < o)
5335 || (( op == o) && (set[length].ecart > p.ecart))
5336 || (( op == o) && (set[length].ecart==p.ecart)
5337 && (pLmCmp(set[length].p,p.p) != cmp_int)))
5338 return length+1;
5339
5340 int i;
5341 int an = 0;
5342 int en= length;
5343 loop
5344 {
5345 if (an >= en-1)
5346 {
5347 op = set[an].GetpFDeg()+set[an].ecart;
5348 if (( op > o)
5349 || (( op == o) && (set[an].ecart < p.ecart))
5350 || (( op == o) && (set[an].ecart==p.ecart)
5351 && (pLmCmp(set[an].p,p.p) == cmp_int)))
5352 return an;
5353 return en;
5354 }
5355 i=(an+en) / 2;
5356 op = set[i].GetpFDeg()+set[i].ecart;
5357 if ((op > o)
5358 || (( op == o) && (set[i].ecart < p.ecart))
5359 || (( op == o) && (set[i].ecart == p.ecart)
5360 && (pLmCmp(set[i].p,p.p) == cmp_int)))
5361 en=i;
5362 else
5363 an=i;
5364 }
5365}
5366
5367#ifdef HAVE_RINGS
5368int posInT17Ring (const TSet set,const int length,LObject &p)
5369{
5370 if (length==-1) return 0;
5371
5372 int o = p.GetpFDeg() + p.ecart;
5373 int op = set[length].GetpFDeg()+set[length].ecart;
5374
5375 if ((op < o)
5376 || (( op == o) && (set[length].ecart > p.ecart))
5377 || (( op == o) && (set[length].ecart==p.ecart)
5378 && (pLtCmpOrdSgnDiffP(set[length].p,p.p))))
5379 return length+1;
5380
5381 int i;
5382 int an = 0;
5383 int en= length;
5384 loop
5385 {
5386 if (an >= en-1)
5387 {
5388 op = set[an].GetpFDeg()+set[an].ecart;
5389 if (( op > o)
5390 || (( op == o) && (set[an].ecart < p.ecart))
5391 || (( op == o) && (set[an].ecart==p.ecart)
5392 && (pLtCmpOrdSgnEqP(set[an].p,p.p))))
5393 return an;
5394 return en;
5395 }
5396 i=(an+en) / 2;
5397 op = set[i].GetpFDeg()+set[i].ecart;
5398 if ((op > o)
5399 || (( op == o) && (set[i].ecart < p.ecart))
5400 || (( op == o) && (set[i].ecart == p.ecart)
5401 && (pLtCmpOrdSgnEqP(set[i].p,p.p))))
5402 en=i;
5403 else
5404 an=i;
5405 }
5406}
5407#endif
5408
5409/*2
5410* looks up the position of p in set
5411* set[0] is the smallest with respect to the ordering-procedure
5412* pGetComp, pFDeg+ecart, ecart, pComp
5413*/
5414int posInT17_c (const TSet set,const int length,LObject &p)
5415{
5416 if (length==-1) return 0;
5417
5418 int cc = (-1+2*currRing->order[0]==ringorder_c);
5419 /* cc==1 for (c,..), cc==-1 for (C,..) */
5420 int o = p.GetpFDeg() + p.ecart;
5421 int c = pGetComp(p.p)*cc;
5422 int cmp_int=currRing->OrdSgn;
5423
5424 if (pGetComp(set[length].p)*cc < c)
5425 return length+1;
5426 if (pGetComp(set[length].p)*cc == c)
5427 {
5428 int op = set[length].GetpFDeg()+set[length].ecart;
5429 if ((op < o)
5430 || ((op == o) && (set[length].ecart > p.ecart))
5431 || ((op == o) && (set[length].ecart==p.ecart)
5432 && (pLmCmp(set[length].p,p.p) != cmp_int)))
5433 return length+1;
5434 }
5435
5436 int i;
5437 int an = 0;
5438 int en= length;
5439 loop
5440 {
5441 if (an >= en-1)
5442 {
5443 if (pGetComp(set[an].p)*cc < c)
5444 return en;
5445 if (pGetComp(set[an].p)*cc == c)
5446 {
5447 int op = set[an].GetpFDeg()+set[an].ecart;
5448 if ((op > o)
5449 || ((op == o) && (set[an].ecart < p.ecart))
5450 || ((op == o) && (set[an].ecart==p.ecart)
5451 && (pLmCmp(set[an].p,p.p) == cmp_int)))
5452 return an;
5453 }
5454 return en;
5455 }
5456 i=(an+en) / 2;
5457 if (pGetComp(set[i].p)*cc > c)
5458 en=i;
5459 else if (pGetComp(set[i].p)*cc == c)
5460 {
5461 int op = set[i].GetpFDeg()+set[i].ecart;
5462 if ((op > o)
5463 || ((op == o) && (set[i].ecart < p.ecart))
5464 || ((op == o) && (set[i].ecart == p.ecart)
5465 && (pLmCmp(set[i].p,p.p) == cmp_int)))
5466 en=i;
5467 else
5468 an=i;
5469 }
5470 else
5471 an=i;
5472 }
5473}
5474
5475#ifdef HAVE_RINGS
5476int posInT17_cRing (const TSet set,const int length,LObject &p)
5477{
5478 if (length==-1) return 0;
5479
5480 int cc = (-1+2*currRing->order[0]==ringorder_c);
5481 /* cc==1 for (c,..), cc==-1 for (C,..) */
5482 int o = p.GetpFDeg() + p.ecart;
5483 int c = pGetComp(p.p)*cc;
5484
5485 if (pGetComp(set[length].p)*cc < c)
5486 return length+1;
5487 if (pGetComp(set[length].p)*cc == c)
5488 {
5489 int op = set[length].GetpFDeg()+set[length].ecart;
5490 if ((op < o)
5491 || ((op == o) && (set[length].ecart > p.ecart))
5492 || ((op == o) && (set[length].ecart==p.ecart)
5493 && (pLtCmpOrdSgnDiffP(set[length].p,p.p))))
5494 return length+1;
5495 }
5496
5497 int i;
5498 int an = 0;
5499 int en= length;
5500 loop
5501 {
5502 if (an >= en-1)
5503 {
5504 if (pGetComp(set[an].p)*cc < c)
5505 return en;
5506 if (pGetComp(set[an].p)*cc == c)
5507 {
5508 int op = set[an].GetpFDeg()+set[an].ecart;
5509 if ((op > o)
5510 || ((op == o) && (set[an].ecart < p.ecart))
5511 || ((op == o) && (set[an].ecart==p.ecart)
5512 && (pLtCmpOrdSgnEqP(set[an].p,p.p))))
5513 return an;
5514 }
5515 return en;
5516 }
5517 i=(an+en) / 2;
5518 if (pGetComp(set[i].p)*cc > c)
5519 en=i;
5520 else if (pGetComp(set[i].p)*cc == c)
5521 {
5522 int op = set[i].GetpFDeg()+set[i].ecart;
5523 if ((op > o)
5524 || ((op == o) && (set[i].ecart < p.ecart))
5525 || ((op == o) && (set[i].ecart == p.ecart)
5526 && (pLtCmpOrdSgnEqP(set[i].p,p.p))))
5527 en=i;
5528 else
5529 an=i;
5530 }
5531 else
5532 an=i;
5533 }
5534}
5535#endif
5536
5537/*2
5538* looks up the position of p in set
5539* set[0] is the smallest with respect to
5540* ecart, pFDeg, length
5541*/
5542int posInT19 (const TSet set,const int length,LObject &p)
5543{
5544 p.GetpLength();
5545 if (length==-1) return 0;
5546
5547 int o = p.ecart;
5548 int op=p.GetpFDeg();
5549
5550 if (set[length].ecart < o)
5551 return length+1;
5552 if (set[length].ecart == o)
5553 {
5554 int oo=set[length].GetpFDeg();
5555 if ((oo < op) || ((oo==op) && (set[length].length < p.length)))
5556 return length+1;
5557 }
5558
5559 int i;
5560 int an = 0;
5561 int en= length;
5562 loop
5563 {
5564 if (an >= en-1)
5565 {
5566 if (set[an].ecart > o)
5567 return an;
5568 if (set[an].ecart == o)
5569 {
5570 int oo=set[an].GetpFDeg();
5571 if((oo > op)
5572 || ((oo==op) && (set[an].length > p.length)))
5573 return an;
5574 }
5575 return en;
5576 }
5577 i=(an+en) / 2;
5578 if (set[i].ecart > o)
5579 en=i;
5580 else if (set[i].ecart == o)
5581 {
5582 int oo=set[i].GetpFDeg();
5583 if ((oo > op)
5584 || ((oo == op) && (set[i].length > p.length)))
5585 en=i;
5586 else
5587 an=i;
5588 }
5589 else
5590 an=i;
5591 }
5592}
5593
5594/*2
5595*looks up the position of polynomial p in set
5596*set[length] is the smallest element in set with respect
5597*to the ordering-procedure pComp
5598*/
5599int posInLSpecial (const LSet set, const int length,
5600 LObject *p,const kStrategy)
5601{
5602 if (length<0) return 0;
5603
5604 int d=p->GetpFDeg();
5605 int op=set[length].GetpFDeg();
5606 int cmp_int=currRing->OrdSgn;
5607
5608 if ((op > d)
5609 || ((op == d) && (p->p1!=NULL)&&(set[length].p1==NULL))
5610 || (pLmCmp(set[length].p,p->p)== cmp_int))
5611 return length+1;
5612
5613 int i;
5614 int an = 0;
5615 int en= length;
5616 loop
5617 {
5618 if (an >= en-1)
5619 {
5620 op=set[an].GetpFDeg();
5621 if ((op > d)
5622 || ((op == d) && (p->p1!=NULL) && (set[an].p1==NULL))
5623 || (pLmCmp(set[an].p,p->p)== cmp_int))
5624 return en;
5625 return an;
5626 }
5627 i=(an+en) / 2;
5628 op=set[i].GetpFDeg();
5629 if ((op>d)
5630 || ((op==d) && (p->p1!=NULL) && (set[i].p1==NULL))
5631 || (pLmCmp(set[i].p,p->p) == cmp_int))
5632 an=i;
5633 else
5634 en=i;
5635 }
5636}
5637
5638/*2
5639*looks up the position of polynomial p in set
5640*set[length] is the smallest element in set with respect
5641*to the ordering-procedure pComp
5642*/
5643int posInL0 (const LSet set, const int length,
5644 LObject* p,const kStrategy)
5645{
5646 if (length<0) return 0;
5647
5648 int cmp_int=currRing->OrdSgn;
5649
5650 if (pLmCmp(set[length].p,p->p)== cmp_int)
5651 return length+1;
5652
5653 int i;
5654 int an = 0;
5655 int en= length;
5656 loop
5657 {
5658 if (an >= en-1)
5659 {
5660 if (pLmCmp(set[an].p,p->p) == cmp_int) return en;
5661 return an;
5662 }
5663 i=(an+en) / 2;
5664 if (pLmCmp(set[i].p,p->p) == cmp_int) an=i;
5665 else en=i;
5666 /*aend. fuer lazy == in !=- machen */
5667 }
5668}
5669
5670#ifdef HAVE_RINGS
5671int posInL0Ring (const LSet set, const int length,
5672 LObject* p,const kStrategy)
5673{
5674 if (length<0) return 0;
5675
5676 if (pLtCmpOrdSgnEqP(set[length].p,p->p))
5677 return length+1;
5678
5679 int i;
5680 int an = 0;
5681 int en= length;
5682 loop
5683 {
5684 if (an >= en-1)
5685 {
5686 if (pLtCmpOrdSgnEqP(set[an].p,p->p)) return en;
5687 return an;
5688 }
5689 i=(an+en) / 2;
5690 if (pLtCmpOrdSgnEqP(set[i].p,p->p)) an=i;
5691 else en=i;
5692 /*aend. fuer lazy == in !=- machen */
5693 }
5694}
5695#endif
5696
5697/*2
5698* looks up the position of polynomial p in set
5699* e is the ecart of p
5700* set[length] is the smallest element in set with respect
5701* to the signature order
5702*/
5703int posInLSig (const LSet set, const int length,
5704 LObject* p,const kStrategy /*strat*/)
5705{
5706 if (length<0) return 0;
5707 int cmp_int=currRing->OrdSgn;
5708 if (pLtCmp(set[length].sig,p->sig)==cmp_int)
5709 return length+1;
5710
5711 int i;
5712 int an = 0;
5713 int en= length;
5714 loop
5715 {
5716 if (an >= en-1)
5717 {
5718 if (pLtCmp(set[an].sig,p->sig) == cmp_int) return en;
5719 return an;
5720 }
5721 i=(an+en) / 2;
5722 if (pLtCmp(set[i].sig,p->sig) == cmp_int) an=i;
5723 else en=i;
5724 /*aend. fuer lazy == in !=- machen */
5725 }
5726}
5727//sorts the pair list in this order: pLtCmp on the sigs, FDeg, pLtCmp on the polys
5728int posInLSigRing (const LSet set, const int length,
5729 LObject* p,const kStrategy /*strat*/)
5730{
5731 assume(currRing->OrdSgn == 1 && rField_is_Ring(currRing));
5732 if (length<0) return 0;
5733 if (pLtCmp(set[length].sig,p->sig)== 1)
5734 return length+1;
5735
5736 int an,en,i;
5737 an = 0;
5738 en = length+1;
5739 int cmp;
5740 loop
5741 {
5742 if (an >= en-1)
5743 {
5744 if(an == en)
5745 return en;
5746 cmp = pLtCmp(set[an].sig,p->sig);
5747 if (cmp == 1)
5748 return en;
5749 if (cmp == -1)
5750 return an;
5751 if (cmp == 0)
5752 {
5753 if (set[an].FDeg > p->FDeg)
5754 return en;
5755 if (set[an].FDeg < p->FDeg)
5756 return an;
5757 if (set[an].FDeg == p->FDeg)
5758 {
5759 cmp = pLtCmp(set[an].p,p->p);
5760 if(cmp == 1)
5761 return en;
5762 else
5763 return an;
5764 }
5765 }
5766 }
5767 i=(an+en) / 2;
5768 cmp = pLtCmp(set[i].sig,p->sig);
5769 if (cmp == 1)
5770 an = i;
5771 if (cmp == -1)
5772 en = i;
5773 if (cmp == 0)
5774 {
5775 if (set[i].FDeg > p->FDeg)
5776 an = i;
5777 if (set[i].FDeg < p->FDeg)
5778 en = i;
5779 if (set[i].FDeg == p->FDeg)
5780 {
5781 cmp = pLtCmp(set[i].p,p->p);
5782 if(cmp == 1)
5783 an = i;
5784 else
5785 en = i;
5786 }
5787 }
5788 }
5789}
5790
5791// for sba, sorting syzygies
5792int posInSyz (const kStrategy strat, poly sig)
5793{
5794 if (strat->syzl==0) return 0;
5795 int cmp_int=currRing->OrdSgn;
5796 if (pLtCmp(strat->syz[strat->syzl-1],sig) != cmp_int)
5797 return strat->syzl;
5798 int i;
5799 int an = 0;
5800 int en= strat->syzl-1;
5801 loop
5802 {
5803 if (an >= en-1)
5804 {
5805 if (pLtCmp(strat->syz[an],sig) != cmp_int) return en;
5806 return an;
5807 }
5808 i=(an+en) / 2;
5809 if (pLtCmp(strat->syz[i],sig) != cmp_int) an=i;
5810 else en=i;
5811 /*aend. fuer lazy == in !=- machen */
5812 }
5813}
5814
5815/*2
5816*
5817* is only used in F5C, must ensure that the interreduction process does add new
5818* critical pairs to strat->L only behind all other critical pairs which are
5819* still in strat->L!
5820*/
5821int posInLF5C (const LSet /*set*/, const int /*length*/,
5822 LObject* /*p*/,const kStrategy strat)
5823{
5824 return strat->Ll+1;
5825}
5826
5827/*2
5828* looks up the position of polynomial p in set
5829* e is the ecart of p
5830* set[length] is the smallest element in set with respect
5831* to the ordering-procedure totaldegree,pComp
5832*/
5833int posInL11 (const LSet set, const int length,
5834 LObject* p,const kStrategy)
5835{
5836 if (length<0) return 0;
5837
5838 int o = p->GetpFDeg();
5839 int op = set[length].GetpFDeg();
5840 int cmp_int= -currRing->OrdSgn;
5841
5842 if ((op > o)
5843 || ((op == o) && (pLmCmp(set[length].p,p->p) != cmp_int)))
5844 return length+1;
5845 int i;
5846 int an = 0;
5847 int en= length;
5848 loop
5849 {
5850 if (an >= en-1)
5851 {
5852 op = set[an].GetpFDeg();
5853 if ((op > o)
5854 || ((op == o) && (pLmCmp(set[an].p,p->p) != cmp_int)))
5855 return en;
5856 return an;
5857 }
5858 i=(an+en) / 2;
5859 op = set[i].GetpFDeg();
5860 if ((op > o)
5861 || ((op == o) && (pLmCmp(set[i].p,p->p) != cmp_int)))
5862 an=i;
5863 else
5864 en=i;
5865 }
5866}
5867
5868#ifdef HAVE_RINGS
5869/*2
5870* looks up the position of polynomial p in set
5871* set[length] is the smallest element in set with respect
5872* to the ordering-procedure pLmCmp,totaldegree,coefficient
5873* For the same totaldegree, original pairs (from F) will
5874* be put at the end and smallest coefficients
5875*/
5876int posInL11Ring (const LSet set, const int length,
5877 LObject* p,const kStrategy)
5878{
5879 if (length<0) return 0;
5880
5881 int o = p->GetpFDeg();
5882 int op = set[length].GetpFDeg();
5883
5884 if ((op > o)
5885 || ((op == o) && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
5886 return length+1;
5887 int i;
5888 int an = 0;
5889 int en= length;
5890 loop
5891 {
5892 if (an >= en-1)
5893 {
5894 op = set[an].GetpFDeg();
5895 if ((op > o)
5896 || ((op == o) && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
5897 return en;
5898 return an;
5899 }
5900 i=(an+en) / 2;
5901 op = set[i].GetpFDeg();
5902 if ((op > o)
5903 || ((op == o) && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
5904 an=i;
5905 else
5906 en=i;
5907 }
5908}
5909
5910int posInLF5CRing (const LSet set, int start,const int length,
5911 LObject* p,const kStrategy)
5912{
5913 if (length<0) return 0;
5914 if(start == (length +1)) return (length+1);
5915 int o = p->GetpFDeg();
5916 int op = set[length].GetpFDeg();
5917
5918 if ((op > o)
5919 || ((op == o) && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
5920 return length+1;
5921 int i;
5922 int an = start;
5923 int en= length;
5924 loop
5925 {
5926 if (an >= en-1)
5927 {
5928 op = set[an].GetpFDeg();
5929 if ((op > o)
5930 || ((op == o) && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
5931 return en;
5932 return an;
5933 }
5934 i=(an+en) / 2;
5935 op = set[i].GetpFDeg();
5936 if ((op > o)
5937 || ((op == o) && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
5938 an=i;
5939 else
5940 en=i;
5941 }
5942}
5943#endif
5944
5945#ifdef HAVE_RINGS
5946int posInL11Ringls (const LSet set, const int length,
5947 LObject* p,const kStrategy)
5948{
5949 if (length < 0) return 0;
5950 int an,en,i;
5951 an = 0;
5952 en = length+1;
5953 loop
5954 {
5955 if (an >= en-1)
5956 {
5957 if(an == en)
5958 return en;
5959 if (set[an].FDeg > p->FDeg)
5960 return en;
5961 if (set[an].FDeg < p->FDeg)
5962 return an;
5963 if (set[an].FDeg == p->FDeg)
5964 {
5966 lcset = pGetCoeff(set[an].p);
5967 lcp = pGetCoeff(p->p);
5968 if(!nGreaterZero(lcset))
5969 {
5970 set[an].p=p_Neg(set[an].p,currRing);
5971 if (set[an].t_p!=NULL)
5972 pSetCoeff0(set[an].t_p,pGetCoeff(set[an].p));
5973 lcset=pGetCoeff(set[an].p);
5974 }
5975 if(!nGreaterZero(lcp))
5976 {
5977 p->p=p_Neg(p->p,currRing);
5978 if (p->t_p!=NULL)
5979 pSetCoeff0(p->t_p,pGetCoeff(p->p));
5980 lcp=pGetCoeff(p->p);
5981 }
5982 if(nGreater(lcset, lcp))
5983 {
5984 return en;
5985 }
5986 else
5987 {
5988 return an;
5989 }
5990 }
5991 }
5992 i=(an+en) / 2;
5993 if (set[i].FDeg > p->FDeg)
5994 an=i;
5995 if (set[i].FDeg < p->FDeg)
5996 en=i;
5997 if (set[i].FDeg == p->FDeg)
5998 {
6000 lcset = pGetCoeff(set[i].p);
6001 lcp = pGetCoeff(p->p);
6002 if(!nGreaterZero(lcset))
6003 {
6004 set[i].p=p_Neg(set[i].p,currRing);
6005 if (set[i].t_p!=NULL)
6006 pSetCoeff0(set[i].t_p,pGetCoeff(set[i].p));
6007 lcset=pGetCoeff(set[i].p);
6008 }
6009 if(!nGreaterZero(lcp))
6010 {
6011 p->p=p_Neg(p->p,currRing);
6012 if (p->t_p!=NULL)
6013 pSetCoeff0(p->t_p,pGetCoeff(p->p));
6014 lcp=pGetCoeff(p->p);
6015 }
6016 if(nGreater(lcset, lcp))
6017 {
6018 an = i;
6019 }
6020 else
6021 {
6022 en = i;
6023 }
6024 }
6025 }
6026}
6027#endif
6028
6029/*2 Position for rings L: Here I am
6030* looks up the position of polynomial p in set
6031* e is the ecart of p
6032* set[length] is the smallest element in set with respect
6033* to the ordering-procedure totaldegree,pComp
6034*/
6035inline int getIndexRng(long coeff)
6036{
6037 if (coeff == 0) return -1;
6038 long tmp = coeff;
6039 int ind = 0;
6040 while (tmp % 2 == 0)
6041 {
6042 tmp = tmp / 2;
6043 ind++;
6044 }
6045 return ind;
6046}
6047
6048/*{
6049 if (length < 0) return 0;
6050
6051 int o = p->GetpFDeg();
6052 int op = set[length].GetpFDeg();
6053
6054 int inde = getIndexRng((unsigned long) pGetCoeff(set[length].p));
6055 int indp = getIndexRng((unsigned long) pGetCoeff(p->p));
6056 int inda;
6057 int indi;
6058
6059 if ((inda > indp) || ((inda == inde) && ((op > o) || ((op == o) && (pLmCmp(set[length].p,p->p) != -currRing->OrdSgn)))))
6060 return length + 1;
6061 int i;
6062 int an = 0;
6063 inda = getIndexRng((unsigned long) pGetCoeff(set[an].p));
6064 int en = length;
6065 loop
6066 {
6067 if (an >= en-1)
6068 {
6069 op = set[an].GetpFDeg();
6070 if ((indp > inda) || ((indp == inda) && ((op > o) || ((op == o) && (pLmCmp(set[an].p,p->p) != -currRing->OrdSgn)))))
6071 return en;
6072 return an;
6073 }
6074 i = (an + en) / 2;
6075 indi = getIndexRng((unsigned long) pGetCoeff(set[i].p));
6076 op = set[i].GetpFDeg();
6077 if ((indi > indp) || ((indi == indp) && ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn)))))
6078 // if ((op > o) || ((op == o) && (pLmCmp(set[i].p,p->p) != -currRing->OrdSgn)))
6079 {
6080 an = i;
6081 inda = getIndexRng((unsigned long) pGetCoeff(set[an].p));
6082 }
6083 else
6084 en = i;
6085 }
6086} */
6087
6088/*2
6089* looks up the position of polynomial p in set
6090* set[length] is the smallest element in set with respect
6091* to the ordering-procedure totaldegree,pLength0
6092*/
6093int posInL110 (const LSet set, const int length,
6094 LObject* p,const kStrategy)
6095{
6096 if (length<0) return 0;
6097
6098 int o = p->GetpFDeg();
6099 int op = set[length].GetpFDeg();
6100 int cmp_int= -currRing->OrdSgn;
6101
6102 if ((op > o)
6103 || ((op == o) && (set[length].length >p->length))
6104 || ((op == o) && (set[length].length <= p->length)
6105 && (pLmCmp(set[length].p,p->p) != cmp_int)))
6106 return length+1;
6107 int i;
6108 int an = 0;
6109 int en= length;
6110 loop
6111 {
6112 if (an >= en-1)
6113 {
6114 op = set[an].GetpFDeg();
6115 if ((op > o)
6116 || ((op == o) && (set[an].length >p->length))
6117 || ((op == o) && (set[an].length <=p->length)
6118 && (pLmCmp(set[an].p,p->p) != cmp_int)))
6119 return en;
6120 return an;
6121 }
6122 i=(an+en) / 2;
6123 op = set[i].GetpFDeg();
6124 if ((op > o)
6125 || ((op == o) && (set[i].length > p->length))
6126 || ((op == o) && (set[i].length <= p->length)
6127 && (pLmCmp(set[i].p,p->p) != cmp_int)))
6128 an=i;
6129 else
6130 en=i;
6131 }
6132}
6133
6134#ifdef HAVE_RINGS
6135int posInL110Ring (const LSet set, const int length,
6136 LObject* p,const kStrategy)
6137{
6138 if (length<0) return 0;
6139
6140 int o = p->GetpFDeg();
6141 int op = set[length].GetpFDeg();
6142
6143 if ((op > o)
6144 || ((op == o) && (set[length].length >p->length))
6145 || ((op == o) && (set[length].length <= p->length)
6146 && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
6147 return length+1;
6148 int i;
6149 int an = 0;
6150 int en= length;
6151 loop
6152 {
6153 if (an >= en-1)
6154 {
6155 op = set[an].GetpFDeg();
6156 if ((op > o)
6157 || ((op == o) && (set[an].length >p->length))
6158 || ((op == o) && (set[an].length <=p->length)
6159 && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
6160 return en;
6161 return an;
6162 }
6163 i=(an+en) / 2;
6164 op = set[i].GetpFDeg();
6165 if ((op > o)
6166 || ((op == o) && (set[i].length > p->length))
6167 || ((op == o) && (set[i].length <= p->length)
6168 && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
6169 an=i;
6170 else
6171 en=i;
6172 }
6173}
6174#endif
6175
6176/*2
6177* looks up the position of polynomial p in set
6178* e is the ecart of p
6179* set[length] is the smallest element in set with respect
6180* to the ordering-procedure totaldegree
6181*/
6182int posInL13 (const LSet set, const int length,
6183 LObject* p,const kStrategy)
6184{
6185 if (length<0) return 0;
6186
6187 int o = p->GetpFDeg();
6188
6189 if (set[length].GetpFDeg() > o)
6190 return length+1;
6191
6192 int i;
6193 int an = 0;
6194 int en= length;
6195 loop
6196 {
6197 if (an >= en-1)
6198 {
6199 if (set[an].GetpFDeg() >= o)
6200 return en;
6201 return an;
6202 }
6203 i=(an+en) / 2;
6204 if (set[i].GetpFDeg() >= o)
6205 an=i;
6206 else
6207 en=i;
6208 }
6209}
6210
6211/*2
6212* looks up the position of polynomial p in set
6213* e is the ecart of p
6214* set[length] is the smallest element in set with respect
6215* to the ordering-procedure maximaldegree,pComp
6216*/
6217int posInL15 (const LSet set, const int length,
6218 LObject* p,const kStrategy)
6219{
6220 if (length<0) return 0;
6221
6222 int o = p->GetpFDeg() + p->ecart;
6223 int op = set[length].GetpFDeg() + set[length].ecart;
6224 int cmp_int= -currRing->OrdSgn;
6225
6226 if ((op > o)
6227 || ((op == o) && (pLmCmp(set[length].p,p->p) != cmp_int)))
6228 return length+1;
6229 int i;
6230 int an = 0;
6231 int en= length;
6232 loop
6233 {
6234 if (an >= en-1)
6235 {
6236 op = set[an].GetpFDeg() + set[an].ecart;
6237 if ((op > o)
6238 || ((op == o) && (pLmCmp(set[an].p,p->p) != cmp_int)))
6239 return en;
6240 return an;
6241 }
6242 i=(an+en) / 2;
6243 op = set[i].GetpFDeg() + set[i].ecart;
6244 if ((op > o)
6245 || ((op == o) && (pLmCmp(set[i].p,p->p) != cmp_int)))
6246 an=i;
6247 else
6248 en=i;
6249 }
6250}
6251
6252#ifdef HAVE_RINGS
6253int posInL15Ring (const LSet set, const int length,
6254 LObject* p,const kStrategy)
6255{
6256 if (length<0) return 0;
6257
6258 int o = p->GetpFDeg() + p->ecart;
6259 int op = set[length].GetpFDeg() + set[length].ecart;
6260
6261 if ((op > o)
6262 || ((op == o) && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
6263 return length+1;
6264 int i;
6265 int an = 0;
6266 int en= length;
6267 loop
6268 {
6269 if (an >= en-1)
6270 {
6271 op = set[an].GetpFDeg() + set[an].ecart;
6272 if ((op > o)
6273 || ((op == o) && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
6274 return en;
6275 return an;
6276 }
6277 i=(an+en) / 2;
6278 op = set[i].GetpFDeg() + set[i].ecart;
6279 if ((op > o)
6280 || ((op == o) && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
6281 an=i;
6282 else
6283 en=i;
6284 }
6285}
6286#endif
6287
6288/*2
6289* looks up the position of polynomial p in set
6290* e is the ecart of p
6291* set[length] is the smallest element in set with respect
6292* to the ordering-procedure totaldegree
6293*/
6294int posInL17 (const LSet set, const int length,
6295 LObject* p,const kStrategy)
6296{
6297 if (length<0) return 0;
6298
6299 int o = p->GetpFDeg() + p->ecart;
6300 int cmp_int= -currRing->OrdSgn;
6301
6302 if ((set[length].GetpFDeg() + set[length].ecart > o)
6303 || ((set[length].GetpFDeg() + set[length].ecart == o)
6304 && (set[length].ecart > p->ecart))
6305 || ((set[length].GetpFDeg() + set[length].ecart == o)
6306 && (set[length].ecart == p->ecart)
6307 && (pLmCmp(set[length].p,p->p) != cmp_int)))
6308 return length+1;
6309 int i;
6310 int an = 0;
6311 int en= length;
6312 loop
6313 {
6314 if (an >= en-1)
6315 {
6316 if ((set[an].GetpFDeg() + set[an].ecart > o)
6317 || ((set[an].GetpFDeg() + set[an].ecart == o)
6318 && (set[an].ecart > p->ecart))
6319 || ((set[an].GetpFDeg() + set[an].ecart == o)
6320 && (set[an].ecart == p->ecart)
6321 && (pLmCmp(set[an].p,p->p) != cmp_int)))
6322 return en;
6323 return an;
6324 }
6325 i=(an+en) / 2;
6326 if ((set[i].GetpFDeg() + set[i].ecart > o)
6327 || ((set[i].GetpFDeg() + set[i].ecart == o)
6328 && (set[i].ecart > p->ecart))
6329 || ((set[i].GetpFDeg() +set[i].ecart == o)
6330 && (set[i].ecart == p->ecart)
6331 && (pLmCmp(set[i].p,p->p) != cmp_int)))
6332 an=i;
6333 else
6334 en=i;
6335 }
6336}
6337
6338#ifdef HAVE_RINGS
6339int posInL17Ring (const LSet set, const int length,
6340 LObject* p,const kStrategy)
6341{
6342 if (length<0) return 0;
6343
6344 int o = p->GetpFDeg() + p->ecart;
6345
6346 if ((set[length].GetpFDeg() + set[length].ecart > o)
6347 || ((set[length].GetpFDeg() + set[length].ecart == o)
6348 && (set[length].ecart > p->ecart))
6349 || ((set[length].GetpFDeg() + set[length].ecart == o)
6350 && (set[length].ecart == p->ecart)
6351 && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
6352 return length+1;
6353 int i;
6354 int an = 0;
6355 int en= length;
6356 loop
6357 {
6358 if (an >= en-1)
6359 {
6360 if ((set[an].GetpFDeg() + set[an].ecart > o)
6361 || ((set[an].GetpFDeg() + set[an].ecart == o)
6362 && (set[an].ecart > p->ecart))
6363 || ((set[an].GetpFDeg() + set[an].ecart == o)
6364 && (set[an].ecart == p->ecart)
6365 && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
6366 return en;
6367 return an;
6368 }
6369 i=(an+en) / 2;
6370 if ((set[i].GetpFDeg() + set[i].ecart > o)
6371 || ((set[i].GetpFDeg() + set[i].ecart == o)
6372 && (set[i].ecart > p->ecart))
6373 || ((set[i].GetpFDeg() +set[i].ecart == o)
6374 && (set[i].ecart == p->ecart)
6375 && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
6376 an=i;
6377 else
6378 en=i;
6379 }
6380}
6381#endif
6382
6383/*2
6384* looks up the position of polynomial p in set
6385* e is the ecart of p
6386* set[length] is the smallest element in set with respect
6387* to the ordering-procedure pComp
6388*/
6389int posInL17_c (const LSet set, const int length,
6390 LObject* p,const kStrategy)
6391{
6392 if (length<0) return 0;
6393
6394 int cc = (-1+2*currRing->order[0]==ringorder_c);
6395 /* cc==1 for (c,..), cc==-1 for (C,..) */
6396 long c = pGetComp(p->p)*cc;
6397 int o = p->GetpFDeg() + p->ecart;
6398 int cmp_int= -currRing->OrdSgn;
6399
6400 if (pGetComp(set[length].p)*cc > c)
6401 return length+1;
6402 if (pGetComp(set[length].p)*cc == c)
6403 {
6404 if ((set[length].GetpFDeg() + set[length].ecart > o)
6405 || ((set[length].GetpFDeg() + set[length].ecart == o)
6406 && (set[length].ecart > p->ecart))
6407 || ((set[length].GetpFDeg() + set[length].ecart == o)
6408 && (set[length].ecart == p->ecart)
6409 && (pLmCmp(set[length].p,p->p) != cmp_int)))
6410 return length+1;
6411 }
6412 int i;
6413 int an = 0;
6414 int en= length;
6415 loop
6416 {
6417 if (an >= en-1)
6418 {
6419 if (pGetComp(set[an].p)*cc > c)
6420 return en;
6421 if (pGetComp(set[an].p)*cc == c)
6422 {
6423 if ((set[an].GetpFDeg() + set[an].ecart > o)
6424 || ((set[an].GetpFDeg() + set[an].ecart == o)
6425 && (set[an].ecart > p->ecart))
6426 || ((set[an].GetpFDeg() + set[an].ecart == o)
6427 && (set[an].ecart == p->ecart)
6428 && (pLmCmp(set[an].p,p->p) != cmp_int)))
6429 return en;
6430 }
6431 return an;
6432 }
6433 i=(an+en) / 2;
6434 if (pGetComp(set[i].p)*cc > c)
6435 an=i;
6436 else if (pGetComp(set[i].p)*cc == c)
6437 {
6438 if ((set[i].GetpFDeg() + set[i].ecart > o)
6439 || ((set[i].GetpFDeg() + set[i].ecart == o)
6440 && (set[i].ecart > p->ecart))
6441 || ((set[i].GetpFDeg() +set[i].ecart == o)
6442 && (set[i].ecart == p->ecart)
6443 && (pLmCmp(set[i].p,p->p) != cmp_int)))
6444 an=i;
6445 else
6446 en=i;
6447 }
6448 else
6449 en=i;
6450 }
6451}
6452
6453#ifdef HAVE_RINGS
6454int posInL17_cRing (const LSet set, const int length,
6455 LObject* p,const kStrategy)
6456{
6457 if (length<0) return 0;
6458
6459 int cc = (-1+2*currRing->order[0]==ringorder_c);
6460 /* cc==1 for (c,..), cc==-1 for (C,..) */
6461 long c = pGetComp(p->p)*cc;
6462 int o = p->GetpFDeg() + p->ecart;
6463
6464 if (pGetComp(set[length].p)*cc > c)
6465 return length+1;
6466 if (pGetComp(set[length].p)*cc == c)
6467 {
6468 if ((set[length].GetpFDeg() + set[length].ecart > o)
6469 || ((set[length].GetpFDeg() + set[length].ecart == o)
6470 && (set[length].ecart > p->ecart))
6471 || ((set[length].GetpFDeg() + set[length].ecart == o)
6472 && (set[length].ecart == p->ecart)
6473 && (pLtCmpOrdSgnDiffM(set[length].p,p->p))))
6474 return length+1;
6475 }
6476 int i;
6477 int an = 0;
6478 int en= length;
6479 loop
6480 {
6481 if (an >= en-1)
6482 {
6483 if (pGetComp(set[an].p)*cc > c)
6484 return en;
6485 if (pGetComp(set[an].p)*cc == c)
6486 {
6487 if ((set[an].GetpFDeg() + set[an].ecart > o)
6488 || ((set[an].GetpFDeg() + set[an].ecart == o)
6489 && (set[an].ecart > p->ecart))
6490 || ((set[an].GetpFDeg() + set[an].ecart == o)
6491 && (set[an].ecart == p->ecart)
6492 && (pLtCmpOrdSgnDiffM(set[an].p,p->p))))
6493 return en;
6494 }
6495 return an;
6496 }
6497 i=(an+en) / 2;
6498 if (pGetComp(set[i].p)*cc > c)
6499 an=i;
6500 else if (pGetComp(set[i].p)*cc == c)
6501 {
6502 if ((set[i].GetpFDeg() + set[i].ecart > o)
6503 || ((set[i].GetpFDeg() + set[i].ecart == o)
6504 && (set[i].ecart > p->ecart))
6505 || ((set[i].GetpFDeg() +set[i].ecart == o)
6506 && (set[i].ecart == p->ecart)
6507 && (pLtCmpOrdSgnDiffM(set[i].p,p->p))))
6508 an=i;
6509 else
6510 en=i;
6511 }
6512 else
6513 en=i;
6514 }
6515}
6516#endif
6517
6518/*
6519 * SYZYGY CRITERION for signature-based standard basis algorithms
6520 */
6521BOOLEAN syzCriterion(poly sig, unsigned long not_sevSig, kStrategy strat)
6522{
6523//#if 1
6524#ifdef DEBUGF5
6525 PrintS("syzygy criterion checks: ");
6526 pWrite(sig);
6527#endif
6528 for (int k=0; k<strat->syzl; k++)
6529 {
6530 //printf("-%d",k);
6531//#if 1
6532#ifdef DEBUGF5
6533 Print("checking with: %d / %d -- \n",k,strat->syzl);
6534 pWrite(pHead(strat->syz[k]));
6535#endif
6536 if (p_LmShortDivisibleBy(strat->syz[k], strat->sevSyz[k], sig, not_sevSig, currRing)
6537 && (!rField_is_Ring(currRing) ||
6538 (n_DivBy(pGetCoeff(sig), pGetCoeff(strat->syz[k]),currRing->cf) && pLtCmp(sig,strat->syz[k]) == 1)))
6539 {
6540//#if 1
6541#ifdef DEBUGF5
6542 PrintS("DELETE!\n");
6543#endif
6544 strat->nrsyzcrit++;
6545 //printf("- T -\n\n");
6546 return TRUE;
6547 }
6548 }
6549 //printf("- F -\n\n");
6550 return FALSE;
6551}
6552
6553/*
6554 * SYZYGY CRITERION for signature-based standard basis algorithms
6555 */
6556BOOLEAN syzCriterionInc(poly sig, unsigned long not_sevSig, kStrategy strat)
6557{
6558//#if 1
6559 if(sig == NULL)
6560 return FALSE;
6561#ifdef DEBUGF5
6562 PrintS("--- syzygy criterion checks: ");
6563 pWrite(sig);
6564#endif
6565 int comp = (int)__p_GetComp(sig, currRing);
6566 int min, max;
6567 if (comp<=1)
6568 return FALSE;
6569 else
6570 {
6571 min = strat->syzIdx[comp-2];
6572 //printf("SYZIDX %d/%d\n",strat->syzIdx[comp-2],comp-2);
6573 //printf("SYZIDX %d/%d\n",strat->syzIdx[comp-1],comp-1);
6574 //printf("SYZIDX %d/%d\n",strat->syzIdx[comp],comp);
6575 if (comp == strat->currIdx)
6576 {
6577 max = strat->syzl;
6578 }
6579 else
6580 {
6581 max = strat->syzIdx[comp-1];
6582 }
6583 for (int k=min; k<max; k++)
6584 {
6585#ifdef F5DEBUG
6586 Print("COMP %d/%d - MIN %d - MAX %d - SYZL %ld\n",comp,strat->currIdx,min,max,strat->syzl);
6587 Print("checking with: %d -- ",k);
6588 pWrite(pHead(strat->syz[k]));
6589#endif
6590 if (p_LmShortDivisibleBy(strat->syz[k], strat->sevSyz[k], sig, not_sevSig, currRing)
6591 && (!rField_is_Ring(currRing) ||
6592 (n_DivBy(pGetCoeff(sig), pGetCoeff(strat->syz[k]),currRing->cf) && pLtCmp(sig,strat->syz[k]) == 1)))
6593 {
6594 strat->nrsyzcrit++;
6595 return TRUE;
6596 }
6597 }
6598 return FALSE;
6599 }
6600}
6601
6602/*
6603 * REWRITTEN CRITERION for signature-based standard basis algorithms
6604 */
6605BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly /*lm*/, kStrategy strat, int start=0)
6606{
6607 //printf("Faugere Rewritten Criterion\n");
6609 return FALSE;
6610//#if 1
6611#ifdef DEBUGF5
6612 PrintS("rewritten criterion checks: ");
6613 pWrite(sig);
6614#endif
6615 for(int k = strat->sl; k>=start; k--)
6616 {
6617//#if 1
6618#ifdef DEBUGF5
6619 PrintS("checking with: ");
6620 pWrite(strat->sig[k]);
6621 pWrite(pHead(strat->S[k]));
6622#endif
6623 if (p_LmShortDivisibleBy(strat->sig[k], strat->sevSig[k], sig, not_sevSig, currRing))
6624 {
6625//#if 1
6626#ifdef DEBUGF5
6627 PrintS("DELETE!\n");
6628#endif
6629 strat->nrrewcrit++;
6630 return TRUE;
6631 }
6632 //k--;
6633 }
6634#ifdef DEBUGF5
6635 PrintS("ALL ELEMENTS OF S\n----------------------------------------\n");
6636 for(int kk = 0; kk<strat->sl+1; kk++)
6637 {
6638 pWrite(pHead(strat->S[kk]));
6639 }
6640 PrintS("------------------------------\n");
6641#endif
6642 return FALSE;
6643}
6644
6645/*
6646 * REWRITTEN CRITERION for signature-based standard basis algorithms
6647 ***************************************************************************
6648 * TODO:This should become the version of Arri/Perry resp. Bjarke/Stillman *
6649 ***************************************************************************
6650 */
6651
6652// real implementation of arri's rewritten criterion, only called once in
6653// kstd2.cc, right before starting reduction
6654// IDEA: Arri says that it is enough to consider 1 polynomial for each unique
6655// signature appearing during the computations. Thus we first of all go
6656// through strat->L and delete all other pairs of the same signature,
6657// keeping only the one with least possible leading monomial. After this
6658// we check if we really need to compute this critical pair at all: There
6659// can be elements already in strat->S whose signatures divide the
6660// signature of the critical pair in question and whose multiplied
6661// leading monomials are smaller than the leading monomial of the
6662// critical pair. In this situation we can discard the critical pair
6663// completely.
6664BOOLEAN arriRewCriterion(poly /*sig*/, unsigned long /*not_sevSig*/, poly /*lm*/, kStrategy strat, int start=0)
6665{
6667 return FALSE;
6668 poly p1 = pOne();
6669 poly p2 = pOne();
6670 for (int ii=strat->sl; ii>start; ii--)
6671 {
6672 if (p_LmShortDivisibleBy(strat->sig[ii], strat->sevSig[ii], strat->P.sig, ~strat->P.sevSig, currRing))
6673 {
6674 p_ExpVectorSum(p1,strat->P.sig,strat->S[ii],currRing);
6675 p_ExpVectorSum(p2,strat->sig[ii],strat->P.p,currRing);
6676 if (!(pLmCmp(p1,p2) == 1))
6677 {
6678 pDelete(&p1);
6679 pDelete(&p2);
6680 return TRUE;
6681 }
6682 }
6683 }
6684 pDelete(&p1);
6685 pDelete(&p2);
6686 return FALSE;
6687}
6688
6689BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int /*start=0*/)
6690{
6691 //Over Rings, there are still some changes to do: considering coeffs
6693 return FALSE;
6694 int found = -1;
6695 for (int i=strat->Bl; i>-1; i--)
6696 {
6697 if (pLmEqual(strat->B[i].sig,sig))
6698 {
6699 found = i;
6700 break;
6701 }
6702 }
6703 if (found != -1)
6704 {
6705 if (pLmCmp(lm,strat->B[found].GetLmCurrRing()) == -1)
6706 {
6707 deleteInL(strat->B,&strat->Bl,found,strat);
6708 }
6709 else
6710 {
6711 return TRUE;
6712 }
6713 }
6714 poly p1 = pOne();
6715 poly p2 = pOne();
6716 for (int ii=strat->sl; ii>-1; ii--)
6717 {
6718 if (p_LmShortDivisibleBy(strat->sig[ii], strat->sevSig[ii], sig, not_sevSig, currRing))
6719 {
6720 p_ExpVectorSum(p1,sig,strat->S[ii],currRing);
6721 p_ExpVectorSum(p2,strat->sig[ii],lm,currRing);
6722 if (!(pLmCmp(p1,p2) == 1))
6723 {
6724 pDelete(&p1);
6725 pDelete(&p2);
6726 return TRUE;
6727 }
6728 }
6729 }
6730 pDelete(&p1);
6731 pDelete(&p2);
6732 return FALSE;
6733}
6734
6735/***************************************************************
6736 *
6737 * Tail reductions
6738 *
6739 ***************************************************************/
6741{
6742 int j = 0;
6743 const unsigned long not_sev = ~L->sev;
6744 const unsigned long* sev = strat->sevS;
6745 poly p;
6746 ring r;
6747 L->GetLm(p, r);
6748
6750
6751 if (r == currRing)
6752 {
6753 if(!rField_is_Ring(r))
6754 {
6755 loop
6756 {
6757 if (j > end_pos) return NULL;
6758 #if defined(PDEBUG) || defined(PDIV_DEBUG)
6759 if (strat->S[j]!= NULL && p_LmShortDivisibleBy(strat->S[j], sev[j], p, not_sev, r) &&
6760 (ecart== LONG_MAX || ecart>= strat->ecartS[j]))
6761 #else
6762 if (!(sev[j] & not_sev) &&
6763 (ecart== LONG_MAX || ecart>= strat->ecartS[j]) &&
6764 p_LmDivisibleBy(strat->S[j], p, r))
6765 #endif
6766 {
6767 break;
6768 }
6769 j++;
6770 }
6771 }
6772 #ifdef HAVE_RINGS
6773 else
6774 {
6775 loop
6776 {
6777 if (j > end_pos) return NULL;
6778 #if defined(PDEBUG) || defined(PDIV_DEBUG)
6779 if (strat->S[j]!= NULL
6780 && p_LmShortDivisibleBy(strat->S[j], sev[j], p, not_sev, r)
6781 && (ecart== LONG_MAX || ecart>= strat->ecartS[j])
6782 && n_DivBy(pGetCoeff(p), pGetCoeff(strat->S[j]), r->cf))
6783 #else
6784 if (!(sev[j] & not_sev)
6785 && (ecart== LONG_MAX || ecart>= strat->ecartS[j])
6786 && p_LmDivisibleBy(strat->S[j], p, r)
6787 && n_DivBy(pGetCoeff(p), pGetCoeff(strat->S[j]), r->cf))
6788 #endif
6789 {
6790 break; // found
6791 }
6792 j++;
6793 }
6794 }
6795 #endif
6796 // if called from NF, T objects do not exist:
6797 if (strat->tl < 0 || strat->S_2_R[j] == -1)
6798 {
6799 T->Set(strat->S[j], r, strat->tailRing);
6800 assume(T->GetpLength()==pLength(T->p != __null ? T->p : T->t_p));
6801 return T;
6802 }
6803 else
6804 {
6805///// assume (j >= 0 && j <= strat->tl && strat->S_2_T(j) != NULL
6806///// && strat->S_2_T(j)->p == strat->S[j]); // wrong?
6807// assume (j >= 0 && j <= strat->sl && strat->S_2_T(j) != NULL && strat->S_2_T(j)->p == strat->S[j]);
6808 return strat->S_2_T(j);
6809 }
6810 }
6811 else
6812 {
6813 TObject* t;
6814 if(!rField_is_Ring(r))
6815 {
6816 loop
6817 {
6818 if (j > end_pos) return NULL;
6819 assume(strat->S_2_R[j] != -1);
6820 #if defined(PDEBUG) || defined(PDIV_DEBUG)
6821 t = strat->S_2_T(j);
6822 assume(t != NULL && t->t_p != NULL && t->tailRing == r);
6823 if (p_LmShortDivisibleBy(t->t_p, sev[j], p, not_sev, r)
6824 && (ecart== LONG_MAX || ecart>= strat->ecartS[j]))
6825 {
6826 t->pLength=pLength(t->t_p);
6827 return t;
6828 }
6829 #else
6830 if (! (sev[j] & not_sev)
6831 && (ecart== LONG_MAX || ecart>= strat->ecartS[j]))
6832 {
6833 t = strat->S_2_T(j);
6834 assume(t != NULL && t->t_p != NULL && t->tailRing == r && t->p == strat->S[j]);
6835 if (p_LmDivisibleBy(t->t_p, p, r))
6836 {
6837 t->pLength=pLength(t->t_p);
6838 return t;
6839 }
6840 }
6841 #endif
6842 j++;
6843 }
6844 }
6845 #ifdef HAVE_RINGS
6846 else
6847 {
6848 loop
6849 {
6850 if (j > end_pos) return NULL;
6851 assume(strat->S_2_R[j] != -1);
6852 #if defined(PDEBUG) || defined(PDIV_DEBUG)
6853 t = strat->S_2_T(j);
6854 assume(t != NULL && t->t_p != NULL && t->tailRing == r);
6855 if (p_LmShortDivisibleBy(t->t_p, sev[j], p, not_sev, r)
6856 && (ecart== LONG_MAX || ecart>= strat->ecartS[j])
6857 && n_DivBy(pGetCoeff(p), pGetCoeff(t->t_p), r->cf))
6858 {
6859 t->pLength=pLength(t->t_p);
6860 return t;
6861 }
6862 #else
6863 if (! (sev[j] & not_sev)
6864 && (ecart== LONG_MAX || ecart>= strat->ecartS[j]))
6865 {
6866 t = strat->S_2_T(j);
6867 assume(t != NULL && t->t_p != NULL && t->tailRing == r && t->p == strat->S[j]);
6868 if (p_LmDivisibleBy(t->t_p, p, r)
6869 && n_DivBy(pGetCoeff(p), pGetCoeff(t->t_p), r->cf))
6870 {
6871 t->pLength=pLength(t->t_p);
6872 return t;
6873 }
6874 }
6875 #endif
6876 j++;
6877 }
6878 }
6879 #endif
6880 }
6881}
6882
6883poly redtail (LObject* L, int end_pos, kStrategy strat)
6884{
6885 poly h, hn;
6886 strat->redTailChange=FALSE;
6887
6888 L->GetP();
6889 poly p = L->p;
6890 if (strat->noTailReduction || pNext(p) == NULL)
6891 return p;
6892
6893 LObject Ln(strat->tailRing);
6894 TObject* With;
6895 // placeholder in case strat->tl < 0
6896 TObject With_s(strat->tailRing);
6897 h = p;
6898 hn = pNext(h);
6899 long op = strat->tailRing->pFDeg(hn, strat->tailRing);
6900 long e;
6901 int l;
6902 BOOLEAN save_HE=strat->kAllAxis;
6903 strat->kAllAxis |=
6904 ((Kstd1_deg>0) && (op<=Kstd1_deg)) || TEST_OPT_INFREDTAIL;
6905
6906 while(hn != NULL)
6907 {
6908 op = strat->tailRing->pFDeg(hn, strat->tailRing);
6909 if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done;
6910 e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op;
6911 loop
6912 {
6913 Ln.Set(hn, strat->tailRing);
6914 Ln.sev = p_GetShortExpVector(hn, strat->tailRing);
6915 if (strat->kAllAxis)
6917 else
6918 With = kFindDivisibleByInS_T(strat, end_pos, &Ln, &With_s, e);
6919 if (With == NULL) break;
6920 With->length=0;
6921 With->pLength=0;
6922 strat->redTailChange=TRUE;
6923 if (ksReducePolyTail(L, With, h, strat->kNoetherTail()))
6924 {
6925 strat->kAllAxis = save_HE;
6926 // reducing the tail would violate the exp bound
6927 if (kStratChangeTailRing(strat, L))
6928 {
6929 return redtail(L, end_pos, strat);
6930 }
6931 else
6932 return NULL;
6933 }
6934 hn = pNext(h);
6935 if (hn == NULL) goto all_done;
6936 op = strat->tailRing->pFDeg(hn, strat->tailRing);
6937 if ((Kstd1_deg>0)&&(op>Kstd1_deg)) goto all_done;
6938 e = strat->tailRing->pLDeg(hn, &l, strat->tailRing) - op;
6939 }
6940 h = hn;
6941 hn = pNext(h);
6942 }
6943
6944 all_done:
6945 if (strat->redTailChange)
6946 {
6947 L->pLength = 0;
6948 }
6949 strat->kAllAxis = save_HE;
6950 return p;
6951}
6952
6953poly redtail (poly p, int end_pos, kStrategy strat)
6954{
6955 LObject L(p, currRing);
6956 return redtail(&L, end_pos, strat);
6957}
6958
6960{
6961 strat->redTailChange=FALSE;
6962 if (strat->noTailReduction) return L->GetLmCurrRing();
6963 poly h, p;
6964 p = h = L->GetLmTailRing();
6965 if ((h==NULL) || (pNext(h)==NULL))
6966 return L->GetLmCurrRing();
6967
6968 TObject* With;
6969 // placeholder in case strat->tl < 0
6970 TObject With_s(strat->tailRing);
6971
6972 LObject Ln(pNext(h), strat->tailRing);
6973 Ln.GetpLength();
6974
6975 pNext(h) = NULL;
6976 if (L->p != NULL)
6977 {
6978 pNext(L->p) = NULL;
6979 if (L->t_p != NULL) pNext(L->t_p) = NULL;
6980 }
6981 L->pLength = 1;
6982
6983 Ln.PrepareRed(strat->use_buckets);
6984
6985 int cnt=REDTAIL_CANONICALIZE;
6986 while(!Ln.IsNull())
6987 {
6988 loop
6989 {
6990 if (TEST_OPT_IDLIFT)
6991 {
6992 if (Ln.p!=NULL)
6993 {
6994 if ((int)__p_GetComp(Ln.p,currRing)> strat->syzComp) break;
6995 }
6996 else
6997 {
6998 if ((int)__p_GetComp(Ln.t_p,strat->tailRing)> strat->syzComp) break;
6999 }
7000 }
7001 Ln.SetShortExpVector();
7002 if (withT)
7003 {
7004 int j;
7005 j = kFindDivisibleByInT(strat, &Ln);
7006 if (j < 0) break;
7007 With = &(strat->T[j]);
7008 assume(With->GetpLength()==pLength(With->p != __null ? With->p : With->t_p));
7009 }
7010 else
7011 {
7013 if (With == NULL) break;
7014 assume(With->GetpLength()==pLength(With->p != __null ? With->p : With->t_p));
7015 }
7016 cnt--;
7017 if (cnt==0)
7018 {
7020 /*poly tmp=*/Ln.CanonicalizeP();
7021 if (normalize)
7022 {
7023 Ln.Normalize();
7024 //pNormalize(tmp);
7025 //if (TEST_OPT_PROT) { PrintS("n"); mflush(); }
7026 }
7027 }
7028 if (normalize && (!TEST_OPT_INTSTRATEGY) && (!nIsOne(pGetCoeff(With->p))))
7029 {
7030 With->pNorm();
7031 }
7032 strat->redTailChange=TRUE;
7033 if (ksReducePolyTail(L, With, &Ln))
7034 {
7035 // reducing the tail would violate the exp bound
7036 // set a flag and hope for a retry (in bba)
7038 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7039 do
7040 {
7041 pNext(h) = Ln.LmExtractAndIter();
7042 pIter(h);
7043 L->pLength++;
7044 } while (!Ln.IsNull());
7045 goto all_done;
7046 }
7047 if (Ln.IsNull()) goto all_done;
7048 if (! withT) With_s.Init(currRing);
7049 }
7050 pNext(h) = Ln.LmExtractAndIter();
7051 pIter(h);
7052 pNormalize(h);
7053 L->pLength++;
7054 }
7055
7056 all_done:
7057 Ln.Delete();
7058 if (L->p != NULL) pNext(L->p) = pNext(p);
7059
7060 if (strat->redTailChange)
7061 {
7062 L->length = 0;
7063 L->pLength = 0;
7064 }
7065
7066 //if (TEST_OPT_PROT) { PrintS("N"); mflush(); }
7067 //L->Normalize(); // HANNES: should have a test
7068 kTest_L(L,strat);
7069 return L->GetLmCurrRing();
7070}
7071
7073{
7074 strat->redTailChange=FALSE;
7075 if (strat->noTailReduction) return L->GetLmCurrRing();
7076 poly h, p;
7077 p = h = L->GetLmTailRing();
7078 if ((h==NULL) || (pNext(h)==NULL))
7079 return L->GetLmCurrRing();
7080
7081 TObject* With;
7082 // placeholder in case strat->tl < 0
7083 TObject With_s(strat->tailRing);
7084
7085 LObject Ln(pNext(h), strat->tailRing);
7086 Ln.pLength = L->GetpLength() - 1;
7087
7088 pNext(h) = NULL;
7089 if (L->p != NULL) pNext(L->p) = NULL;
7090 L->pLength = 1;
7091
7092 Ln.PrepareRed(strat->use_buckets);
7093
7094 int cnt=REDTAIL_CANONICALIZE;
7095 while(!Ln.IsNull())
7096 {
7097 loop
7098 {
7099 if (TEST_OPT_IDLIFT)
7100 {
7101 if (Ln.p!=NULL)
7102 {
7103 if ((int)__p_GetComp(Ln.p,currRing)> strat->syzComp) break;
7104 }
7105 else
7106 {
7107 if ((int)__p_GetComp(Ln.t_p,strat->tailRing)> strat->syzComp) break;
7108 }
7109 }
7110 Ln.SetShortExpVector();
7111 if (withT)
7112 {
7113 int j;
7114 j = kFindDivisibleByInT(strat, &Ln);
7115 if (j < 0) break;
7116 With = &(strat->T[j]);
7117 }
7118 else
7119 {
7121 if (With == NULL) break;
7122 }
7123 cnt--;
7124 if (cnt==0)
7125 {
7127 /*poly tmp=*/Ln.CanonicalizeP();
7128 if (normalize)
7129 {
7130 Ln.Normalize();
7131 //pNormalize(tmp);
7132 //if (TEST_OPT_PROT) { PrintS("n"); mflush(); }
7133 }
7134 }
7135 if (normalize && (!TEST_OPT_INTSTRATEGY) && (!nIsOne(pGetCoeff(With->p))))
7136 {
7137 With->pNorm();
7138 }
7139 strat->redTailChange=TRUE;
7140 if (ksReducePolyTail(L, With, &Ln))
7141 {
7142 // reducing the tail would violate the exp bound
7143 // set a flag and hope for a retry (in bba)
7145 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7146 do
7147 {
7148 pNext(h) = Ln.LmExtractAndIter();
7149 pIter(h);
7150 L->pLength++;
7151 } while (!Ln.IsNull());
7152 goto all_done;
7153 }
7154 if(!Ln.IsNull())
7155 {
7156 Ln.GetP();
7157 Ln.p = pJet(Ln.p,bound);
7158 }
7159 if (Ln.IsNull())
7160 {
7161 goto all_done;
7162 }
7163 if (! withT) With_s.Init(currRing);
7164 }
7165 pNext(h) = Ln.LmExtractAndIter();
7166 pIter(h);
7167 pNormalize(h);
7168 L->pLength++;
7169 }
7170
7171 all_done:
7172 Ln.Delete();
7173 if (L->p != NULL) pNext(L->p) = pNext(p);
7174
7175 if (strat->redTailChange)
7176 {
7177 L->length = 0;
7178 L->pLength = 0;
7179 }
7180
7181 //if (TEST_OPT_PROT) { PrintS("N"); mflush(); }
7182 //L->Normalize(); // HANNES: should have a test
7183 kTest_L(L,strat);
7184 return L->GetLmCurrRing();
7185}
7186
7187#ifdef HAVE_RINGS
7189// normalize=FALSE, withT=FALSE, coeff=Z
7190{
7191 strat->redTailChange=FALSE;
7192
7193 poly h, p;
7194 p = h = L->GetLmTailRing();
7195 if ((h==NULL) || (pNext(h)==NULL))
7196 return;
7197
7198 TObject* With;
7199 LObject Ln(pNext(h), strat->tailRing);
7200 Ln.GetpLength();
7201
7202 pNext(h) = NULL;
7203 if (L->p != NULL)
7204 {
7205 pNext(L->p) = NULL;
7206 if (L->t_p != NULL) pNext(L->t_p) = NULL;
7207 }
7208 L->pLength = 1;
7209
7210 Ln.PrepareRed(strat->use_buckets);
7211
7212 int cnt=REDTAIL_CANONICALIZE;
7213
7214 while(!Ln.IsNull())
7215 {
7216 loop
7217 {
7218 if (TEST_OPT_IDLIFT)
7219 {
7220 if (Ln.p!=NULL)
7221 {
7222 if ((int)__p_GetComp(Ln.p,currRing)> strat->syzComp) break;
7223 }
7224 else
7225 {
7226 if ((int)__p_GetComp(Ln.t_p,strat->tailRing)> strat->syzComp) break;
7227 }
7228 }
7229 Ln.SetShortExpVector();
7230 int j;
7231 j = kFindDivisibleByInT(strat, &Ln);
7232 if (j < 0)
7233 {
7234 j = kFindDivisibleByInT_Z(strat, &Ln);
7235 if (j < 0)
7236 {
7237 break;
7238 }
7239 else
7240 {
7241 /* reduction not cancelling a tail term, but reducing its coefficient */
7242 With = &(strat->T[j]);
7243 assume(With->GetpLength()==pLength(With->p != __null ? With->p : With->t_p));
7244 cnt--;
7245 if (cnt==0)
7246 {
7248 /*poly tmp=*/Ln.CanonicalizeP();
7249 }
7250 strat->redTailChange=TRUE;
7251 /* reduction cancelling a tail term */
7252 if (ksReducePolyTailLC_Z(L, With, &Ln))
7253 {
7254 // reducing the tail would violate the exp bound
7255 // set a flag and hope for a retry (in bba)
7257 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7258 do
7259 {
7260 pNext(h) = Ln.LmExtractAndIter();
7261 pIter(h);
7262 L->pLength++;
7263 } while (!Ln.IsNull());
7264 goto all_done;
7265 }
7266 /* we have to break since we did not cancel the term, but only decreased
7267 * its coefficient. */
7268 break;
7269 }
7270 } else {
7271 With = &(strat->T[j]);
7272 assume(With->GetpLength()==pLength(With->p != __null ? With->p : With->t_p));
7273 cnt--;
7274 if (cnt==0)
7275 {
7277 /*poly tmp=*/Ln.CanonicalizeP();
7278 }
7279 strat->redTailChange=TRUE;
7280 /* reduction cancelling a tail term */
7281 if (ksReducePolyTail_Z(L, With, &Ln))
7282 {
7283 // reducing the tail would violate the exp bound
7284 // set a flag and hope for a retry (in bba)
7286 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7287 do
7288 {
7289 pNext(h) = Ln.LmExtractAndIter();
7290 pIter(h);
7291 L->pLength++;
7292 } while (!Ln.IsNull());
7293 goto all_done;
7294 }
7295 }
7296 if (Ln.IsNull()) goto all_done;
7297 }
7298 pNext(h) = Ln.LmExtractAndIter();
7299 pIter(h);
7300 L->pLength++;
7301 }
7302
7303 all_done:
7304 Ln.Delete();
7305 if (L->p != NULL) pNext(L->p) = pNext(p);
7306
7307 if (strat->redTailChange)
7308 {
7309 L->length = 0;
7310 L->pLength = 0;
7311 }
7312
7313 kTest_L(L, strat);
7314 return;
7315}
7316
7318// normalize=FALSE, withT=FALSE, coeff=Z
7319{
7320 strat->redTailChange=FALSE;
7321 if (strat->noTailReduction) return L->GetLmCurrRing();
7322 poly h, p;
7323 p = h = L->GetLmTailRing();
7324 if ((h==NULL) || (pNext(h)==NULL))
7325 return L->GetLmCurrRing();
7326
7327 TObject* With;
7328 // placeholder in case strat->tl < 0
7329 TObject With_s(strat->tailRing);
7330
7331 LObject Ln(pNext(h), strat->tailRing);
7332 Ln.pLength = L->GetpLength() - 1;
7333
7334 pNext(h) = NULL;
7335 if (L->p != NULL) pNext(L->p) = NULL;
7336 L->pLength = 1;
7337
7338 Ln.PrepareRed(strat->use_buckets);
7339
7340 int cnt=REDTAIL_CANONICALIZE;
7341 while(!Ln.IsNull())
7342 {
7343 loop
7344 {
7345 Ln.SetShortExpVector();
7347 if (With == NULL) break;
7348 cnt--;
7349 if (cnt==0)
7350 {
7352 /*poly tmp=*/Ln.CanonicalizeP();
7353 }
7354 // we are in Z, do not call pNorm
7355 strat->redTailChange=TRUE;
7356 // test divisibility of coefs:
7357 poly p_Ln=Ln.GetLmCurrRing();
7358 poly p_With=With->GetLmCurrRing();
7359
7360 if (ksReducePolyTail_Z(L, With, &Ln))
7361 {
7362 // reducing the tail would violate the exp bound
7363 // set a flag and hope for a retry (in bba)
7365 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7366 do
7367 {
7368 pNext(h) = Ln.LmExtractAndIter();
7369 pIter(h);
7370 L->pLength++;
7371 } while (!Ln.IsNull());
7372 goto all_done;
7373 }
7374 if (Ln.IsNull()) goto all_done;
7375 With_s.Init(currRing);
7376 }
7377 pNext(h) = Ln.LmExtractAndIter();
7378 pIter(h);
7379 pNormalize(h);
7380 L->pLength++;
7381 }
7382
7383 all_done:
7384 Ln.Delete();
7385 if (L->p != NULL) pNext(L->p) = pNext(p);
7386
7387 if (strat->redTailChange)
7388 {
7389 L->length = 0;
7390 }
7391
7392 //if (TEST_OPT_PROT) { PrintS("N"); mflush(); }
7393 //L->Normalize(); // HANNES: should have a test
7394 kTest_L(L,strat);
7395 return L->GetLmCurrRing();
7396}
7397
7398poly redtailBba_NF (poly p, kStrategy strat )
7399{
7400 strat->redTailChange=FALSE;
7401 if (strat->noTailReduction) return p;
7402 if ((p==NULL) || (pNext(p)==NULL))
7403 return p;
7404
7405 int max_ind;
7406 poly h=p;
7407 p=pNext(p);
7408 pNext(h)=NULL;
7409 while(p!=NULL)
7410 {
7411 p=redNF(p,max_ind,1,strat);
7412 if (p!=NULL)
7413 {
7414 poly hh=p;
7415 p=pNext(p);
7416 pNext(hh)=NULL;
7418 }
7419 }
7420 return h;
7421}
7422
7424// normalize=FALSE, withT=FALSE, coeff=Ring
7425{
7426 strat->redTailChange=FALSE;
7427 if (strat->noTailReduction) return L->GetLmCurrRing();
7428 poly h, p;
7429 p = h = L->GetLmTailRing();
7430 if ((h==NULL) || (pNext(h)==NULL))
7431 return L->GetLmCurrRing();
7432
7433 TObject* With;
7434 // placeholder in case strat->tl < 0
7435 TObject With_s(strat->tailRing);
7436
7437 LObject Ln(pNext(h), strat->tailRing);
7438 Ln.pLength = L->GetpLength() - 1;
7439
7440 pNext(h) = NULL;
7441 if (L->p != NULL) pNext(L->p) = NULL;
7442 L->pLength = 1;
7443
7444 Ln.PrepareRed(strat->use_buckets);
7445
7446 int cnt=REDTAIL_CANONICALIZE;
7447 while(!Ln.IsNull())
7448 {
7449 loop
7450 {
7451 Ln.SetShortExpVector();
7452 With_s.Init(currRing);
7454 if (With == NULL) break;
7455 cnt--;
7456 if (cnt==0)
7457 {
7459 /*poly tmp=*/Ln.CanonicalizeP();
7460 }
7461 // we are in a ring, do not call pNorm
7462 // test divisibility of coefs:
7463 poly p_Ln=Ln.GetLmCurrRing();
7464 poly p_With=With->GetLmCurrRing();
7466 {
7467 strat->redTailChange=TRUE;
7468
7469 if (ksReducePolyTail_Z(L, With, &Ln))
7470 {
7471 // reducing the tail would violate the exp bound
7472 // set a flag and hope for a retry (in bba)
7474 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
7475 do
7476 {
7477 pNext(h) = Ln.LmExtractAndIter();
7478 pIter(h);
7479 L->pLength++;
7480 } while (!Ln.IsNull());
7481 goto all_done;
7482 }
7483 }
7484 else break; /*proceed to next monomial*/
7485 if (Ln.IsNull()) goto all_done;
7486 }
7487 pNext(h) = Ln.LmExtractAndIter();
7488 pIter(h);
7489 pNormalize(h);
7490 L->pLength++;
7491 }
7492
7493 all_done:
7494 Ln.Delete();
7495 if (L->p != NULL) pNext(L->p) = pNext(p);
7496
7497 if (strat->redTailChange)
7498 {
7499 L->length = 0;
7500 }
7501
7502 //if (TEST_OPT_PROT) { PrintS("N"); mflush(); }
7503 //L->Normalize(); // HANNES: should have a test
7504 kTest_L(L,strat);
7505 return L->GetLmCurrRing();
7506}
7507#endif
7508
7509/*2
7510*checks the change degree and write progress report
7511*/
7512void message (int i,int* reduc,int* olddeg,kStrategy strat, int red_result)
7513{
7514 if (i != *olddeg)
7515 {
7516 Print("%d",i);
7517 *olddeg = i;
7518 }
7519 if (TEST_OPT_OLDSTD)
7520 {
7521 if (strat->Ll != *reduc)
7522 {
7523 if (strat->Ll != *reduc-1)
7524 Print("(%d)",strat->Ll+1);
7525 else
7526 PrintS("-");
7527 *reduc = strat->Ll;
7528 }
7529 else
7530 PrintS(".");
7531 mflush();
7532 }
7533 else
7534 {
7535 if (red_result == 0)
7536 PrintS("-");
7537 else if (red_result < 0)
7538 PrintS(".");
7539 if ((red_result > 0) || ((strat->Ll % 100)==99))
7540 {
7541 if (strat->Ll != *reduc && strat->Ll > 0)
7542 {
7543 Print("(%d)",strat->Ll+1);
7544 *reduc = strat->Ll;
7545 }
7546 }
7547 }
7548}
7549
7550/*2
7551*statistics
7552*/
7554{
7555 //PrintS("\nUsage/Allocation of temporary storage:\n");
7556 //Print("%d/%d polynomials in standard base\n",srmax,IDELEMS(Shdl));
7557 //Print("%d/%d polynomials in set L (for lazy alg.)",lrmax+1,strat->Lmax);
7558 Print("product criterion:%d chain criterion:%d\n",strat->cp,strat->c3);
7559 if (hilbcount!=0) Print("hilbert series criterion:%d\n",hilbcount);
7560 #ifdef HAVE_SHIFTBBA
7561 /* in usual case strat->cv is 0, it gets changed only in shift routines */
7562 if (strat->cv!=0) Print("shift V criterion:%d\n",strat->cv);
7563 #endif
7564}
7565
7567{
7568 //PrintS("\nUsage/Allocation of temporary storage:\n");
7569 //Print("%d/%d polynomials in standard base\n",srmax,IDELEMS(Shdl));
7570 //Print("%d/%d polynomials in set L (for lazy alg.)",lrmax+1,strat->Lmax);
7571 Print("syz criterion:%d rew criterion:%d\n",strat->nrsyzcrit,strat->nrrewcrit);
7572 //Print("product criterion:%d chain criterion:%d\n",strat->cp,strat->c3);
7573 if (hilbcount!=0) Print("hilbert series criterion:%d\n",hilbcount);
7574 #ifdef HAVE_SHIFTBBA
7575 /* in usual case strat->cv is 0, it gets changed only in shift routines */
7576 if (strat->cv!=0) Print("shift V criterion:%d\n",strat->cv);
7577 #endif
7578}
7579
7580#ifdef KDEBUG
7581/*2
7582*debugging output: all internal sets, if changed
7583*for testing purpuse only/has to be changed for later use
7584*/
7586{
7587 int i;
7588 if (strat->news)
7589 {
7590 PrintS("set S");
7591 for (i=0; i<=strat->sl; i++)
7592 {
7593 Print("\n %d:",i);
7594 p_wrp(strat->S[i], currRing, strat->tailRing);
7595 if (strat->fromQ!=NULL && strat->fromQ[i])
7596 Print(" (from Q)");
7597 }
7598 strat->news = FALSE;
7599 }
7600 if (strat->newt)
7601 {
7602 PrintS("\nset T");
7603 for (i=0; i<=strat->tl; i++)
7604 {
7605 Print("\n %d:",i);
7606 strat->T[i].wrp();
7607 if (strat->T[i].length==0) strat->T[i].length=pLength(strat->T[i].p);
7608 Print(" o:%ld e:%d l:%d",
7609 strat->T[i].pFDeg(),strat->T[i].ecart,strat->T[i].length);
7610 }
7611 strat->newt = FALSE;
7612 }
7613 PrintS("\nset L");
7614 for (i=strat->Ll; i>=0; i--)
7615 {
7616 Print("\n%d:",i);
7617 p_wrp(strat->L[i].p1, currRing, strat->tailRing);
7618 PrintS(" ");
7619 p_wrp(strat->L[i].p2, currRing, strat->tailRing);
7620 PrintS(" lcm: ");p_wrp(strat->L[i].lcm, currRing);
7621 PrintS("\n p : ");
7622 strat->L[i].wrp();
7623 Print(" o:%ld e:%d l:%d",
7624 strat->L[i].pFDeg(),strat->L[i].ecart,strat->L[i].length);
7625 }
7626 PrintLn();
7627}
7628
7629#endif
7630
7631
7632/*2
7633*construct the set s from F
7634*/
7635void initS (ideal F, ideal Q, kStrategy strat)
7636{
7637 int i,pos;
7638
7640 else i=((IDELEMS(F)+(setmaxTinc-1))/setmaxTinc)*setmaxTinc;
7641 if (i<setmaxTinc) i=setmaxT;
7642 strat->ecartS=initec(i);
7643 strat->sevS=initsevS(i);
7644 strat->S_2_R=initS_2_R(i);
7645 strat->fromQ=NULL;
7646 strat->Shdl=idInit(i,F->rank);
7647 strat->S=strat->Shdl->m;
7648 /*- put polys into S -*/
7649 if (Q!=NULL)
7650 {
7651 strat->fromQ=initec(i);
7652 memset(strat->fromQ,0,i*sizeof(int));
7653 for (i=0; i<IDELEMS(Q); i++)
7654 {
7655 if (Q->m[i]!=NULL)
7656 {
7657 LObject h;
7658 h.p = pCopy(Q->m[i]);
7660 {
7661 h.pCleardenom(); // also does remove Content
7662 }
7663 else
7664 {
7665 h.pNorm();
7666 }
7668 {
7669 deleteHC(&h, strat);
7670 }
7671 if (h.p!=NULL)
7672 {
7673 strat->initEcart(&h);
7674 if (strat->sl==-1)
7675 pos =0;
7676 else
7677 {
7678 pos = posInS(strat,strat->sl,h.p,h.ecart);
7679 }
7680 h.sev = pGetShortExpVector(h.p);
7681 strat->enterS(h,pos,strat,-1);
7682 strat->fromQ[pos]=1;
7683 }
7684 }
7685 }
7686 }
7687 for (i=0; i<IDELEMS(F); i++)
7688 {
7689 if (F->m[i]!=NULL)
7690 {
7691 LObject h;
7692 h.p = pCopy(F->m[i]);
7694 {
7695 cancelunit(&h); /*- tries to cancel a unit -*/
7696 deleteHC(&h, strat);
7697 }
7698 if (h.p!=NULL)
7699 // do not rely on the input being a SB!
7700 {
7702 {
7703 h.pCleardenom(); // also does remove Content
7704 }
7705 else
7706 {
7707 h.pNorm();
7708 }
7709 strat->initEcart(&h);
7710 if (strat->sl==-1)
7711 pos =0;
7712 else
7713 pos = posInS(strat,strat->sl,h.p,h.ecart);
7714 h.sev = pGetShortExpVector(h.p);
7715 strat->enterS(h,pos,strat,-1);
7716 }
7717 }
7718 }
7719 /*- test, if a unit is in F -*/
7720 if ((strat->sl>=0)
7722 && n_IsUnit(pGetCoeff(strat->S[0]),currRing->cf)
7723#endif
7724 && pIsConstant(strat->S[0]))
7725 {
7726 while (strat->sl>0) deleteInS(strat->sl,strat);
7727 }
7728}
7729
7731{
7732 int i,pos;
7733
7734 if (Q!=NULL)
7735 {
7737 if (i<setmaxTinc) i=setmaxT;
7738 }
7739 else i=setmaxT;
7740 strat->ecartS=initec(i);
7741 strat->sevS=initsevS(i);
7742 strat->S_2_R=initS_2_R(i);
7743 strat->fromQ=NULL;
7744 strat->Shdl=idInit(i,F->rank);
7745 strat->S=strat->Shdl->m;
7746 /*- put polys into S -*/
7747 if (Q!=NULL)
7748 {
7749 strat->fromQ=initec(i);
7750 memset(strat->fromQ,0,i*sizeof(int));
7751 for (i=0; i<IDELEMS(Q); i++)
7752 {
7753 if (Q->m[i]!=NULL)
7754 {
7755 LObject h;
7756 h.p = pCopy(Q->m[i]);
7758 {
7759 deleteHC(&h,strat);
7760 }
7762 {
7763 h.pCleardenom(); // also does remove Content
7764 }
7765 else
7766 {
7767 h.pNorm();
7768 }
7769 if (h.p!=NULL)
7770 {
7771 strat->initEcart(&h);
7772 if (strat->sl==-1)
7773 pos =0;
7774 else
7775 {
7776 pos = posInS(strat,strat->sl,h.p,h.ecart);
7777 }
7778 h.sev = pGetShortExpVector(h.p);
7779 strat->enterS(h,pos,strat,-1);
7780 strat->fromQ[pos]=1;
7781 }
7782 }
7783 }
7784 }
7785 for (i=0; i<IDELEMS(F); i++)
7786 {
7787 if (F->m[i]!=NULL)
7788 {
7789 LObject h;
7790 h.p = pCopy(F->m[i]);
7791 if (h.p!=NULL)
7792 {
7794 {
7795 cancelunit(&h); /*- tries to cancel a unit -*/
7796 deleteHC(&h, strat);
7797 }
7798 if (h.p!=NULL)
7799 {
7801 {
7802 h.pCleardenom(); // also does remove Content
7803 }
7804 else
7805 {
7806 h.pNorm();
7807 }
7808 strat->initEcart(&h);
7809 if (strat->Ll==-1)
7810 pos =0;
7811 else
7812 pos = strat->posInL(strat->L,strat->Ll,&h,strat);
7813 h.sev = pGetShortExpVector(h.p);
7814 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos);
7815 }
7816 }
7817 }
7818 }
7819 /*- test, if a unit is in F -*/
7820
7821 if ((strat->Ll>=0)
7823 && n_IsUnit(pGetCoeff(strat->L[strat->Ll].p), currRing->cf)
7824#endif
7825 && pIsConstant(strat->L[strat->Ll].p))
7826 {
7827 while (strat->Ll>0) deleteInL(strat->L,&strat->Ll,strat->Ll-1,strat);
7828 }
7829}
7830
7832{
7833 int i,pos;
7834 if (Q!=NULL)
7835 {
7837 if (i<setmaxTinc) i=setmaxT;
7838 }
7839 else i=setmaxT;
7840 strat->ecartS = initec(i);
7841 strat->sevS = initsevS(i);
7842 strat->sevSig = initsevS(i);
7843 strat->S_2_R = initS_2_R(i);
7844 strat->fromQ = NULL;
7845 strat->Shdl = idInit(i,F->rank);
7846 strat->S = strat->Shdl->m;
7847 strat->sig = (poly *)omAlloc0(i*sizeof(poly));
7848 if (strat->sbaOrder != 1)
7849 {
7850 strat->syz = (poly *)omAlloc0(i*sizeof(poly));
7851 strat->sevSyz = initsevS(i);
7852 strat->syzmax = i;
7853 strat->syzl = 0;
7854 }
7855 /*- put polys into S -*/
7856 if (Q!=NULL)
7857 {
7858 strat->fromQ=initec(i);
7859 memset(strat->fromQ,0,i*sizeof(int));
7860 for (i=0; i<IDELEMS(Q); i++)
7861 {
7862 if (Q->m[i]!=NULL)
7863 {
7864 LObject h;
7865 h.p = pCopy(Q->m[i]);
7867 {
7868 deleteHC(&h,strat);
7869 }
7871 {
7872 h.pCleardenom(); // also does remove Content
7873 }
7874 else
7875 {
7876 h.pNorm();
7877 }
7878 if (h.p!=NULL)
7879 {
7880 strat->initEcart(&h);
7881 if (strat->sl==-1)
7882 pos =0;
7883 else
7884 {
7885 pos = posInS(strat,strat->sl,h.p,h.ecart);
7886 }
7887 h.sev = pGetShortExpVector(h.p);
7888 strat->enterS(h,pos,strat,-1);
7889 strat->fromQ[pos]=1;
7890 }
7891 }
7892 }
7893 }
7894 for (i=0; i<IDELEMS(F); i++)
7895 {
7896 if (F->m[i]!=NULL)
7897 {
7898 LObject h;
7899 h.p = pCopy(F->m[i]);
7900 h.sig = pOne();
7901 //h.sig = pInit();
7902 //p_SetCoeff(h.sig,nInit(1),currRing);
7903 p_SetComp(h.sig,i+1,currRing);
7904 // if we are working with the Schreyer order we generate it
7905 // by multiplying the initial signatures with the leading monomial
7906 // of the corresponding initial polynomials generating the ideal
7907 // => we can keep the underlying monomial order and get a Schreyer
7908 // order without any bigger overhead
7909 if (strat->sbaOrder == 0 || strat->sbaOrder == 3)
7910 {
7911 p_ExpVectorAdd (h.sig,F->m[i],currRing);
7912 }
7913 h.sevSig = pGetShortExpVector(h.sig);
7914#ifdef DEBUGF5
7915 pWrite(h.p);
7916 pWrite(h.sig);
7917#endif
7918 if (h.p!=NULL)
7919 {
7921 {
7922 cancelunit(&h); /*- tries to cancel a unit -*/
7923 deleteHC(&h, strat);
7924 }
7925 if (h.p!=NULL)
7926 {
7928 {
7929 h.pCleardenom(); // also does remove Content
7930 }
7931 else
7932 {
7933 h.pNorm();
7934 }
7935 strat->initEcart(&h);
7936 if (strat->Ll==-1)
7937 pos =0;
7938 else
7939 pos = strat->posInLSba(strat->L,strat->Ll,&h,strat);
7940 h.sev = pGetShortExpVector(h.p);
7941 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,pos);
7942 }
7943 }
7944 /*
7945 if (strat->sbaOrder != 1)
7946 {
7947 for(j=0;j<i;j++)
7948 {
7949 strat->syz[ctr] = pCopy(F->m[j]);
7950 p_SetCompP(strat->syz[ctr],i+1,currRing);
7951 // add LM(F->m[i]) to the signature to get a Schreyer order
7952 // without changing the underlying polynomial ring at all
7953 p_ExpVectorAdd (strat->syz[ctr],F->m[i],currRing);
7954 // since p_Add_q() destroys all input
7955 // data we need to recreate help
7956 // each time
7957 poly help = pCopy(F->m[i]);
7958 p_SetCompP(help,j+1,currRing);
7959 pWrite(strat->syz[ctr]);
7960 pWrite(help);
7961 printf("%d\n",pLmCmp(strat->syz[ctr],help));
7962 strat->syz[ctr] = p_Add_q(strat->syz[ctr],help,currRing);
7963 printf("%d. SYZ ",ctr);
7964 pWrite(strat->syz[ctr]);
7965 strat->sevSyz[ctr] = p_GetShortExpVector(strat->syz[ctr],currRing);
7966 ctr++;
7967 }
7968 strat->syzl = ps;
7969 }
7970 */
7971 }
7972 }
7973 /*- test, if a unit is in F -*/
7974
7975 if ((strat->Ll>=0)
7977 && n_IsUnit(pGetCoeff(strat->L[strat->Ll].p), currRing->cf)
7978#endif
7979 && pIsConstant(strat->L[strat->Ll].p))
7980 {
7981 while (strat->Ll>0) deleteInL(strat->L,&strat->Ll,strat->Ll-1,strat);
7982 }
7983}
7984
7986{
7987 if( strat->S[0] )
7988 {
7989 if( strat->S[1] && !rField_is_Ring(currRing))
7990 {
7991 omFreeSize(strat->syzIdx,(strat->syzidxmax)*sizeof(int));
7992 omFreeSize(strat->sevSyz,(strat->syzmax)*sizeof(unsigned long));
7993 omFreeSize(strat->syz,(strat->syzmax)*sizeof(poly));
7994 }
7995 int i, j, k, diff, comp, comp_old, ps=0, ctr=0;
7996 /************************************************************
7997 * computing the length of the syzygy array needed
7998 ***********************************************************/
7999 for(i=1; i<=strat->sl; i++)
8000 {
8001 if (pGetComp(strat->sig[i-1]) != pGetComp(strat->sig[i]))
8002 {
8003 ps += i;
8004 }
8005 }
8006 ps += strat->sl+1;
8007 //comp = pGetComp (strat->P.sig);
8008 comp = strat->currIdx;
8009 strat->syzIdx = initec(comp);
8010 strat->sevSyz = initsevS(ps);
8011 strat->syz = (poly *)omAlloc(ps*sizeof(poly));
8012 strat->syzmax = ps;
8013 strat->syzl = 0;
8014 strat->syzidxmax = comp;
8015#if defined(DEBUGF5) || defined(DEBUGF51)
8016 PrintS("------------- GENERATING SYZ RULES NEW ---------------\n");
8017#endif
8018 i = 1;
8019 j = 0;
8020 /************************************************************
8021 * generating the leading terms of the principal syzygies
8022 ***********************************************************/
8023 while (i <= strat->sl)
8024 {
8025 /**********************************************************
8026 * principal syzygies start with component index 2
8027 * the array syzIdx starts with index 0
8028 * => the rules for a signature with component comp start
8029 * at strat->syz[strat->syzIdx[comp-2]] !
8030 *********************************************************/
8031 if (pGetComp(strat->sig[i-1]) != pGetComp(strat->sig[i]))
8032 {
8033 comp = pGetComp(strat->sig[i]);
8034 comp_old = pGetComp(strat->sig[i-1]);
8035 diff = comp - comp_old - 1;
8036 // diff should be zero, but sometimes also the initial generating
8037 // elements of the input ideal reduce to zero. then there is an
8038 // index-gap between the signatures. for these in-between signatures we
8039 // can safely set syzIdx[j] = 0 as no such element will be ever computed
8040 // in the following.
8041 // doing this, we keep the relation "j = comp - 2" alive, which makes
8042 // jumps way easier when checking criteria
8043 while (diff>0)
8044 {
8045 strat->syzIdx[j] = 0;
8046 diff--;
8047 j++;
8048 }
8049 strat->syzIdx[j] = ctr;
8050 j++;
8051 LObject Q;
8052 int pos;
8053 for (k = 0; k<i; k++)
8054 {
8055 Q.sig = pOne();
8058 p_ExpVectorCopy(Q.sig,strat->S[k],currRing);
8059 p_SetCompP (Q.sig, comp, currRing);
8060 poly q = p_One(currRing);
8063 p_ExpVectorCopy(q,strat->S[i],currRing);
8064 q = p_Neg (q, currRing);
8065 p_SetCompP (q, __p_GetComp(strat->sig[k], currRing), currRing);
8066 Q.sig = p_Add_q (Q.sig, q, currRing);
8067 Q.sevSig = p_GetShortExpVector(Q.sig,currRing);
8068 pos = posInSyz(strat, Q.sig);
8069 enterSyz(Q, strat, pos);
8070 ctr++;
8071 }
8072 }
8073 i++;
8074 }
8075 /**************************************************************
8076 * add syzygies for upcoming first element of new iteration step
8077 **************************************************************/
8078 comp = strat->currIdx;
8079 comp_old = pGetComp(strat->sig[i-1]);
8080 diff = comp - comp_old - 1;
8081 // diff should be zero, but sometimes also the initial generating
8082 // elements of the input ideal reduce to zero. then there is an
8083 // index-gap between the signatures. for these in-between signatures we
8084 // can safely set syzIdx[j] = 0 as no such element will be ever computed
8085 // in the following.
8086 // doing this, we keep the relation "j = comp - 2" alive, which makes
8087 // jumps way easier when checking criteria
8088 while (diff>0)
8089 {
8090 strat->syzIdx[j] = 0;
8091 diff--;
8092 j++;
8093 }
8094 strat->syzIdx[j] = ctr;
8095 LObject Q;
8096 int pos;
8097 for (k = 0; k<strat->sl+1; k++)
8098 {
8099 Q.sig = pOne();
8102 p_ExpVectorCopy(Q.sig,strat->S[k],currRing);
8103 p_SetCompP (Q.sig, comp, currRing);
8104 poly q = p_One(currRing);
8106 p_SetCoeff(q,nCopy(p_GetCoeff(strat->L[strat->Ll].p,currRing)),currRing);
8107 p_ExpVectorCopy(q,strat->L[strat->Ll].p,currRing);
8108 q = p_Neg (q, currRing);
8109 p_SetCompP (q, __p_GetComp(strat->sig[k], currRing), currRing);
8110 Q.sig = p_Add_q (Q.sig, q, currRing);
8111 Q.sevSig = p_GetShortExpVector(Q.sig,currRing);
8112 pos = posInSyz(strat, Q.sig);
8113 enterSyz(Q, strat, pos);
8114 ctr++;
8115 }
8116//#if 1
8117#ifdef DEBUGF5
8118 PrintS("Principal syzygies:\n");
8119 Print("syzl %d\n",strat->syzl);
8120 Print("syzmax %d\n",strat->syzmax);
8121 Print("ps %d\n",ps);
8122 PrintS("--------------------------------\n");
8123 for(i=0;i<=strat->syzl-1;i++)
8124 {
8125 Print("%d - ",i);
8126 pWrite(strat->syz[i]);
8127 }
8128 for(i=0;i<strat->currIdx;i++)
8129 {
8130 Print("%d - %d\n",i,strat->syzIdx[i]);
8131 }
8132 PrintS("--------------------------------\n");
8133#endif
8134 }
8135}
8136
8137/*2
8138*construct the set s from F and {P}
8139*/
8141{
8142 int i,pos;
8143
8144 if (Q!=NULL)
8145 {
8147 if (i<setmaxTinc) i=setmaxT;
8148 }
8149 else i=setmaxT;
8150 i=((i+IDELEMS(F)+IDELEMS(P)+setmax-1)/setmax)*setmax;
8151 strat->ecartS=initec(i);
8152 strat->sevS=initsevS(i);
8153 strat->S_2_R=initS_2_R(i);
8154 strat->fromQ=NULL;
8155 strat->Shdl=idInit(i,F->rank);
8156 strat->S=strat->Shdl->m;
8157
8158 /*- put polys into S -*/
8159 if (Q!=NULL)
8160 {
8161 strat->fromQ=initec(i);
8162 memset(strat->fromQ,0,i*sizeof(int));
8163 for (i=0; i<IDELEMS(Q); i++)
8164 {
8165 if (Q->m[i]!=NULL)
8166 {
8167 LObject h;
8168 h.p = pCopy(Q->m[i]);
8169 //if (TEST_OPT_INTSTRATEGY)
8170 //{
8171 // h.pCleardenom(); // also does remove Content
8172 //}
8173 //else
8174 //{
8175 // h.pNorm();
8176 //}
8178 {
8179 deleteHC(&h,strat);
8180 }
8181 if (h.p!=NULL)
8182 {
8183 strat->initEcart(&h);
8184 if (strat->sl==-1)
8185 pos =0;
8186 else
8187 {
8188 pos = posInS(strat,strat->sl,h.p,h.ecart);
8189 }
8190 h.sev = pGetShortExpVector(h.p);
8191 strat->enterS(h,pos,strat, strat->tl+1);
8192 enterT(h, strat);
8193 strat->fromQ[pos]=1;
8194 }
8195 }
8196 }
8197 }
8198 /*- put polys into S -*/
8199 for (i=0; i<IDELEMS(F); i++)
8200 {
8201 if (F->m[i]!=NULL)
8202 {
8203 LObject h;
8204 h.p = pCopy(F->m[i]);
8206 {
8207 deleteHC(&h,strat);
8208 }
8209 else if (TEST_OPT_REDTAIL || TEST_OPT_REDSB)
8210 {
8211 h.p=redtailBba(h.p,strat->sl,strat);
8212 }
8213 if (h.p!=NULL)
8214 {
8215 strat->initEcart(&h);
8216 if (strat->sl==-1)
8217 pos =0;
8218 else
8219 pos = posInS(strat,strat->sl,h.p,h.ecart);
8220 h.sev = pGetShortExpVector(h.p);
8221 strat->enterS(h,pos,strat, strat->tl+1);
8222 enterT(h,strat);
8223 }
8224 }
8225 }
8226 for (i=0; i<IDELEMS(P); i++)
8227 {
8228 if (P->m[i]!=NULL)
8229 {
8230 LObject h;
8231 h.p=pCopy(P->m[i]);
8233 {
8234 h.pCleardenom();
8235 }
8236 else
8237 {
8238 h.pNorm();
8239 }
8240 if(strat->sl>=0)
8241 {
8243 {
8244 h.p=redBba(h.p,strat->sl,strat);
8245 if ((h.p!=NULL)&&(TEST_OPT_REDTAIL || TEST_OPT_REDSB))
8246 {
8247 h.p=redtailBba(h.p,strat->sl,strat);
8248 }
8249 }
8250 else
8251 {
8252 h.p=redMora(h.p,strat->sl,strat);
8253 }
8254 if(h.p!=NULL)
8255 {
8256 strat->initEcart(&h);
8258 {
8259 h.pCleardenom();
8260 }
8261 else
8262 {
8263 h.is_normalized = 0;
8264 h.pNorm();
8265 }
8266 h.sev = pGetShortExpVector(h.p);
8267 h.SetpFDeg();
8268 pos = posInS(strat,strat->sl,h.p,h.ecart);
8269 enterpairsSpecial(h.p,strat->sl,h.ecart,pos,strat,strat->tl+1);
8270 strat->enterS(h,pos,strat, strat->tl+1);
8271 enterT(h,strat);
8272 }
8273 }
8274 else
8275 {
8276 h.sev = pGetShortExpVector(h.p);
8277 strat->initEcart(&h);
8278 strat->enterS(h,0,strat, strat->tl+1);
8279 enterT(h,strat);
8280 }
8281 }
8282 }
8283}
8284/*2
8285*construct the set s from F and {P}
8286*/
8287
8289{
8290 int i,pos;
8291
8292 if (Q!=NULL)
8293 {
8295 if (i<setmaxTinc) i=setmaxT;
8296 }
8297 else i=setmaxT;
8298 i=((i+IDELEMS(F)+IDELEMS(P)+setmax-1)/setmax)*setmax;
8299 strat->sevS=initsevS(i);
8300 strat->sevSig=initsevS(i);
8301 strat->S_2_R=initS_2_R(i);
8302 strat->fromQ=NULL;
8303 strat->Shdl=idInit(i,F->rank);
8304 strat->S=strat->Shdl->m;
8305 strat->sig=(poly *)omAlloc0(i*sizeof(poly));
8306 /*- put polys into S -*/
8307 if (Q!=NULL)
8308 {
8309 strat->fromQ=initec(i);
8310 memset(strat->fromQ,0,i*sizeof(int));
8311 for (i=0; i<IDELEMS(Q); i++)
8312 {
8313 if (Q->m[i]!=NULL)
8314 {
8315 LObject h;
8316 h.p = pCopy(Q->m[i]);
8317 //if (TEST_OPT_INTSTRATEGY)
8318 //{
8319 // h.pCleardenom(); // also does remove Content
8320 //}
8321 //else
8322 //{
8323 // h.pNorm();
8324 //}
8326 {
8327 deleteHC(&h,strat);
8328 }
8329 if (h.p!=NULL)
8330 {
8331 strat->initEcart(&h);
8332 if (strat->sl==-1)
8333 pos =0;
8334 else
8335 {
8336 pos = posInS(strat,strat->sl,h.p,h.ecart);
8337 }
8338 h.sev = pGetShortExpVector(h.p);
8339 strat->enterS(h,pos,strat, strat->tl+1);
8340 enterT(h, strat);
8341 strat->fromQ[pos]=1;
8342 }
8343 }
8344 }
8345 }
8346 /*- put polys into S -*/
8347 for (i=0; i<IDELEMS(F); i++)
8348 {
8349 if (F->m[i]!=NULL)
8350 {
8351 LObject h;
8352 h.p = pCopy(F->m[i]);
8354 {
8355 deleteHC(&h,strat);
8356 }
8357 else if (TEST_OPT_REDTAIL || TEST_OPT_REDSB)
8358 {
8359 h.p=redtailBba(h.p,strat->sl,strat);
8360 }
8361 if (h.p!=NULL)
8362 {
8363 strat->initEcart(&h);
8364 if (strat->sl==-1)
8365 pos =0;
8366 else
8367 pos = posInS(strat,strat->sl,h.p,h.ecart);
8368 h.sev = pGetShortExpVector(h.p);
8369 strat->enterS(h,pos,strat, strat->tl+1);
8370 enterT(h,strat);
8371 }
8372 }
8373 }
8374 for (i=0; i<IDELEMS(P); i++)
8375 {
8376 if (P->m[i]!=NULL)
8377 {
8378 LObject h;
8379 h.p=pCopy(P->m[i]);
8381 {
8382 h.pCleardenom();
8383 }
8384 else
8385 {
8386 h.pNorm();
8387 }
8388 if(strat->sl>=0)
8389 {
8391 {
8392 h.p=redBba(h.p,strat->sl,strat);
8393 if ((h.p!=NULL)&&(TEST_OPT_REDTAIL || TEST_OPT_REDSB))
8394 {
8395 h.p=redtailBba(h.p,strat->sl,strat);
8396 }
8397 }
8398 else
8399 {
8400 h.p=redMora(h.p,strat->sl,strat);
8401 }
8402 if(h.p!=NULL)
8403 {
8404 strat->initEcart(&h);
8406 {
8407 h.pCleardenom();
8408 }
8409 else
8410 {
8411 h.is_normalized = 0;
8412 h.pNorm();
8413 }
8414 h.sev = pGetShortExpVector(h.p);
8415 h.SetpFDeg();
8416 pos = posInS(strat,strat->sl,h.p,h.ecart);
8417 enterpairsSpecial(h.p,strat->sl,h.ecart,pos,strat,strat->tl+1);
8418 strat->enterS(h,pos,strat, strat->tl+1);
8419 enterT(h,strat);
8420 }
8421 }
8422 else
8423 {
8424 h.sev = pGetShortExpVector(h.p);
8425 strat->initEcart(&h);
8426 strat->enterS(h,0,strat, strat->tl+1);
8427 enterT(h,strat);
8428 }
8429 }
8430 }
8431}
8432
8433/*2
8434* reduces h using the set S
8435* procedure used in cancelunit1
8436*/
8437static poly redBba1 (poly h,int maxIndex,kStrategy strat)
8438{
8439 int j = 0;
8440 unsigned long not_sev = ~ pGetShortExpVector(h);
8441
8442 while (j <= maxIndex)
8443 {
8444 if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j],h, not_sev))
8445 return ksOldSpolyRedNew(strat->S[j],h,strat->kNoetherTail());
8446 else j++;
8447 }
8448 return h;
8449}
8450
8451/*2
8452*tests if p.p=monomial*unit and cancels the unit
8453*/
8454void cancelunit1 (LObject* p,int *suc, int index,kStrategy strat )
8455{
8456 int k;
8457 poly r,h,h1,q;
8458
8459 if (!pIsVector((*p).p) && ((*p).ecart != 0))
8460 {
8461#ifdef HAVE_RINGS
8462 // Leading coef have to be a unit: no
8463 // example 2x+4x2 should be simplified to 2x*(1+2x)
8464 // and 2 is not a unit in Z
8465 //if ( !(n_IsUnit(pGetCoeff((*p).p), currRing->cf)) ) return;
8466#endif
8467 k = 0;
8468 h1 = r = pCopy((*p).p);
8469 h =pNext(r);
8470 loop
8471 {
8472 if (h==NULL)
8473 {
8474 pDelete(&r);
8475 pDelete(&(pNext((*p).p)));
8476 (*p).ecart = 0;
8477 (*p).length = 1;
8478 (*p).pLength = 1;
8479 (*suc)=0;
8480 return;
8481 }
8482 if (!pDivisibleBy(r,h))
8483 {
8484 q=redBba1(h,index ,strat);
8485 if (q != h)
8486 {
8487 k++;
8488 pDelete(&h);
8489 pNext(h1) = h = q;
8490 }
8491 else
8492 {
8493 pDelete(&r);
8494 return;
8495 }
8496 }
8497 else
8498 {
8499 h1 = h;
8500 pIter(h);
8501 }
8502 if (k > 10)
8503 {
8504 pDelete(&r);
8505 return;
8506 }
8507 }
8508 }
8509}
8510
8511#if 0
8512/*2
8513* reduces h using the elements from Q in the set S
8514* procedure used in updateS
8515* must not be used for elements of Q or elements of an ideal !
8516*/
8517static poly redQ (poly h, int j, kStrategy strat)
8518{
8519 int start;
8520 unsigned long not_sev = ~ pGetShortExpVector(h);
8521 while ((j <= strat->sl) && (pGetComp(strat->S[j])!=0)) j++;
8522 start=j;
8523 while (j<=strat->sl)
8524 {
8525 if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev))
8526 {
8527 h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail());
8528 if (h==NULL) return NULL;
8529 j = start;
8531 }
8532 else j++;
8533 }
8534 return h;
8535}
8536#endif
8537
8538/*2
8539* reduces h using the set S
8540* procedure used in updateS
8541*/
8542static poly redBba (poly h,int maxIndex,kStrategy strat)
8543{
8544 int j = 0;
8545 unsigned long not_sev = ~ pGetShortExpVector(h);
8546
8547 while (j <= maxIndex)
8548 {
8549 if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev))
8550 {
8551 h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail());
8552 if (h==NULL) return NULL;
8553 j = 0;
8555 }
8556 else j++;
8557 }
8558 return h;
8559}
8560
8561/*2
8562* reduces h using the set S
8563*e is the ecart of h
8564*procedure used in updateS
8565*/
8566static poly redMora (poly h,int maxIndex,kStrategy strat)
8567{
8568 int j=0;
8569 int e,l;
8570 unsigned long not_sev = ~ pGetShortExpVector(h);
8571
8572 if (maxIndex >= 0)
8573 {
8574 e = currRing->pLDeg(h,&l,currRing)-p_FDeg(h,currRing);
8575 do
8576 {
8577 if (pLmShortDivisibleBy(strat->S[j],strat->sevS[j], h, not_sev)
8578 && ((e >= strat->ecartS[j]) || (strat->kNoether!=NULL)))
8579 {
8580#ifdef KDEBUG
8581 if (TEST_OPT_DEBUG)
8582 {
8583 PrintS("reduce ");wrp(h);Print(" with S[%d] (",j);wrp(strat->S[j]);
8584 }
8585#endif
8586 h = ksOldSpolyRed(strat->S[j],h,strat->kNoetherTail());
8587#ifdef KDEBUG
8588 if(TEST_OPT_DEBUG)
8589 {
8590 PrintS(")\nto "); wrp(h); PrintLn();
8591 }
8592#endif
8593 // pDelete(&h);
8594 if (h == NULL) return NULL;
8595 e = currRing->pLDeg(h,&l,currRing)-p_FDeg(h,currRing);
8596 j = 0;
8598 }
8599 else j++;
8600 }
8601 while (j <= maxIndex);
8602 }
8603 return h;
8604}
8605
8606/*2
8607*updates S:
8608*the result is a set of polynomials which are in
8609*normalform with respect to S
8610*/
8612{
8613 LObject h;
8614 int i, suc=0;
8615 poly redSi=NULL;
8617// Print("nach initS: updateS start mit sl=%d\n",(strat->sl));
8618// for (i=0; i<=(strat->sl); i++)
8619// {
8620// Print("s%d:",i);
8621// if (strat->fromQ!=NULL) Print("(Q:%d) ",strat->fromQ[i]);
8622// pWrite(strat->S[i]);
8623// }
8624// Print("currRing->OrdSgn=%d\n", currRing->OrdSgn);
8627 {
8628 while (suc != -1)
8629 {
8630 i=suc+1;
8631 while (i<=strat->sl)
8632 {
8633 change=FALSE;
8635 any_change = FALSE;
8636 if (((strat->fromQ==NULL) || (strat->fromQ[i]==0)) && (i>0))
8637 {
8638 redSi = pHead(strat->S[i]);
8639 strat->S[i] = redBba(strat->S[i],i-1,strat);
8640 //if ((strat->ak!=0)&&(strat->S[i]!=NULL))
8641 // strat->S[i]=redQ(strat->S[i],i+1,strat); /*reduce S[i] mod Q*/
8642 if (pCmp(redSi,strat->S[i])!=0)
8643 {
8644 change=TRUE;
8646 #ifdef KDEBUG
8647 if (TEST_OPT_DEBUG)
8648 {
8649 PrintS("reduce:");
8650 wrp(redSi);PrintS(" to ");p_wrp(strat->S[i], currRing, strat->tailRing);PrintLn();
8651 }
8652 #endif
8653 if (TEST_OPT_PROT)
8654 {
8655 if (strat->S[i]==NULL)
8656 PrintS("V");
8657 else
8658 PrintS("v");
8659 mflush();
8660 }
8661 }
8662 pLmDelete(&redSi);
8663 if (strat->S[i]==NULL)
8664 {
8665 deleteInS(i,strat);
8666 i--;
8667 }
8668 else if (change)
8669 {
8671 {
8673 {
8674 number n;
8675 p_Cleardenom_n(strat->S[i], currRing, n);// also does remove Content
8676 if (!nIsOne(n))
8677 {
8679 denom->n=nInvers(n);
8680 denom->next=DENOMINATOR_LIST;
8682 }
8683 nDelete(&n);
8684 }
8685 else
8686 {
8687 strat->S[i]=p_Cleardenom(strat->S[i], currRing);// also does remove Content
8688 }
8689 }
8690 else
8691 {
8692 pNorm(strat->S[i]);
8693 }
8694 strat->sevS[i] = pGetShortExpVector(strat->S[i]);
8695 }
8696 }
8697 i++;
8698 }
8699 if (any_change) reorderS(&suc,strat);
8700 else break;
8701 }
8702 if (toT)
8703 {
8704 for (i=0; i<=strat->sl; i++)
8705 {
8706 if ((strat->fromQ==NULL) || (strat->fromQ[i]==0))
8707 {
8708 h.p = redtailBba(strat->S[i],i-1,strat);
8710 {
8711 h.pCleardenom();// also does remove Content
8712 }
8713 }
8714 else
8715 {
8716 h.p = strat->S[i];
8717 }
8718 strat->initEcart(&h);
8719 if (strat->honey)
8720 {
8721 strat->ecartS[i] = h.ecart;
8722 }
8723 if (strat->sevS[i] == 0) {strat->sevS[i] = pGetShortExpVector(h.p);}
8724 else assume(strat->sevS[i] == pGetShortExpVector(h.p));
8725 h.sev = strat->sevS[i];
8726 /*puts the elements of S also to T*/
8727 strat->initEcart(&h);
8728 /*if (toT) - already checked*/ enterT(h,strat);
8729 strat->S_2_R[i] = strat->tl;
8730#ifdef HAVE_SHIFTBBA
8731 if (/*(toT) && */(currRing->isLPring))
8732 enterTShift(h, strat);
8733#endif
8734 }
8735 }
8736 }
8737 else
8738 {
8739 while (suc != -1)
8740 {
8741 i=suc;
8742 while (i<=strat->sl)
8743 {
8744 change=FALSE;
8745 if (((strat->fromQ==NULL) || (strat->fromQ[i]==0)) && (i>0))
8746 {
8747 redSi=pHead((strat->S)[i]);
8748 (strat->S)[i] = redMora((strat->S)[i],i-1,strat);
8749 if ((strat->S)[i]==NULL)
8750 {
8751 deleteInS(i,strat);
8752 i--;
8753 }
8754 else if (pCmp((strat->S)[i],redSi)!=0)
8755 {
8757 h.p = strat->S[i];
8758 strat->initEcart(&h);
8759 strat->ecartS[i] = h.ecart;
8761 {
8763 {
8764 number n;
8765 p_Cleardenom_n(strat->S[i], currRing, n);// also does remove Content
8766 if (!nIsOne(n))
8767 {
8769 denom->n=nInvers(n);
8770 denom->next=DENOMINATOR_LIST;
8772 }
8773 nDelete(&n);
8774 }
8775 else
8776 {
8777 strat->S[i]=p_Cleardenom(strat->S[i], currRing);// also does remove Content
8778 }
8779 }
8780 else
8781 {
8782 pNorm(strat->S[i]); // == h.p
8783 }
8784 h.sev = pGetShortExpVector(h.p);
8785 strat->sevS[i] = h.sev;
8786 }
8787 pLmDelete(&redSi);
8788 kTest(strat);
8789 }
8790 i++;
8791 }
8792#ifdef KDEBUG
8793 kTest(strat);
8794#endif
8795 if (any_change) reorderS(&suc,strat);
8796 else { suc=-1; break; }
8797 if (h.p!=NULL)
8798 {
8799 if (!strat->kAllAxis)
8800 {
8801 /*strat->kAllAxis =*/ HEckeTest(h.p,strat);
8802 }
8803 if (strat->kAllAxis)
8804 newHEdge(strat);
8805 }
8806 }
8807 for (i=0; i<=strat->sl; i++)
8808 {
8809 if ((strat->fromQ==NULL) || (strat->fromQ[i]==0))
8810 {
8811 strat->S[i] = h.p = redtail(strat->S[i],strat->sl,strat);
8812 strat->initEcart(&h);
8813 strat->ecartS[i] = h.ecart;
8814 h.sev = pGetShortExpVector(h.p);
8815 strat->sevS[i] = h.sev;
8816 }
8817 else
8818 {
8819 h.p = strat->S[i];
8820 h.ecart=strat->ecartS[i];
8821 h.sev = strat->sevS[i];
8822 h.length = h.pLength = pLength(h.p);
8823 }
8824 if ((strat->fromQ==NULL) || (strat->fromQ[i]==0))
8825 cancelunit1(&h,&suc,strat->sl,strat);
8826 h.SetpFDeg();
8827 /*puts the elements of S also to T*/
8828 enterT(h,strat);
8829 strat->S_2_R[i] = strat->tl;
8830#ifdef HAVE_SHIFTBBA
8831 if (currRing->isLPring)
8832 enterTShift(h, strat);
8833#endif
8834 }
8835 if (suc!= -1) updateS(toT,strat);
8836 }
8837#ifdef KDEBUG
8838 kTest(strat);
8839#endif
8840}
8841
8842/*2
8843* -puts p to the standardbasis s at position at
8844* -saves the result in S
8845*/
8846void enterSBba (LObject &p,int atS,kStrategy strat, int atR)
8847{
8848 strat->news = TRUE;
8849 /*- puts p to the standardbasis s at position at -*/
8850 if (strat->sl == IDELEMS(strat->Shdl)-1)
8851 {
8852 strat->sevS = (unsigned long*) omRealloc0Size(strat->sevS,
8853 IDELEMS(strat->Shdl)*sizeof(unsigned long),
8854 (IDELEMS(strat->Shdl)+setmaxTinc)
8855 *sizeof(unsigned long));
8856 strat->ecartS = (intset)omReallocSize(strat->ecartS,
8857 IDELEMS(strat->Shdl)*sizeof(int),
8858 (IDELEMS(strat->Shdl)+setmaxTinc)
8859 *sizeof(int));
8860 strat->S_2_R = (int*) omRealloc0Size(strat->S_2_R,
8861 IDELEMS(strat->Shdl)*sizeof(int),
8862 (IDELEMS(strat->Shdl)+setmaxTinc)
8863 *sizeof(int));
8864 if (strat->lenS!=NULL)
8865 strat->lenS=(int*)omRealloc0Size(strat->lenS,
8866 IDELEMS(strat->Shdl)*sizeof(int),
8867 (IDELEMS(strat->Shdl)+setmaxTinc)
8868 *sizeof(int));
8869 if (strat->lenSw!=NULL)
8870 strat->lenSw=(wlen_type*)omRealloc0Size(strat->lenSw,
8871 IDELEMS(strat->Shdl)*sizeof(wlen_type),
8872 (IDELEMS(strat->Shdl)+setmaxTinc)
8873 *sizeof(wlen_type));
8874 if (strat->fromQ!=NULL)
8875 {
8876 strat->fromQ = (intset)omReallocSize(strat->fromQ,
8877 IDELEMS(strat->Shdl)*sizeof(int),
8878 (IDELEMS(strat->Shdl)+setmaxTinc)*sizeof(int));
8879 }
8880 pEnlargeSet(&strat->S,IDELEMS(strat->Shdl),setmaxTinc);
8881 IDELEMS(strat->Shdl)+=setmaxTinc;
8882 strat->Shdl->m=strat->S;
8883 }
8884 if (atS <= strat->sl)
8885 {
8886#ifdef ENTER_USE_MEMMOVE
8887 memmove(&(strat->S[atS+1]), &(strat->S[atS]),
8888 (strat->sl - atS + 1)*sizeof(poly));
8889 memmove(&(strat->ecartS[atS+1]), &(strat->ecartS[atS]),
8890 (strat->sl - atS + 1)*sizeof(int));
8891 memmove(&(strat->sevS[atS+1]), &(strat->sevS[atS]),
8892 (strat->sl - atS + 1)*sizeof(unsigned long));
8893 memmove(&(strat->S_2_R[atS+1]), &(strat->S_2_R[atS]),
8894 (strat->sl - atS + 1)*sizeof(int));
8895 if (strat->lenS!=NULL)
8896 memmove(&(strat->lenS[atS+1]), &(strat->lenS[atS]),
8897 (strat->sl - atS + 1)*sizeof(int));
8898 if (strat->lenSw!=NULL)
8899 memmove(&(strat->lenSw[atS+1]), &(strat->lenSw[atS]),
8900 (strat->sl - atS + 1)*sizeof(wlen_type));
8901#else
8902 for (i=strat->sl+1; i>=atS+1; i--)
8903 {
8904 strat->S[i] = strat->S[i-1];
8905 strat->ecartS[i] = strat->ecartS[i-1];
8906 strat->sevS[i] = strat->sevS[i-1];
8907 strat->S_2_R[i] = strat->S_2_R[i-1];
8908 }
8909 if (strat->lenS!=NULL)
8910 for (i=strat->sl+1; i>=atS+1; i--)
8911 strat->lenS[i] = strat->lenS[i-1];
8912 if (strat->lenSw!=NULL)
8913 for (i=strat->sl+1; i>=atS+1; i--)
8914 strat->lenSw[i] = strat->lenSw[i-1];
8915#endif
8916 }
8917 if (strat->fromQ!=NULL)
8918 {
8919#ifdef ENTER_USE_MEMMOVE
8920 memmove(&(strat->fromQ[atS+1]), &(strat->fromQ[atS]),
8921 (strat->sl - atS + 1)*sizeof(int));
8922#else
8923 for (i=strat->sl+1; i>=atS+1; i--)
8924 {
8925 strat->fromQ[i] = strat->fromQ[i-1];
8926 }
8927#endif
8928 strat->fromQ[atS]=0;
8929 }
8930
8931 /*- save result -*/
8932 poly pp=p.p;
8933 strat->S[atS] = pp;
8934 if (strat->honey) strat->ecartS[atS] = p.ecart;
8935 if (p.sev == 0)
8936 p.sev = pGetShortExpVector(pp);
8937 else
8938 assume(p.sev == pGetShortExpVector(pp));
8939 strat->sevS[atS] = p.sev;
8940 strat->ecartS[atS] = p.ecart;
8941 strat->S_2_R[atS] = atR;
8942 strat->sl++;
8943}
8944
8945#ifdef HAVE_SHIFTBBA
8946void enterSBbaShift (LObject &p,int atS,kStrategy strat, int atR)
8947{
8948 enterSBba(p, atS, strat, atR);
8949
8951 for (int i = maxPossibleShift; i > 0; i--)
8952 {
8953 // NOTE: don't use "shared tails" here. In rare cases it can cause problems
8954 // in `kNF2` because of lazy poly normalizations.
8955 LObject qq(p_Copy(p.p, strat->tailRing));
8956 p_mLPshift(qq.p, i, strat->tailRing);
8957 qq.shift = i;
8958 strat->initEcart(&qq); // initEcartBBA sets length, pLength, FDeg and ecart
8959 int atS = posInS(strat, strat->sl, qq.p, qq.ecart); // S needs to stay sorted because this is for example assumed when searching S later
8960 enterSBba(qq, atS, strat, -1);
8961 }
8962}
8963#endif
8964
8965/*2
8966* -puts p to the standardbasis s at position at
8967* -saves the result in S
8968*/
8969void enterSSba (LObject &p,int atS,kStrategy strat, int atR)
8970{
8971 strat->news = TRUE;
8972 /*- puts p to the standardbasis s at position at -*/
8973 if (strat->sl == IDELEMS(strat->Shdl)-1)
8974 {
8975 strat->sevS = (unsigned long*) omRealloc0Size(strat->sevS,
8976 IDELEMS(strat->Shdl)*sizeof(unsigned long),
8977 (IDELEMS(strat->Shdl)+setmax)
8978 *sizeof(unsigned long));
8979 strat->sevSig = (unsigned long*) omRealloc0Size(strat->sevSig,
8980 IDELEMS(strat->Shdl)*sizeof(unsigned long),
8981 (IDELEMS(strat->Shdl)+setmax)
8982 *sizeof(unsigned long));
8983 strat->ecartS = (intset)omReallocSize(strat->ecartS,
8984 IDELEMS(strat->Shdl)*sizeof(int),
8985 (IDELEMS(strat->Shdl)+setmax)
8986 *sizeof(int));
8987 strat->S_2_R = (int*) omRealloc0Size(strat->S_2_R,
8988 IDELEMS(strat->Shdl)*sizeof(int),
8989 (IDELEMS(strat->Shdl)+setmax)
8990 *sizeof(int));
8991 if (strat->lenS!=NULL)
8992 strat->lenS=(int*)omRealloc0Size(strat->lenS,
8993 IDELEMS(strat->Shdl)*sizeof(int),
8994 (IDELEMS(strat->Shdl)+setmax)
8995 *sizeof(int));
8996 if (strat->lenSw!=NULL)
8997 strat->lenSw=(wlen_type*)omRealloc0Size(strat->lenSw,
8998 IDELEMS(strat->Shdl)*sizeof(wlen_type),
8999 (IDELEMS(strat->Shdl)+setmax)
9000 *sizeof(wlen_type));
9001 if (strat->fromQ!=NULL)
9002 {
9003 strat->fromQ = (intset)omReallocSize(strat->fromQ,
9004 IDELEMS(strat->Shdl)*sizeof(int),
9005 (IDELEMS(strat->Shdl)+setmax)*sizeof(int));
9006 }
9007 pEnlargeSet(&strat->S,IDELEMS(strat->Shdl),setmax);
9008 pEnlargeSet(&strat->sig,IDELEMS(strat->Shdl),setmax);
9009 IDELEMS(strat->Shdl)+=setmax;
9010 strat->Shdl->m=strat->S;
9011 }
9012 // in a signature-based algorithm the following situation will never
9013 // appear due to the fact that the critical pairs are already sorted
9014 // by increasing signature.
9015 // True. However, in the case of integers we need to put the element
9016 // that caused the signature drop on the first position
9017 if (atS <= strat->sl)
9018 {
9019#ifdef ENTER_USE_MEMMOVE
9020 memmove(&(strat->S[atS+1]), &(strat->S[atS]),
9021 (strat->sl - atS + 1)*sizeof(poly));
9022 memmove(&(strat->sig[atS+1]), &(strat->sig[atS]),
9023 (strat->sl - atS + 1)*sizeof(poly));
9024 memmove(&(strat->sevSig[atS+1]), &(strat->sevSig[atS]),
9025 (strat->sl - atS + 1)*sizeof(unsigned long));
9026 memmove(&(strat->ecartS[atS+1]), &(strat->ecartS[atS]),
9027 (strat->sl - atS + 1)*sizeof(int));
9028 memmove(&(strat->sevS[atS+1]), &(strat->sevS[atS]),
9029 (strat->sl - atS + 1)*sizeof(unsigned long));
9030 memmove(&(strat->S_2_R[atS+1]), &(strat->S_2_R[atS]),
9031 (strat->sl - atS + 1)*sizeof(int));
9032 if (strat->lenS!=NULL)
9033 memmove(&(strat->lenS[atS+1]), &(strat->lenS[atS]),
9034 (strat->sl - atS + 1)*sizeof(int));
9035 if (strat->lenSw!=NULL)
9036 memmove(&(strat->lenSw[atS+1]), &(strat->lenSw[atS]),
9037 (strat->sl - atS + 1)*sizeof(wlen_type));
9038#else
9039 for (i=strat->sl+1; i>=atS+1; i--)
9040 {
9041 strat->S[i] = strat->S[i-1];
9042 strat->ecartS[i] = strat->ecartS[i-1];
9043 strat->sevS[i] = strat->sevS[i-1];
9044 strat->S_2_R[i] = strat->S_2_R[i-1];
9045 strat->sig[i] = strat->sig[i-1];
9046 strat->sevSig[i] = strat->sevSig[i-1];
9047 }
9048 if (strat->lenS!=NULL)
9049 for (i=strat->sl+1; i>=atS+1; i--)
9050 strat->lenS[i] = strat->lenS[i-1];
9051 if (strat->lenSw!=NULL)
9052 for (i=strat->sl+1; i>=atS+1; i--)
9053 strat->lenSw[i] = strat->lenSw[i-1];
9054#endif
9055 }
9056 if (strat->fromQ!=NULL)
9057 {
9058#ifdef ENTER_USE_MEMMOVE
9059 memmove(&(strat->fromQ[atS+1]), &(strat->fromQ[atS]),
9060 (strat->sl - atS + 1)*sizeof(int));
9061#else
9062 for (i=strat->sl+1; i>=atS+1; i--)
9063 {
9064 strat->fromQ[i] = strat->fromQ[i-1];
9065 }
9066#endif
9067 strat->fromQ[atS]=0;
9068 }
9069
9070 /*- save result -*/
9071 strat->S[atS] = p.p;
9072 strat->sig[atS] = p.sig; // TODO: get the correct signature in here!
9073 if (strat->honey) strat->ecartS[atS] = p.ecart;
9074 if (p.sev == 0)
9075 p.sev = pGetShortExpVector(p.p);
9076 else
9077 assume(p.sev == pGetShortExpVector(p.p));
9078 strat->sevS[atS] = p.sev;
9079 // during the interreduction process of a signature-based algorithm we do not
9080 // compute the signature at this point, but when the whole interreduction
9081 // process finishes, i.e. f5c terminates!
9082 if (p.sig != NULL)
9083 {
9084 if (p.sevSig == 0)
9085 p.sevSig = pGetShortExpVector(p.sig);
9086 else
9087 assume(p.sevSig == pGetShortExpVector(p.sig));
9088 strat->sevSig[atS] = p.sevSig; // TODO: get the correct signature in here!
9089 }
9090 strat->ecartS[atS] = p.ecart;
9091 strat->S_2_R[atS] = atR;
9092 strat->sl++;
9093#ifdef DEBUGF5
9094 int k;
9095 Print("--- LIST S: %d ---\n",strat->sl);
9096 for(k=0;k<=strat->sl;k++)
9097 {
9098 pWrite(strat->sig[k]);
9099 }
9100 PrintS("--- LIST S END ---\n");
9101#endif
9102}
9103
9105{
9106 p.GetP(strat->lmBin);
9107 if (strat->homog) strat->initEcart(&p);
9108 strat->redTailChange=FALSE;
9110 {
9111 p.pCleardenom();
9113 {
9114#ifdef HAVE_SHIFTBBA
9115 if (rIsLPRing(currRing))
9116 p.p = redtailBba(&p,strat->tl,strat, TRUE,!TEST_OPT_CONTENTSB);
9117 else
9118#endif
9119 {
9120 p.p = redtailBba(&p,strat->sl,strat, FALSE,!TEST_OPT_CONTENTSB);
9121 }
9122 p.pCleardenom();
9123 if (strat->redTailChange)
9124 p.t_p=NULL;
9125 if (strat->P.p!=NULL) strat->P.sev=p_GetShortExpVector(strat->P.p,currRing);
9126 else strat->P.sev=0;
9127 }
9128 }
9129
9130 assume(strat->tailRing == p.tailRing);
9131 assume(p.pLength == 0 || pLength(p.p) == p.pLength || rIsSyzIndexRing(currRing)); // modulo syzring
9132
9133 int i, j, pos;
9134 poly tp = strat->T[tj].p;
9135
9136 /* enter p to T set */
9137 enterT(p, strat);
9138
9139 for (j = 0; j <= strat->sl; ++j)
9140 {
9141 if (pLtCmp(tp, strat->S[j]) == 0)
9142 {
9143 break;
9144 }
9145 }
9146 /* it may be that the exchanged element
9147 * is until now only in T and not in S */
9148 if (j <= strat->sl)
9149 {
9150 deleteInS(j, strat);
9151 }
9152
9153 pos = posInS(strat, strat->sl, p.p, p.ecart);
9154
9155 pp_Test(p.p, currRing, p.tailRing);
9156 assume(p.FDeg == p.pFDeg());
9157
9158 /* remove useless pairs from L set */
9159 for (i = 0; i <= strat->Ll; ++i)
9160 {
9161 if (strat->L[i].p1 != NULL && pLtCmp(tp, strat->L[i].p1) == 0)
9162 {
9163 deleteInL(strat->L, &(strat->Ll), i, strat);
9164 i--;
9165 continue;
9166 }
9167 if (strat->L[i].p2 != NULL && pLtCmp(tp, strat->L[i].p2) == 0)
9168 {
9169 deleteInL(strat->L, &(strat->Ll), i, strat);
9170 i--;
9171 }
9172 }
9173#ifdef HAVE_SHIFTBBA
9174 if (rIsLPRing(currRing))
9175 enterpairsShift(p.p, strat->sl, p.ecart, pos, strat, strat->tl); // TODO LP
9176 else
9177#endif
9178 {
9179 /* generate new pairs with p, probably removing older, now useless pairs */
9180 superenterpairs(p.p, strat->sl, p.ecart, pos, strat, strat->tl);
9181 }
9182 /* enter p to S set */
9183 strat->enterS(p, pos, strat, strat->tl);
9184
9185#ifdef HAVE_SHIFTBBA
9186 /* do this after enterS so that the index in R (which is strat->tl) is correct */
9187 if (rIsLPRing(currRing) && !strat->rightGB)
9188 enterTShift(p,strat);
9189#endif
9190}
9191
9192/*2
9193* puts p to the set T at position atT
9194*/
9195void enterT(LObject &p, kStrategy strat, int atT)
9196{
9197 int i;
9198
9199#ifdef PDEBUG
9200#ifdef HAVE_SHIFTBBA
9201 if (currRing->isLPring && p.shift > 0)
9202 {
9203 // in this case, the order is not correct. test LM and tail separately
9204 p_LmTest(p.p, currRing);
9205 p_Test(pNext(p.p), currRing);
9206 }
9207 else
9208#endif
9209 {
9210 pp_Test(p.p, currRing, p.tailRing);
9211 }
9212#endif
9213 assume(strat->tailRing == p.tailRing);
9214 // redMoraNF complains about this -- but, we don't really
9215 // need this so far
9216 assume(p.pLength == 0 || pLength(p.p) == p.pLength || rIsSyzIndexRing(currRing)); // modulo syzring
9217 assume(!strat->homog || (p.FDeg == p.pFDeg()));
9218 assume(!p.is_normalized || nIsOne(pGetCoeff(p.p)));
9219
9220#ifdef KDEBUG
9221 // do not put an LObject twice into T:
9222 for(i=strat->tl;i>=0;i--)
9223 {
9224 if (p.p==strat->T[i].p)
9225 {
9226 printf("already in T at pos %d of %d, atT=%d\n",i,strat->tl,atT);
9227 return;
9228 }
9229 }
9230#endif
9231
9232#ifdef HAVE_TAIL_RING
9233 if (currRing!=strat->tailRing)
9234 {
9235 p.t_p=p.GetLmTailRing();
9236 }
9237#endif
9238 strat->newt = TRUE;
9239 if (atT < 0)
9240 atT = strat->posInT(strat->T, strat->tl, p);
9241 if (strat->tl == strat->tmax-1)
9242 enlargeT(strat->T,strat->R,strat->sevT,strat->tmax,setmaxTinc);
9243 if (atT <= strat->tl)
9244 {
9245#ifdef ENTER_USE_MEMMOVE
9246 memmove(&(strat->T[atT+1]), &(strat->T[atT]),
9247 (strat->tl-atT+1)*sizeof(TObject));
9248 memmove(&(strat->sevT[atT+1]), &(strat->sevT[atT]),
9249 (strat->tl-atT+1)*sizeof(unsigned long));
9250#endif
9251 for (i=strat->tl+1; i>=atT+1; i--)
9252 {
9253#ifndef ENTER_USE_MEMMOVE
9254 strat->T[i] = strat->T[i-1];
9255 strat->sevT[i] = strat->sevT[i-1];
9256#endif
9257 strat->R[strat->T[i].i_r] = &(strat->T[i]);
9258 }
9259 }
9260
9261 if ((strat->tailBin != NULL) && (pNext(p.p) != NULL))
9262 {
9263#ifdef HAVE_SHIFTBBA
9264 // letterplace: if p.shift > 0 then pNext(p.p) is already in the tailBin
9265 if (!(currRing->isLPring && p.shift > 0))
9266#endif
9267 {
9269 (strat->tailRing != NULL ?
9270 strat->tailRing : currRing),
9271 strat->tailBin);
9272 if (p.t_p != NULL) pNext(p.t_p) = pNext(p.p);
9273 }
9274 }
9275 strat->T[atT] = (TObject) p;
9276 //printf("\nenterT: add new: length = %i, ecart = %i\n",p.length,p.ecart);
9277
9278 if ((pNext(p.p) != NULL) && (!rIsLPRing(currRing)))
9279 strat->T[atT].max_exp = p_GetMaxExpP(pNext(p.p), strat->tailRing);
9280 else
9281 strat->T[atT].max_exp = NULL;
9282
9283 strat->tl++;
9284 strat->R[strat->tl] = &(strat->T[atT]);
9285 strat->T[atT].i_r = strat->tl;
9286 assume((p.sev == 0) || (pGetShortExpVector(p.p) == p.sev));
9287 strat->sevT[atT] = (p.sev == 0 ? pGetShortExpVector(p.p) : p.sev);
9288 kTest_T(&(strat->T[atT]),strat);
9289}
9290
9291/*2
9292* puts p to the set T at position atT
9293*/
9294#ifdef HAVE_RINGS
9296{
9298 int i;
9299
9300 pp_Test(p.p, currRing, p.tailRing);
9301 assume(strat->tailRing == p.tailRing);
9302 // redMoraNF complains about this -- but, we don't really
9303 // need this so far
9304 assume(p.pLength == 0 || (int)pLength(p.p) == p.pLength || rIsSyzIndexRing(currRing)); // modulo syzring
9305 assume(p.FDeg == p.pFDeg());
9306 assume(!p.is_normalized || nIsOne(pGetCoeff(p.p)));
9307
9308#ifdef KDEBUG
9309 // do not put an LObject twice into T:
9310 for(i=strat->tl;i>=0;i--)
9311 {
9312 if (p.p==strat->T[i].p)
9313 {
9314 printf("already in T at pos %d of %d, atT=%d\n",i,strat->tl,atT);
9315 return;
9316 }
9317 }
9318#endif
9319
9320#ifdef HAVE_TAIL_RING
9321 if (currRing!=strat->tailRing)
9322 {
9323 p.t_p=p.GetLmTailRing();
9324 }
9325#endif
9326 strat->newt = TRUE;
9327 if (atT < 0)
9328 atT = strat->posInT(strat->T, strat->tl, p);
9329 if (strat->tl == strat->tmax-1)
9330 enlargeT(strat->T,strat->R,strat->sevT,strat->tmax,setmaxTinc);
9331 if (atT <= strat->tl)
9332 {
9333#ifdef ENTER_USE_MEMMOVE
9334 memmove(&(strat->T[atT+1]), &(strat->T[atT]),
9335 (strat->tl-atT+1)*sizeof(TObject));
9336 memmove(&(strat->sevT[atT+1]), &(strat->sevT[atT]),
9337 (strat->tl-atT+1)*sizeof(unsigned long));
9338#endif
9339 for (i=strat->tl+1; i>=atT+1; i--)
9340 {
9341#ifndef ENTER_USE_MEMMOVE
9342 strat->T[i] = strat->T[i-1];
9343 strat->sevT[i] = strat->sevT[i-1];
9344#endif
9345 strat->R[strat->T[i].i_r] = &(strat->T[i]);
9346 }
9347 }
9348
9349 if ((strat->tailBin != NULL) && (pNext(p.p) != NULL))
9350 {
9352 (strat->tailRing != NULL ?
9353 strat->tailRing : currRing),
9354 strat->tailBin);
9355 if (p.t_p != NULL) pNext(p.t_p) = pNext(p.p);
9356 }
9357 strat->T[atT] = (TObject) p;
9358 //printf("\nenterT_strong: add new: length = %i, ecart = %i\n",p.length,p.ecart);
9359
9360 if (pNext(p.p) != NULL)
9361 strat->T[atT].max_exp = p_GetMaxExpP(pNext(p.p), strat->tailRing);
9362 else
9363 strat->T[atT].max_exp = NULL;
9364
9365 strat->tl++;
9366 strat->R[strat->tl] = &(strat->T[atT]);
9367 strat->T[atT].i_r = strat->tl;
9368 assume(p.sev == 0 || pGetShortExpVector(p.p) == p.sev);
9369 strat->sevT[atT] = (p.sev == 0 ? pGetShortExpVector(p.p) : p.sev);
9370 #if 1
9372 && !n_IsUnit(p.p->coef, currRing->cf))
9373 {
9374 for(i=strat->tl;i>=0;i--)
9375 {
9376 if(strat->T[i].ecart <= p.ecart && pLmDivisibleBy(strat->T[i].p,p.p))
9377 {
9378 enterOneStrongPoly(i,p.p,p.ecart,0,strat,0 , TRUE);
9379 }
9380 }
9381 }
9382 /*
9383 printf("\nThis is T:\n");
9384 for(i=strat->tl;i>=0;i--)
9385 {
9386 pWrite(strat->T[i].p);
9387 }
9388 //getchar();*/
9389 #endif
9390 kTest_T(&(strat->T[atT]),strat);
9391}
9392#endif
9393
9394/*2
9395* puts signature p.sig to the set syz
9396*/
9397void enterSyz(LObject &p, kStrategy strat, int atT)
9398{
9399 int i;
9400 strat->newt = TRUE;
9401 if (strat->syzl == strat->syzmax-1)
9402 {
9403 pEnlargeSet(&strat->syz,strat->syzmax,setmax);
9404 strat->sevSyz = (unsigned long*) omRealloc0Size(strat->sevSyz,
9405 (strat->syzmax)*sizeof(unsigned long),
9406 ((strat->syzmax)+setmax)
9407 *sizeof(unsigned long));
9408 strat->syzmax += setmax;
9409 }
9410 if (atT < strat->syzl)
9411 {
9412#ifdef ENTER_USE_MEMMOVE
9413 memmove(&(strat->syz[atT+1]), &(strat->syz[atT]),
9414 (strat->syzl-atT+1)*sizeof(poly));
9415 memmove(&(strat->sevSyz[atT+1]), &(strat->sevSyz[atT]),
9416 (strat->syzl-atT+1)*sizeof(unsigned long));
9417#endif
9418 for (i=strat->syzl; i>=atT+1; i--)
9419 {
9420#ifndef ENTER_USE_MEMMOVE
9421 strat->syz[i] = strat->syz[i-1];
9422 strat->sevSyz[i] = strat->sevSyz[i-1];
9423#endif
9424 }
9425 }
9426 //i = strat->syzl;
9427 i = atT;
9428 //Makes sure the syz saves just the signature
9429 #ifdef HAVE_RINGS
9431 pNext(p.sig) = NULL;
9432 #endif
9433 strat->syz[atT] = p.sig;
9434 strat->sevSyz[atT] = p.sevSig;
9435 strat->syzl++;
9436#if F5DEBUG
9437 Print("element in strat->syz: %d--%d ",atT+1,strat->syzmax);
9438 pWrite(strat->syz[atT]);
9439#endif
9440 // recheck pairs in strat->L with new rule and delete correspondingly
9441 int cc = strat->Ll;
9442 while (cc>-1)
9443 {
9444 //printf("\nCheck if syz is div by L\n");pWrite(strat->syz[atT]);pWrite(strat->L[cc].sig);
9445 //printf("\npLmShDivBy(syz,L) = %i\nn_DivBy(L,syz) = %i\n pLtCmp(L,syz) = %i",p_LmShortDivisibleBy( strat->syz[atT], strat->sevSyz[atT],strat->L[cc].sig, ~strat->L[cc].sevSig, currRing), n_DivBy(pGetCoeff(strat->L[cc].sig),pGetCoeff(strat->syz[atT]),currRing), pLtCmp(strat->L[cc].sig,strat->syz[atT])==1);
9446 if (p_LmShortDivisibleBy( strat->syz[atT], strat->sevSyz[atT],
9447 strat->L[cc].sig, ~strat->L[cc].sevSig, currRing)
9450 || (n_DivBy(pGetCoeff(strat->L[cc].sig),pGetCoeff(strat->syz[atT]),currRing->cf) && (pLtCmp(strat->L[cc].sig,strat->syz[atT])==1)))
9451 #endif
9452 )
9453 {
9454 //printf("\nYES!\n");
9455 deleteInL(strat->L,&strat->Ll,cc,strat);
9456 }
9457 cc--;
9458 }
9459//#if 1
9460#ifdef DEBUGF5
9461 PrintS("--- Syzygies ---\n");
9462 Print("syzl %d\n",strat->syzl);
9463 Print("syzmax %d\n",strat->syzmax);
9464 PrintS("--------------------------------\n");
9465 for(i=0;i<=strat->syzl-1;i++)
9466 {
9467 Print("%d - ",i);
9468 pWrite(strat->syz[i]);
9469 }
9470 PrintS("--------------------------------\n");
9471#endif
9472}
9473
9474
9475void initHilbCrit(ideal/*F*/, ideal /*Q*/, intvec **hilb,kStrategy strat)
9476{
9477
9478 //if the ordering is local, then hilb criterion
9479 //can be used also if the ideal is not homogeneous
9481 {
9483 *hilb=NULL;
9484 else
9485 return;
9486 }
9487 if (strat->homog!=isHomog)
9488 {
9489 *hilb=NULL;
9490 }
9491}
9492
9494{
9497 if (TEST_OPT_SB_1)
9499#ifdef HAVE_RINGS
9501 {
9503 strat->chainCrit=chainCritRing;
9504 }
9505#endif
9506#ifdef HAVE_RATGRING
9507 if (rIsRatGRing(currRing))
9508 {
9509 strat->chainCrit=chainCritPart;
9510 /* enterOnePairNormal get rational part in it */
9511 }
9512#endif
9513 if (TEST_OPT_IDLIFT
9514 && (strat->syzComp==1)
9515 && (!rIsPluralRing(currRing)))
9517
9519 strat->Gebauer = strat->homog || strat->sugarCrit;
9520 strat->honey = !strat->homog || strat->sugarCrit || TEST_OPT_WEIGHTM;
9521 if (TEST_OPT_NOT_SUGAR) strat->honey = FALSE;
9522 strat->pairtest = NULL;
9523 /* always use tailreduction, except:
9524 * - in local rings, - in lex order case, -in ring over extensions */
9526 //if(rHasMixedOrdering(currRing)==2)
9527 //{
9528 // strat->noTailReduction =TRUE;
9529 //}
9530
9531#ifdef HAVE_PLURAL
9532 // and r is plural_ring
9533 // hence this holds for r a rational_plural_ring
9534 if( rIsPluralRing(currRing) || (rIsSCA(currRing) && !strat->z2homog) )
9535 { //or it has non-quasi-comm type... later
9536 strat->sugarCrit = FALSE;
9537 strat->Gebauer = FALSE;
9538 strat->honey = FALSE;
9539 }
9540#endif
9541
9542 // Coefficient ring?
9544 {
9545 strat->sugarCrit = FALSE;
9546 strat->Gebauer = FALSE;
9547 strat->honey = FALSE;
9548 }
9549 #ifdef KDEBUG
9550 if (TEST_OPT_DEBUG)
9551 {
9552 if (strat->homog) PrintS("ideal/module is homogeneous\n");
9553 else PrintS("ideal/module is not homogeneous\n");
9554 }
9555 #endif
9556}
9557
9559{
9560 //strat->enterOnePair=enterOnePairNormal;
9562 //strat->chainCrit=chainCritNormal;
9563 strat->chainCrit = chainCritSig;
9564 /******************************************
9565 * rewCrit1 and rewCrit2 are already set in
9566 * kSba() in kstd1.cc
9567 *****************************************/
9568 //strat->rewCrit1 = faugereRewCriterion;
9569 if (strat->sbaOrder == 1)
9570 {
9571 strat->syzCrit = syzCriterionInc;
9572 }
9573 else
9574 {
9575 strat->syzCrit = syzCriterion;
9576 }
9577#ifdef HAVE_RINGS
9579 {
9581 strat->chainCrit=chainCritRing;
9582 }
9583#endif
9584#ifdef HAVE_RATGRING
9585 if (rIsRatGRing(currRing))
9586 {
9587 strat->chainCrit=chainCritPart;
9588 /* enterOnePairNormal get rational part in it */
9589 }
9590#endif
9591
9593 strat->Gebauer = strat->homog || strat->sugarCrit;
9594 strat->honey = !strat->homog || strat->sugarCrit || TEST_OPT_WEIGHTM;
9595 if (TEST_OPT_NOT_SUGAR) strat->honey = FALSE;
9596 strat->pairtest = NULL;
9597 /* always use tailreduction, except:
9598 * - in local rings, - in lex order case, -in ring over extensions */
9601
9602#ifdef HAVE_PLURAL
9603 // and r is plural_ring
9604 // hence this holds for r a rational_plural_ring
9605 if( rIsPluralRing(currRing) || (rIsSCA(currRing) && !strat->z2homog) )
9606 { //or it has non-quasi-comm type... later
9607 strat->sugarCrit = FALSE;
9608 strat->Gebauer = FALSE;
9609 strat->honey = FALSE;
9610 }
9611#endif
9612
9613 // Coefficient ring?
9615 {
9616 strat->sugarCrit = FALSE;
9617 strat->Gebauer = FALSE ;
9618 strat->honey = FALSE;
9619 }
9620 #ifdef KDEBUG
9621 if (TEST_OPT_DEBUG)
9622 {
9623 if (strat->homog) PrintS("ideal/module is homogeneous\n");
9624 else PrintS("ideal/module is not homogeneous\n");
9625 }
9626 #endif
9627}
9628
9630 (const LSet set, const int length,
9631 LObject* L,const kStrategy strat))
9632{
9633 if (pos_in_l == posInL110
9634 || pos_in_l == posInL10
9637 #endif
9638 )
9639 return TRUE;
9640
9641 return FALSE;
9642}
9643
9645{
9647 {
9648 if (strat->honey)
9649 {
9650 strat->posInL = posInL15;
9651 // ok -- here is the deal: from my experiments for Singular-2-0
9652 // I conclude that that posInT_EcartpLength is the best of
9653 // posInT15, posInT_EcartFDegpLength, posInT_FDegLength, posInT_pLength
9654 // see the table at the end of this file
9655 if (TEST_OPT_OLDSTD)
9656 strat->posInT = posInT15;
9657 else
9658 strat->posInT = posInT_EcartpLength;
9659 }
9660 else if (currRing->pLexOrder && !TEST_OPT_INTSTRATEGY)
9661 {
9662 strat->posInL = posInL11;
9663 strat->posInT = posInT11;
9664 }
9665 else if (TEST_OPT_INTSTRATEGY)
9666 {
9667 strat->posInL = posInL11;
9668 strat->posInT = posInT11;
9669 }
9670 else
9671 {
9672 strat->posInL = posInL0;
9673 strat->posInT = posInT0;
9674 }
9675 //if (strat->minim>0) strat->posInL =posInLSpecial;
9676 if (strat->homog)
9677 {
9678 strat->posInL = posInL110;
9679 strat->posInT = posInT110;
9680 }
9681 }
9682 else /* local/mixed ordering */
9683 {
9684 if (strat->homog)
9685 {
9686 strat->posInL = posInL11;
9687 strat->posInT = posInT11;
9688 }
9689 else
9690 {
9691 if ((currRing->order[0]==ringorder_c)
9692 ||(currRing->order[0]==ringorder_C))
9693 {
9694 strat->posInL = posInL17_c;
9695 strat->posInT = posInT17_c;
9696 }
9697 else
9698 {
9699 strat->posInL = posInL17;
9700 strat->posInT = posInT17;
9701 }
9702 }
9703 }
9704 if (strat->minim>0) strat->posInL =posInLSpecial;
9705 // for further tests only
9706 if ((BTEST1(11)) || (BTEST1(12)))
9707 strat->posInL = posInL11;
9708 else if ((BTEST1(13)) || (BTEST1(14)))
9709 strat->posInL = posInL13;
9710 else if ((BTEST1(15)) || (BTEST1(16)))
9711 strat->posInL = posInL15;
9712 else if ((BTEST1(17)) || (BTEST1(18)))
9713 strat->posInL = posInL17;
9714 if (BTEST1(11))
9715 strat->posInT = posInT11;
9716 else if (BTEST1(13))
9717 strat->posInT = posInT13;
9718 else if (BTEST1(15))
9719 strat->posInT = posInT15;
9720 else if ((BTEST1(17)))
9721 strat->posInT = posInT17;
9722 else if ((BTEST1(19)))
9723 strat->posInT = posInT19;
9724 else if (BTEST1(12) || BTEST1(14) || BTEST1(16) || BTEST1(18))
9725 strat->posInT = posInT1;
9727}
9728
9729#ifdef HAVE_RINGS
9731{
9733 {
9734 if (strat->honey)
9735 {
9736 strat->posInL = posInL15Ring;
9737 // ok -- here is the deal: from my experiments for Singular-2-0
9738 // I conclude that that posInT_EcartpLength is the best of
9739 // posInT15, posInT_EcartFDegpLength, posInT_FDegLength, posInT_pLength
9740 // see the table at the end of this file
9741 if (TEST_OPT_OLDSTD)
9742 strat->posInT = posInT15Ring;
9743 else
9744 strat->posInT = posInT_EcartpLength;
9745 }
9746 else if (currRing->pLexOrder && !TEST_OPT_INTSTRATEGY)
9747 {
9748 strat->posInL = posInL11Ring;
9749 strat->posInT = posInT11;
9750 }
9751 else if (TEST_OPT_INTSTRATEGY)
9752 {
9753 strat->posInL = posInL11Ring;
9754 strat->posInT = posInT11;
9755 }
9756 else
9757 {
9758 strat->posInL = posInL0Ring;
9759 strat->posInT = posInT0;
9760 }
9761 //if (strat->minim>0) strat->posInL =posInLSpecial;
9762 if (strat->homog)
9763 {
9764 strat->posInL = posInL110Ring;
9765 strat->posInT = posInT110Ring;
9766 }
9767 }
9768 else
9769 {
9770 if (strat->homog)
9771 {
9772 //printf("\nHere 3\n");
9773 strat->posInL = posInL11Ring;
9774 strat->posInT = posInT11Ring;
9775 }
9776 else
9777 {
9778 if ((currRing->order[0]==ringorder_c)
9779 ||(currRing->order[0]==ringorder_C))
9780 {
9781 strat->posInL = posInL17_cRing;
9782 strat->posInT = posInT17_cRing;
9783 }
9784 else
9785 {
9786 strat->posInL = posInL11Ringls;
9787 strat->posInT = posInT17Ring;
9788 }
9789 }
9790 }
9791 if (strat->minim>0) strat->posInL =posInLSpecial;
9792 // for further tests only
9793 if ((BTEST1(11)) || (BTEST1(12)))
9794 strat->posInL = posInL11Ring;
9795 else if ((BTEST1(13)) || (BTEST1(14)))
9796 strat->posInL = posInL13;
9797 else if ((BTEST1(15)) || (BTEST1(16)))
9798 strat->posInL = posInL15Ring;
9799 else if ((BTEST1(17)) || (BTEST1(18)))
9800 strat->posInL = posInL17Ring;
9801 if (BTEST1(11))
9802 strat->posInT = posInT11Ring;
9803 else if (BTEST1(13))
9804 strat->posInT = posInT13;
9805 else if (BTEST1(15))
9806 strat->posInT = posInT15Ring;
9807 else if ((BTEST1(17)))
9808 strat->posInT = posInT17Ring;
9809 else if ((BTEST1(19)))
9810 strat->posInT = posInT19;
9811 else if (BTEST1(12) || BTEST1(14) || BTEST1(16) || BTEST1(18))
9812 strat->posInT = posInT1;
9814}
9815#endif
9816
9818{
9819 strat->interpt = BTEST1(OPT_INTERRUPT);
9820 /*- creating temp data structures------------------- -*/
9821 //strat->cp = 0; // already by skStragy()
9822 //strat->c3 = 0; // already by skStragy()
9823#ifdef HAVE_SHIFTBBA
9824 strat->cv = 0; // already by skStragy()
9825#endif
9826 strat->tail = pInit();
9827 /*- set s -*/
9828 strat->sl = -1;
9829 /*- set L -*/
9830 strat->Lmax = ((IDELEMS(F)+setmaxLinc-1)/setmaxLinc)*setmaxLinc;
9831 strat->Ll = -1;
9832 strat->L = initL(strat->Lmax);
9833 /*- set B -*/
9834 strat->Bmax = setmaxL;
9835 strat->Bl = -1;
9836 strat->B = initL();
9837 /*- set T -*/
9838 strat->tl = -1;
9839 strat->tmax = setmaxT;
9840 strat->T = initT();
9841 strat->R = initR();
9842 strat->sevT = initsevT();
9843 /*- init local data struct.---------------------------------------- -*/
9844 //strat->P.ecart=0; // already by skStragy()
9845 //strat->P.length=0; // already by skStragy()
9846 //strat->P.pLength=0; // already by skStragy()
9848 {
9849 if (strat->kNoether!=NULL)
9850 {
9851 pSetComp(strat->kNoether, strat->ak);
9852 pSetComp(strat->kNoetherTail(), strat->ak);
9853 }
9854 }
9856 {
9857 /*Shdl=*/initSL(F, Q,strat); /*sets also S, ecartS, fromQ */
9858 }
9859 else
9860 {
9861 if(TEST_OPT_SB_1)
9862 {
9863 int i;
9864 ideal P=idInit(IDELEMS(F)-strat->newIdeal,F->rank);
9865 for (i=strat->newIdeal;i<IDELEMS(F);i++)
9866 {
9867 P->m[i-strat->newIdeal] = F->m[i];
9868 F->m[i] = NULL;
9869 }
9870 initSSpecial(F,Q,P,strat);
9871 for (i=strat->newIdeal;i<IDELEMS(F);i++)
9872 {
9873 F->m[i] = P->m[i-strat->newIdeal];
9874 P->m[i-strat->newIdeal] = NULL;
9875 }
9876 idDelete(&P);
9877 }
9878 else
9879 {
9880 /*Shdl=*/initSL(F, Q,strat); /*sets also S, ecartS, fromQ */
9881 // /*Shdl=*/initS(F, Q,strat); /*sets also S, ecartS, fromQ */
9882 }
9883 }
9884 strat->fromT = FALSE;
9886 if ((!TEST_OPT_SB_1)
9888 )
9889 {
9890 updateS(TRUE,strat);
9891 }
9892#ifdef HAVE_SHIFTBBA
9893 if (!(rIsLPRing(currRing) && strat->rightGB)) // for right GB, we need to check later whether a poly is from Q
9894#endif
9895 {
9896 if (strat->fromQ!=NULL) omFreeSize(strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
9897 strat->fromQ=NULL;
9898 }
9899 assume(kTest_TS(strat));
9900}
9901
9903{
9904 /*- release temp data -*/
9905 cleanT(strat);
9906 omFreeSize(strat->T,(strat->tmax)*sizeof(TObject));
9907 omFreeSize(strat->R,(strat->tmax)*sizeof(TObject*));
9908 omFreeSize(strat->sevT, (strat->tmax)*sizeof(unsigned long));
9909 omFreeSize(strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
9910 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
9911 omFreeSize(strat->S_2_R,IDELEMS(strat->Shdl)*sizeof(int));
9912 /*- set L: should be empty -*/
9913 omFreeSize(strat->L,(strat->Lmax)*sizeof(LObject));
9914 /*- set B: should be empty -*/
9915 omFreeSize(strat->B,(strat->Bmax)*sizeof(LObject));
9916 pLmFree(&strat->tail);
9917 strat->syzComp=0;
9918
9919#ifdef HAVE_SHIFTBBA
9920 if (rIsLPRing(currRing) && strat->rightGB)
9921 {
9922 if (strat->fromQ!=NULL) omFreeSize(strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
9923 strat->fromQ=NULL;
9924 }
9925#endif
9926}
9927
9929{
9931 {
9932 if (strat->honey)
9933 {
9934 strat->posInL = posInL15;
9935 // ok -- here is the deal: from my experiments for Singular-2-0
9936 // I conclude that that posInT_EcartpLength is the best of
9937 // posInT15, posInT_EcartFDegpLength, posInT_FDegLength, posInT_pLength
9938 // see the table at the end of this file
9939 if (TEST_OPT_OLDSTD)
9940 strat->posInT = posInT15;
9941 else
9942 strat->posInT = posInT_EcartpLength;
9943 }
9944 else if (currRing->pLexOrder && !TEST_OPT_INTSTRATEGY)
9945 {
9946 strat->posInL = posInL11;
9947 strat->posInT = posInT11;
9948 }
9949 else if (TEST_OPT_INTSTRATEGY)
9950 {
9951 strat->posInL = posInL11;
9952 strat->posInT = posInT11;
9953 }
9954 else
9955 {
9956 strat->posInL = posInL0;
9957 strat->posInT = posInT0;
9958 }
9959 //if (strat->minim>0) strat->posInL =posInLSpecial;
9960 if (strat->homog)
9961 {
9962 strat->posInL = posInL110;
9963 strat->posInT = posInT110;
9964 }
9965 }
9966 else
9967 {
9968 if (strat->homog)
9969 {
9970 strat->posInL = posInL11;
9971 strat->posInT = posInT11;
9972 }
9973 else
9974 {
9975 if ((currRing->order[0]==ringorder_c)
9976 ||(currRing->order[0]==ringorder_C))
9977 {
9978 strat->posInL = posInL17_c;
9979 strat->posInT = posInT17_c;
9980 }
9981 else
9982 {
9983 strat->posInL = posInL17;
9984 strat->posInT = posInT17;
9985 }
9986 }
9987 }
9988 if (strat->minim>0) strat->posInL =posInLSpecial;
9989 // for further tests only
9990 if ((BTEST1(11)) || (BTEST1(12)))
9991 strat->posInL = posInL11;
9992 else if ((BTEST1(13)) || (BTEST1(14)))
9993 strat->posInL = posInL13;
9994 else if ((BTEST1(15)) || (BTEST1(16)))
9995 strat->posInL = posInL15;
9996 else if ((BTEST1(17)) || (BTEST1(18)))
9997 strat->posInL = posInL17;
9998 if (BTEST1(11))
9999 strat->posInT = posInT11;
10000 else if (BTEST1(13))
10001 strat->posInT = posInT13;
10002 else if (BTEST1(15))
10003 strat->posInT = posInT15;
10004 else if ((BTEST1(17)))
10005 strat->posInT = posInT17;
10006 else if ((BTEST1(19)))
10007 strat->posInT = posInT19;
10008 else if (BTEST1(12) || BTEST1(14) || BTEST1(16) || BTEST1(18))
10009 strat->posInT = posInT1;
10011 {
10012 strat->posInL = posInL11Ring;
10013 if(rHasLocalOrMixedOrdering(currRing) && currRing->pLexOrder == TRUE)
10014 strat->posInL = posInL11Ringls;
10015 strat->posInT = posInT11;
10016 }
10018 strat->posInLSba = posInLSig;
10019 //strat->posInL = posInLSig;
10020 strat->posInL = posInLF5C;
10021 /*
10022 if (rField_is_Ring(currRing))
10023 {
10024 strat->posInLSba = posInLSigRing;
10025 strat->posInL = posInL11Ring;
10026 }*/
10027 //strat->posInT = posInTSig;
10028}
10029
10031{
10032 strat->interpt = BTEST1(OPT_INTERRUPT);
10033 //strat->kNoether=NULL; // done by skStrategy
10034 /*- creating temp data structures------------------- -*/
10035 //strat->cp = 0; // done by skStrategy
10036 //strat->c3 = 0; // done by skStrategy
10037 strat->tail = pInit();
10038 /*- set s -*/
10039 strat->sl = -1;
10040 /*- set ps -*/
10041 strat->syzl = -1;
10042 /*- set L -*/
10043 strat->Lmax = ((IDELEMS(F)+setmaxLinc-1)/setmaxLinc)*setmaxLinc;
10044 strat->Ll = -1;
10045 strat->L = initL(strat->Lmax);
10046 /*- set B -*/
10047 strat->Bmax = setmaxL;
10048 strat->Bl = -1;
10049 strat->B = initL();
10050 /*- set T -*/
10051 strat->tl = -1;
10052 strat->tmax = setmaxT;
10053 strat->T = initT();
10054 strat->R = initR();
10055 strat->sevT = initsevT();
10056 /*- init local data struct.---------------------------------------- -*/
10057 //strat->P.ecart=0; // done by skStrategy
10058 //strat->P.length=0; // done by skStrategy
10060 {
10061 if (strat->kNoether!=NULL)
10062 {
10063 pSetComp(strat->kNoether, strat->ak);
10064 pSetComp(strat->kNoetherTail(), strat->ak);
10065 }
10066 }
10068 {
10069 /*Shdl=*/initSLSba(F, Q,strat); /*sets also S, ecartS, fromQ */
10070 }
10071 else
10072 {
10073 if(TEST_OPT_SB_1)
10074 {
10075 int i;
10076 ideal P=idInit(IDELEMS(F)-strat->newIdeal,F->rank);
10077 for (i=strat->newIdeal;i<IDELEMS(F);i++)
10078 {
10079 P->m[i-strat->newIdeal] = F->m[i];
10080 F->m[i] = NULL;
10081 }
10082 initSSpecialSba(F,Q,P,strat);
10083 for (i=strat->newIdeal;i<IDELEMS(F);i++)
10084 {
10085 F->m[i] = P->m[i-strat->newIdeal];
10086 P->m[i-strat->newIdeal] = NULL;
10087 }
10088 idDelete(&P);
10089 }
10090 else
10091 {
10092 initSLSba(F, Q,strat); /*sets also S, ecartS, fromQ */
10093 }
10094 }
10095 //strat->fromT = FALSE; // done by skStrategy
10096 if (!TEST_OPT_SB_1)
10097 {
10098 if(!rField_is_Ring(currRing)) updateS(TRUE,strat);
10099 }
10100 //if (strat->fromQ!=NULL) omFreeSize(strat->fromQ,IDELEMS(strat->Shdl)*sizeof(int));
10101 //strat->fromQ=NULL;
10102 assume(kTest_TS(strat));
10103}
10104
10105void exitSba (kStrategy strat)
10106{
10107 /*- release temp data -*/
10109 cleanTSbaRing(strat);
10110 else
10111 cleanT(strat);
10112 omFreeSize(strat->T,(strat->tmax)*sizeof(TObject));
10113 omFreeSize(strat->R,(strat->tmax)*sizeof(TObject*));
10114 omFreeSize(strat->sevT, (strat->tmax)*sizeof(unsigned long));
10115 omFreeSize(strat->ecartS,IDELEMS(strat->Shdl)*sizeof(int));
10116 omFreeSize((ADDRESS)strat->sevS,IDELEMS(strat->Shdl)*sizeof(unsigned long));
10117 omFreeSize((ADDRESS)strat->sevSig,IDELEMS(strat->Shdl)*sizeof(unsigned long));
10118 if(strat->syzmax>0)
10119 {
10120 omFreeSize((ADDRESS)strat->syz,(strat->syzmax)*sizeof(poly));
10121 omFreeSize((ADDRESS)strat->sevSyz,(strat->syzmax)*sizeof(unsigned long));
10122 if (strat->sbaOrder == 1)
10123 {
10124 omFreeSize(strat->syzIdx,(strat->syzidxmax)*sizeof(int));
10125 }
10126 }
10127 omFreeSize(strat->S_2_R,IDELEMS(strat->Shdl)*sizeof(int));
10128 /*- set L: should be empty -*/
10129 omFreeSize(strat->L,(strat->Lmax)*sizeof(LObject));
10130 /*- set B: should be empty -*/
10131 omFreeSize(strat->B,(strat->Bmax)*sizeof(LObject));
10132 /*- set sig: no need for the signatures anymore -*/
10133 omFreeSize(strat->sig,IDELEMS(strat->Shdl)*sizeof(poly));
10134 pLmDelete(&strat->tail);
10135 strat->syzComp=0;
10136}
10137
10138/*2
10139* in the case of a standardbase of a module over a qring:
10140* replace polynomials in i by ak vectors,
10141* (the polynomial * unit vectors gen(1)..gen(ak)
10142* in every case (also for ideals:)
10143* deletes divisible vectors/polynomials
10144*/
10146{
10147 int l;
10148 if (strat->ak>0)
10149 {
10150 for (l=IDELEMS(r)-1;l>=0;l--)
10151 {
10152 if ((r->m[l]!=NULL) && (pGetComp(r->m[l])==0))
10153 {
10154 pDelete(&r->m[l]); // and set it to NULL
10155 }
10156 }
10157 int q;
10158 poly p;
10160 {
10161 for (l=IDELEMS(r)-1;l>=0;l--)
10162 {
10163 if ((r->m[l]!=NULL)
10164 //&& (strat->syzComp>0)
10165 //&& (pGetComp(r->m[l])<=strat->syzComp)
10166 )
10167 {
10168 for(q=IDELEMS(Q)-1; q>=0;q--)
10169 {
10170 if ((Q->m[q]!=NULL)
10171 &&(pLmDivisibleBy(Q->m[q],r->m[l])))
10172 {
10173 if (TEST_OPT_REDSB)
10174 {
10175 p=r->m[l];
10176 r->m[l]=kNF(Q,NULL,p);
10177 pDelete(&p);
10178 }
10179 else
10180 {
10181 pDelete(&r->m[l]); // and set it to NULL
10182 }
10183 break;
10184 }
10185 }
10186 }
10187 }
10188 }
10189 #ifdef HAVE_RINGS
10190 else
10191 {
10192 for (l=IDELEMS(r)-1;l>=0;l--)
10193 {
10194 if ((r->m[l]!=NULL)
10195 //&& (strat->syzComp>0)
10196 //&& (pGetComp(r->m[l])<=strat->syzComp)
10197 )
10198 {
10199 for(q=IDELEMS(Q)-1; q>=0;q--)
10200 {
10201 if ((Q->m[q]!=NULL)
10202 &&(pLmDivisibleBy(Q->m[q],r->m[l])))
10203 {
10204 if(n_DivBy(r->m[l]->coef, Q->m[q]->coef, currRing->cf))
10205 {
10206 if (TEST_OPT_REDSB)
10207 {
10208 p=r->m[l];
10209 r->m[l]=kNF(Q,NULL,p);
10210 pDelete(&p);
10211 }
10212 else
10213 {
10214 pDelete(&r->m[l]); // and set it to NULL
10215 }
10216 break;
10217 }
10218 }
10219 }
10220 }
10221 }
10222 }
10223 #endif
10224 }
10225 else
10226 {
10227 int q;
10228 poly p;
10231 {
10232 for (l=IDELEMS(r)-1;l>=0;l--)
10233 {
10234 if (r->m[l]!=NULL)
10235 {
10236 for(q=IDELEMS(Q)-1; q>=0;q--)
10237 {
10238 if ((Q->m[q]!=NULL)&&(pLmEqual(Q->m[q],r->m[l])))
10239 {
10240 if (TEST_OPT_REDSB)
10241 {
10242 p=r->m[l];
10243 r->m[l]=kNF(Q,NULL,p);
10244 pDelete(&p);
10246 }
10247 else
10248 {
10249 pDelete(&r->m[l]); // and set it to NULL
10250 }
10251 break;
10252 }
10253 }
10254 }
10255 }
10256 }
10257 #ifdef HAVE_RINGS
10258 //Also need divisibility of the leading coefficients
10259 else
10260 {
10261 for (l=IDELEMS(r)-1;l>=0;l--)
10262 {
10263 if (r->m[l]!=NULL)
10264 {
10265 for(q=IDELEMS(Q)-1; q>=0;q--)
10266 {
10267 if(n_DivBy(r->m[l]->coef, Q->m[q]->coef, currRing->cf))
10268 {
10269 if ((Q->m[q]!=NULL)&&(pLmEqual(Q->m[q],r->m[l])) && pDivisibleBy(Q->m[q],r->m[l]))
10270 {
10271 if (TEST_OPT_REDSB)
10272 {
10273 p=r->m[l];
10274 r->m[l]=kNF(Q,NULL,p);
10275 pDelete(&p);
10277 }
10278 else
10279 {
10280 pDelete(&r->m[l]); // and set it to NULL
10281 }
10282 break;
10283 }
10284 }
10285 }
10286 }
10287 }
10288 }
10289 #endif
10290 if (/*TEST_OPT_REDSB &&*/ reduction_found)
10291 {
10292 #ifdef HAVE_RINGS
10294 {
10295 for (l=IDELEMS(r)-1;l>=0;l--)
10296 {
10297 if (r->m[l]!=NULL)
10298 {
10299 for(q=IDELEMS(r)-1;q>=0;q--)
10300 {
10301 if ((l!=q)
10302 && (r->m[q]!=NULL)
10303 &&(pLmDivisibleBy(r->m[l],r->m[q]))
10304 &&(n_DivBy(r->m[q]->coef, r->m[l]->coef, currRing->cf))
10305 )
10306 {
10307 //If they are equal then take the one with the smallest length
10308 if(pLmDivisibleBy(r->m[q],r->m[l])
10309 && n_DivBy(r->m[q]->coef, r->m[l]->coef, currRing->cf)
10310 && (pLength(r->m[q]) < pLength(r->m[l]) ||
10311 (pLength(r->m[q]) == pLength(r->m[l]) && nGreaterZero(r->m[q]->coef))))
10312 {
10313 pDelete(&r->m[l]);
10314 break;
10315 }
10316 else
10317 pDelete(&r->m[q]);
10318 }
10319 }
10320 }
10321 }
10322 }
10323 else
10324 #endif
10325 {
10326 for (l=IDELEMS(r)-1;l>=0;l--)
10327 {
10328 if (r->m[l]!=NULL)
10329 {
10330 for(q=IDELEMS(r)-1;q>=0;q--)
10331 {
10332 if ((l!=q)
10333 && (r->m[q]!=NULL)
10334 &&(pLmDivisibleBy(r->m[l],r->m[q]))
10335 )
10336 {
10337 //If they are equal then take the one with the smallest length
10338 if(pLmDivisibleBy(r->m[q],r->m[l])
10339 &&(pLength(r->m[q]) < pLength(r->m[l]) ||
10340 (pLength(r->m[q]) == pLength(r->m[l]) && nGreaterZero(r->m[q]->coef))))
10341 {
10342 pDelete(&r->m[l]);
10343 break;
10344 }
10345 else
10346 pDelete(&r->m[q]);
10347 }
10348 }
10349 }
10350 }
10351 }
10352 }
10353 }
10354 idSkipZeroes(r);
10355}
10356
10358{
10359 int i;
10360 int low = (((rHasGlobalOrdering(currRing)) && (strat->ak==0)) ? 1 : 0);
10361 LObject L;
10362
10363#ifdef KDEBUG
10364 // need to set this: during tailreductions of T[i], T[i].max is out of
10365 // sync
10366 sloppy_max = TRUE;
10367#endif
10368
10369 strat->noTailReduction = FALSE;
10370 //if(rHasMixedOrdering(currRing)) strat->noTailReduction = TRUE;
10371 if (TEST_OPT_PROT)
10372 {
10373 PrintLn();
10374// if (timerv) writeTime("standard base computed:");
10375 }
10376 if (TEST_OPT_PROT)
10377 {
10378 Print("(S:%d)",strat->sl);mflush();
10379 }
10380 for (i=strat->sl; i>=low; i--)
10381 {
10382 int end_pos=strat->sl;
10383 if ((strat->fromQ!=NULL) && (strat->fromQ[i])) continue; // do not reduce Q_i
10384 if (strat->ak==0) end_pos=i-1;
10385 TObject* T_j = strat->s_2_t(i);
10386 if ((T_j != NULL)&&(T_j->p==strat->S[i]))
10387 {
10388 L = *T_j;
10389 #ifdef KDEBUG
10390 if (TEST_OPT_DEBUG)
10391 {
10392 Print("test S[%d]:",i);
10393 p_wrp(L.p,currRing,strat->tailRing);
10394 PrintLn();
10395 }
10396 #endif
10398 strat->S[i] = redtailBba(&L, end_pos, strat, withT,FALSE /*no normalize*/);
10399 else
10400 strat->S[i] = redtail(&L, strat->sl, strat);
10401 #ifdef KDEBUG
10402 if (TEST_OPT_DEBUG)
10403 {
10404 Print("to (tailR) S[%d]:",i);
10405 p_wrp(strat->S[i],currRing,strat->tailRing);
10406 PrintLn();
10407 }
10408 #endif
10409
10410 if (strat->redTailChange)
10411 {
10412 if (T_j->max_exp != NULL) p_LmFree(T_j->max_exp, strat->tailRing);
10413 if (pNext(T_j->p) != NULL)
10414 T_j->max_exp = p_GetMaxExpP(pNext(T_j->p), strat->tailRing);
10415 else
10416 T_j->max_exp = NULL;
10417 }
10419 T_j->pCleardenom();
10420 }
10421 else
10422 {
10423 assume(currRing == strat->tailRing);
10424 #ifdef KDEBUG
10425 if (TEST_OPT_DEBUG)
10426 {
10427 Print("test S[%d]:",i);
10428 p_wrp(strat->S[i],currRing,strat->tailRing);
10429 PrintLn();
10430 }
10431 #endif
10433 strat->S[i] = redtailBba(strat->S[i], end_pos, strat, withT);
10434 else
10435 strat->S[i] = redtail(strat->S[i], strat->sl, strat);
10437 {
10439 {
10440 number n;
10441 p_Cleardenom_n(strat->S[i], currRing, n);// also does remove Content
10442 if (!nIsOne(n))
10443 {
10445 denom->n=nInvers(n);
10446 denom->next=DENOMINATOR_LIST;
10448 }
10449 nDelete(&n);
10450 }
10451 else
10452 {
10453 strat->S[i]=p_Cleardenom(strat->S[i], currRing);// also does remove Content
10454 }
10455 }
10456 #ifdef KDEBUG
10457 if (TEST_OPT_DEBUG)
10458 {
10459 Print("to (-tailR) S[%d]:",i);
10460 p_wrp(strat->S[i],currRing,strat->tailRing);
10461 PrintLn();
10462 }
10463 #endif
10464 }
10465 if (TEST_OPT_PROT)
10466 PrintS("-");
10467 }
10468 if (TEST_OPT_PROT) PrintLn();
10469#ifdef KDEBUG
10470 sloppy_max = FALSE;
10471#endif
10472}
10473
10474
10475/*2
10476* computes the new strat->kNoether and the new pNoether,
10477* returns TRUE, if pNoether has changed
10478*/
10480{
10481 if (currRing->pLexOrder || rHasMixedOrdering(currRing))
10482 return FALSE;
10483 int i,j;
10484 poly newNoether;
10485
10486#if 0
10487 if (currRing->weight_all_1)
10488 scComputeHC(strat->Shdl,NULL,strat->ak,strat->kNoether);
10489 else
10490 scComputeHCw(strat->Shdl,NULL,strat->ak,strat->kNoether);
10491#else
10492 scComputeHC(strat->Shdl,NULL,strat->ak,strat->kNoether);
10493#endif
10494 if (strat->kNoether==NULL) return FALSE;
10495 if (strat->t_kNoether != NULL)
10496 {
10497 p_LmFree(strat->t_kNoether, strat->tailRing);
10498 strat->t_kNoether=NULL;
10499 }
10500 if (strat->tailRing != currRing)
10502 /* compare old and new noether*/
10503 newNoether = pLmInit(strat->kNoether);
10506 for (i=1; i<=(currRing->N); i++)
10507 {
10509 }
10511 if (j < HCord) /*- statistics -*/
10512 {
10513 if (TEST_OPT_PROT)
10514 {
10515 Print("H(%d)",j);
10516 mflush();
10517 }
10518 HCord=j;
10519 #ifdef KDEBUG
10520 if (TEST_OPT_DEBUG)
10521 {
10522 Print("H(%d):",j);
10523 wrp(strat->kNoether);
10524 PrintLn();
10525 }
10526 #endif
10527 }
10528 if (pCmp(strat->kNoether,newNoether)!=1)
10529 {
10530 if (strat->kNoether!=NULL) p_LmDelete0(strat->kNoether,currRing);
10531 strat->kNoether=newNoether;
10532 if (strat->t_kNoether != NULL)
10533 {
10534 p_LmFree(strat->t_kNoether, strat->tailRing);
10535 strat->t_kNoether=NULL;
10536 }
10537 if (strat->tailRing != currRing)
10539
10540 return TRUE;
10541 }
10543 return FALSE;
10544}
10545
10546/***************************************************************
10547 *
10548 * Routines related for ring changes during std computations
10549 *
10550 ***************************************************************/
10551BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
10552{
10553 if (strat->overflow) return FALSE;
10554 assume(L->p1 != NULL && L->p2 != NULL);
10555 // shift changes: from 0 to -1
10556 assume(L->i_r1 >= -1 && L->i_r1 <= strat->tl);
10557 assume(L->i_r2 >= -1 && L->i_r2 <= strat->tl);
10558
10559 if (! k_GetLeadTerms(L->p1, L->p2, currRing, m1, m2, strat->tailRing))
10560 return FALSE;
10561 // shift changes: extra case inserted
10562 if ((L->i_r1 == -1) || (L->i_r2 == -1) )
10563 {
10564 return TRUE;
10565 }
10566 poly p1_max=NULL;
10567 if ((L->i_r1>=0)&&(strat->R[L->i_r1]!=NULL)) p1_max = (strat->R[L->i_r1])->max_exp;
10568 poly p2_max=NULL;
10569 if ((L->i_r2>=0)&&(strat->R[L->i_r2]!=NULL)) p2_max = (strat->R[L->i_r2])->max_exp;
10570
10571 if (((p1_max != NULL) && !p_LmExpVectorAddIsOk(m1, p1_max, strat->tailRing)) ||
10572 ((p2_max != NULL) && !p_LmExpVectorAddIsOk(m2, p2_max, strat->tailRing)))
10573 {
10574 p_LmFree(m1, strat->tailRing);
10575 p_LmFree(m2, strat->tailRing);
10576 m1 = NULL;
10577 m2 = NULL;
10578 return FALSE;
10579 }
10580 return TRUE;
10581}
10582
10583#ifdef HAVE_RINGS
10584/***************************************************************
10585 *
10586 * Checks, if we can compute the gcd poly / strong pair
10587 * gcd-poly = m1 * R[atR] + m2 * S[atS]
10588 *
10589 ***************************************************************/
10590BOOLEAN kCheckStrongCreation(int atR, poly m1, int atS, poly m2, kStrategy strat)
10591{
10592 assume(strat->S_2_R[atS] >= -1 && strat->S_2_R[atS] <= strat->tl);
10593 //assume(strat->tailRing != currRing);
10594
10595 poly p1_max = (strat->R[atR])->max_exp;
10596 poly p2_max = (strat->R[strat->S_2_R[atS]])->max_exp;
10597
10598 if (((p1_max != NULL) && !p_LmExpVectorAddIsOk(m1, p1_max, strat->tailRing)) ||
10599 ((p2_max != NULL) && !p_LmExpVectorAddIsOk(m2, p2_max, strat->tailRing)))
10600 {
10601 return FALSE;
10602 }
10603 return TRUE;
10604}
10605#endif
10606
10607#ifdef HAVE_RINGS
10608/*!
10609 used for GB over ZZ: look for constant and monomial elements in the ideal
10610 background: any known constant element of ideal suppresses
10611 intermediate coefficient swell
10612*/
10614{
10615 if(!nCoeff_is_Z(currRing->cf))
10616 return NULL;
10617 ideal F = idCopy(Forig);
10618 idSkipZeroes(F);
10619 poly pmon;
10621 ideal monred = idInit(1,1);
10622 for(int i=0; i<idElem(F); i++)
10623 {
10624 if(pNext(F->m[i]) == NULL)
10625 idInsertPoly(monred, pCopy(F->m[i]));
10626 }
10627 int posconst = idPosConstant(F);
10628 if((posconst != -1) && (!nIsZero(F->m[posconst]->coef)))
10629 {
10630 idDelete(&F);
10631 idDelete(&monred);
10632 return NULL;
10633 }
10634 int idelemQ = 0;
10635 if(Q!=NULL)
10636 {
10637 idelemQ = IDELEMS(Q);
10638 for(int i=0; i<idelemQ; i++)
10639 {
10640 if(pNext(Q->m[i]) == NULL)
10641 idInsertPoly(monred, pCopy(Q->m[i]));
10642 }
10645 //the constant, if found, will be from Q
10646 if((posconst != -1) && (!nIsZero(monred->m[posconst]->coef)))
10647 {
10648 pmon = pCopy(monred->m[posconst]);
10649 idDelete(&F);
10650 idDelete(&monred);
10651 return pmon;
10652 }
10653 }
10655 nKillChar(QQ_ring->cf);
10656 QQ_ring->cf = nInitChar(n_Q, NULL);
10657 rComplete(QQ_ring,1);
10660 nMapFunc nMap = n_SetMap(origR->cf, QQ_ring->cf);
10662 for(int i = 0, j = 0; i<IDELEMS(F); i++)
10663 II->m[j++] = prMapR(F->m[i], nMap, origR, QQ_ring);
10664 for(int i = 0, j = IDELEMS(F); i<idelemQ; i++)
10665 II->m[j++] = prMapR(Q->m[i], nMap, origR, QQ_ring);
10666 ideal one = kStd(II, NULL, isNotHomog, NULL);
10667 idSkipZeroes(one);
10668 if(idIsConstant(one))
10669 {
10670 //one should be <1>
10671 for(int i = IDELEMS(II)-1; i>=0; i--)
10672 if(II->m[i] != NULL)
10673 II->m[i+1] = II->m[i];
10674 II->m[0] = pOne();
10676 poly integer = NULL;
10677 for(int i = IDELEMS(syz)-1;i>=0; i--)
10678 {
10679 if(pGetComp(syz->m[i]) == 1)
10680 {
10681 pSetComp(syz->m[i],0);
10682 if(pIsConstant(pHead(syz->m[i])))
10683 {
10684 integer = pHead(syz->m[i]);
10685 break;
10686 }
10687 }
10688 }
10690 nMapFunc nMap2 = n_SetMap(QQ_ring->cf, origR->cf);
10692 idDelete(&monred);
10693 idDelete(&F);
10695 id_Delete(&one,QQ_ring);
10696 id_Delete(&syz,QQ_ring);
10699 return pmon;
10700 }
10701 else
10702 {
10703 if(idIs0(monred))
10704 {
10705 poly mindegmon = NULL;
10706 for(int i = 0; i<IDELEMS(one); i++)
10707 {
10708 if(pNext(one->m[i]) == NULL)
10709 {
10710 if(mindegmon == NULL)
10711 mindegmon = pCopy(one->m[i]);
10712 else
10713 {
10714 if(p_Deg(one->m[i], QQ_ring) < p_Deg(mindegmon, QQ_ring))
10715 mindegmon = pCopy(one->m[i]);
10716 }
10717 }
10718 }
10719 if(mindegmon != NULL)
10720 {
10721 for(int i = IDELEMS(II)-1; i>=0; i--)
10722 if(II->m[i] != NULL)
10723 II->m[i+1] = II->m[i];
10724 II->m[0] = pCopy(mindegmon);
10726 bool found = FALSE;
10727 for(int i = IDELEMS(syz)-1;i>=0; i--)
10728 {
10729 if(pGetComp(syz->m[i]) == 1)
10730 {
10731 pSetComp(syz->m[i],0);
10732 if(pIsConstant(pHead(syz->m[i])))
10733 {
10734 pSetCoeff(mindegmon, nCopy(syz->m[i]->coef));
10735 found = TRUE;
10736 break;
10737 }
10738 }
10739 }
10740 id_Delete(&syz,QQ_ring);
10741 if (found == FALSE)
10742 {
10744 idDelete(&monred);
10745 idDelete(&F);
10747 id_Delete(&one,QQ_ring);
10749 return NULL;
10750 }
10752 nMapFunc nMap2 = n_SetMap(QQ_ring->cf, origR->cf);
10754 idDelete(&monred);
10755 idDelete(&F);
10757 id_Delete(&one,QQ_ring);
10758 id_Delete(&syz,QQ_ring);
10760 return pmon;
10761 }
10762 }
10763 }
10765 idDelete(&monred);
10766 idDelete(&F);
10768 id_Delete(&one,QQ_ring);
10770 return NULL;
10771}
10772#endif
10773
10774#ifdef HAVE_RINGS
10775/*!
10776 used for GB over ZZ: intermediate reduction by monomial elements
10777 background: any known constant element of ideal suppresses
10778 intermediate coefficient swell
10779*/
10781{
10782 if(!nCoeff_is_Z(currRing->cf))
10783 return;
10784 poly pH = h->GetP();
10785 poly p,pp;
10786 p = pH;
10787 bool deleted = FALSE, ok = FALSE;
10788 for(int i = 0; i<=strat->sl; i++)
10789 {
10790 p = pH;
10791 if(pNext(strat->S[i]) == NULL)
10792 {
10793 //pWrite(p);
10794 //pWrite(strat->S[i]);
10795 while(ok == FALSE && p != NULL)
10796 {
10797 if(pLmDivisibleBy(strat->S[i], p)
10799 || (rIsLPRing(currRing) && pLPLmDivisibleBy(strat->S[i], p))
10800#endif
10801 )
10802 {
10803 number dummy = n_IntMod(p->coef, strat->S[i]->coef, currRing->cf);
10805 }
10806 if(nIsZero(p->coef))
10807 {
10808 pLmDelete(&p);
10809 h->p = p;
10810 deleted = TRUE;
10811 }
10812 else
10813 {
10814 ok = TRUE;
10815 }
10816 }
10817 if (p!=NULL)
10818 {
10819 pp = pNext(p);
10820 while(pp != NULL)
10821 {
10822 if(pLmDivisibleBy(strat->S[i], pp)
10824 || (rIsLPRing(currRing) && pLPLmDivisibleBy(strat->S[i], pp))
10825#endif
10826 )
10827 {
10828 number dummy = n_IntMod(pp->coef, strat->S[i]->coef, currRing->cf);
10830 if(nIsZero(pp->coef))
10831 {
10832 pLmDelete(&pNext(p));
10833 pp = pNext(p);
10834 deleted = TRUE;
10835 }
10836 else
10837 {
10838 p = pp;
10839 pp = pNext(p);
10840 }
10841 }
10842 else
10843 {
10844 p = pp;
10845 pp = pNext(p);
10846 }
10847 }
10848 }
10849 }
10850 }
10851 h->SetLmCurrRing();
10852 if((deleted)&&(h->p!=NULL))
10853 strat->initEcart(h);
10854}
10855
10857{
10858 if(!nCoeff_is_Z(currRing->cf))
10859 return;
10860 poly hSig = h->sig;
10861 poly pH = h->GetP();
10862 poly p,pp;
10863 p = pH;
10864 bool deleted = FALSE, ok = FALSE;
10865 for(int i = 0; i<=strat->sl; i++)
10866 {
10867 p = pH;
10868 if(pNext(strat->S[i]) == NULL)
10869 {
10870 while(ok == FALSE && p!=NULL)
10871 {
10872 if(pLmDivisibleBy(strat->S[i], p))
10873 {
10874 poly sigMult = pDivideM(pHead(p),pHead(strat->S[i]));
10875 sigMult = ppMult_mm(sigMult,pCopy(strat->sig[i]));
10876 if(sigMult!= NULL && pLtCmp(hSig,sigMult) == 1)
10877 {
10878 number dummy = n_IntMod(p->coef, strat->S[i]->coef, currRing->cf);
10880 }
10881 pDelete(&sigMult);
10882 }
10883 if(nIsZero(p->coef))
10884 {
10885 pLmDelete(&p);
10886 h->p = p;
10887 deleted = TRUE;
10888 }
10889 else
10890 {
10891 ok = TRUE;
10892 }
10893 }
10894 if(p == NULL)
10895 return;
10896 pp = pNext(p);
10897 while(pp != NULL)
10898 {
10899 if(pLmDivisibleBy(strat->S[i], pp))
10900 {
10901 poly sigMult = pDivideM(pHead(p),pHead(strat->S[i]));
10902 sigMult = ppMult_mm(sigMult,pCopy(strat->sig[i]));
10903 if(sigMult!= NULL && pLtCmp(hSig,sigMult) == 1)
10904 {
10905 number dummy = n_IntMod(pp->coef, strat->S[i]->coef, currRing->cf);
10907 if(nIsZero(pp->coef))
10908 {
10909 pLmDelete(&pNext(p));
10910 pp = pNext(p);
10911 deleted = TRUE;
10912 }
10913 else
10914 {
10915 p = pp;
10916 pp = pNext(p);
10917 }
10918 }
10919 else
10920 {
10921 p = pp;
10922 pp = pNext(p);
10923 }
10924 pDelete(&sigMult);
10925 }
10926 else
10927 {
10928 p = pp;
10929 pp = pNext(p);
10930 }
10931 }
10932 }
10933 }
10934 h->SetLmCurrRing();
10935 if(deleted)
10936 strat->initEcart(h);
10937
10938}
10939
10940/*!
10941 used for GB over ZZ: final reduction by constant elements
10942 background: any known constant element of ideal suppresses
10943 intermediate coefficient swell and beautifies output
10944*/
10946{
10947 assume(strat->tl<0); /* can only be called with no elements in T:
10948 i.e. after exitBuchMora */
10949 /* do not use strat->S, strat->sl as they may be out of sync*/
10950 if(!nCoeff_is_Z(currRing->cf))
10951 return;
10952 poly p,pp;
10953 for(int j = 0; j<IDELEMS(strat->Shdl); j++)
10954 {
10955 if((strat->Shdl->m[j]!=NULL)&&(pNext(strat->Shdl->m[j]) == NULL))
10956 {
10957 for(int i = 0; i<IDELEMS(strat->Shdl); i++)
10958 {
10959 if((i != j) && (strat->Shdl->m[i] != NULL))
10960 {
10961 p = strat->Shdl->m[i];
10962 while((p!=NULL) && (pLmDivisibleBy(strat->Shdl->m[j], p)
10963#if HAVE_SHIFTBBA
10964 || (rIsLPRing(currRing) && pLPLmDivisibleBy(strat->Shdl->m[j], p))
10965#endif
10966 ))
10967 {
10968 number dummy = n_IntMod(p->coef, strat->Shdl->m[j]->coef, currRing->cf);
10969 if (!nEqual(dummy,p->coef))
10970 {
10971 if (nIsZero(dummy))
10972 {
10973 nDelete(&dummy);
10974 pLmDelete(&strat->Shdl->m[i]);
10975 p=strat->Shdl->m[i];
10976 }
10977 else
10978 {
10980 break;
10981 }
10982 }
10983 else
10984 {
10985 nDelete(&dummy);
10986 break;
10987 }
10988 }
10989 if (p!=NULL)
10990 {
10991 pp = pNext(p);
10992 while(pp != NULL)
10993 {
10994 if(pLmDivisibleBy(strat->Shdl->m[j], pp)
10995#if HAVE_SHIFTBBA
10996 || (rIsLPRing(currRing) && pLPLmDivisibleBy(strat->Shdl->m[j], pp))
10997#endif
10998 )
10999 {
11000 number dummy = n_IntMod(pp->coef, strat->Shdl->m[j]->coef, currRing->cf);
11001 if (!nEqual(dummy,pp->coef))
11002 {
11004 if(nIsZero(pp->coef))
11005 {
11006 pLmDelete(&pNext(p));
11007 pp = pNext(p);
11008 }
11009 else
11010 {
11011 p = pp;
11012 pp = pNext(p);
11013 }
11014 }
11015 else
11016 {
11017 nDelete(&dummy);
11018 p = pp;
11019 pp = pNext(p);
11020 }
11021 }
11022 else
11023 {
11024 p = pp;
11025 pp = pNext(p);
11026 }
11027 }
11028 }
11029 }
11030 }
11031 //idPrint(strat->Shdl);
11032 }
11033 }
11034 idSkipZeroes(strat->Shdl);
11035}
11036#endif
11037
11039{
11040 assume((strat->tailRing == currRing) || (strat->tailRing->bitmask <= currRing->bitmask));
11041 /* initial setup or extending */
11042
11043 if (rIsLPRing(currRing)) return TRUE;
11044 if (expbound == 0) expbound = strat->tailRing->bitmask << 1;
11045 if (expbound >= currRing->bitmask) return FALSE;
11046 strat->overflow=FALSE;
11048 // Hmmm .. the condition pFDeg == p_Deg
11049 // might be too strong
11050 (strat->homog && currRing->pFDeg == p_Deg && !(rField_is_Ring(currRing))), // omit degree
11051 (strat->ak==0), // omit_comp if the input is an ideal
11052 expbound); // exp_limit
11053
11054 if (new_tailRing == currRing) return TRUE;
11055
11056 strat->pOrigFDeg_TailRing = new_tailRing->pFDeg;
11057 strat->pOrigLDeg_TailRing = new_tailRing->pLDeg;
11058
11059 if (currRing->pFDeg != currRing->pFDegOrig)
11060 {
11061 new_tailRing->pFDeg = currRing->pFDeg;
11062 new_tailRing->pLDeg = currRing->pLDeg;
11063 }
11064
11065 if (TEST_OPT_PROT)
11066 Print("[%lu:%d", (unsigned long) new_tailRing->bitmask, new_tailRing->ExpL_Size);
11067 kTest_TS(strat);
11068 assume(new_tailRing != strat->tailRing);
11069 pShallowCopyDeleteProc p_shallow_copy_delete
11071
11073
11074 int i;
11075 for (i=0; i<=strat->tl; i++)
11076 {
11077 strat->T[i].ShallowCopyDelete(new_tailRing, new_tailBin,
11078 p_shallow_copy_delete);
11079 }
11080 for (i=0; i<=strat->Ll; i++)
11081 {
11082 assume(strat->L[i].p != NULL);
11083 if (pNext(strat->L[i].p) != strat->tail)
11084 strat->L[i].ShallowCopyDelete(new_tailRing, p_shallow_copy_delete);
11085 }
11086 if ((strat->P.t_p != NULL) ||
11087 ((strat->P.p != NULL) && pNext(strat->P.p) != strat->tail))
11088 strat->P.ShallowCopyDelete(new_tailRing, p_shallow_copy_delete);
11089
11090 if ((L != NULL) && (L->tailRing != new_tailRing))
11091 {
11092 if (L->i_r < 0)
11093 L->ShallowCopyDelete(new_tailRing, p_shallow_copy_delete);
11094 else
11095 {
11096 assume(L->i_r <= strat->tl);
11097 TObject* t_l = strat->R[L->i_r];
11098 assume(t_l != NULL);
11099 L->tailRing = new_tailRing;
11100 L->p = t_l->p;
11101 L->t_p = t_l->t_p;
11102 L->max_exp = t_l->max_exp;
11103 }
11104 }
11105
11106 if ((T != NULL) && (T->tailRing != new_tailRing && T->i_r < 0))
11107 T->ShallowCopyDelete(new_tailRing, new_tailBin, p_shallow_copy_delete);
11108
11109 omMergeStickyBinIntoBin(strat->tailBin, strat->tailRing->PolyBin);
11110 if (strat->tailRing != currRing)
11112
11113 strat->tailRing = new_tailRing;
11114 strat->tailBin = new_tailBin;
11117
11118 if (strat->kNoether != NULL)
11119 {
11120 if (strat->t_kNoether != NULL)
11121 p_LmFree(strat->t_kNoether, strat->tailRing);
11123 }
11124
11125 kTest_TS(strat);
11126 if (TEST_OPT_PROT)
11127 PrintS("]");
11128 return TRUE;
11129}
11130
11132{
11133 unsigned long l = 0;
11134 int i;
11135 long e;
11136
11137 assume(strat->tailRing == currRing);
11138
11139 for (i=0; i<= strat->Ll; i++)
11140 {
11141 l = p_GetMaxExpL(strat->L[i].p, currRing, l);
11142 }
11143 for (i=0; i<=strat->tl; i++)
11144 {
11145 // Hmm ... this we could do in one Step
11146 l = p_GetMaxExpL(strat->T[i].p, currRing, l);
11147 }
11149 {
11150 l *= 2;
11151 }
11152 e = p_GetMaxExp(l, currRing);
11153 if (e <= 1) e = 2;
11154 if (rIsLPRing(currRing)) e = 1;
11155
11156 kStratChangeTailRing(strat, NULL, NULL, e);
11157}
11158
11159ring sbaRing (kStrategy strat, const ring r, BOOLEAN /*complete*/, int /*sgn*/)
11160{
11161 int n = rBlocks(r); // Including trailing zero!
11162 // if sbaOrder == 1 => use (C,monomial order from r)
11163 if (strat->sbaOrder == 1)
11164 {
11165 if (r->order[0] == ringorder_C || r->order[0] == ringorder_c)
11166 {
11167 return r;
11168 }
11169 ring res = rCopy0(r, TRUE, FALSE);
11170 res->order = (rRingOrder_t *)omAlloc0((n+1)*sizeof(rRingOrder_t));
11171 res->block0 = (int *)omAlloc0((n+1)*sizeof(int));
11172 res->block1 = (int *)omAlloc0((n+1)*sizeof(int));
11173 int **wvhdl = (int **)omAlloc0((n+1)*sizeof(int*));
11174 res->wvhdl = wvhdl;
11175 for (int i=1; i<n; i++)
11176 {
11177 res->order[i] = r->order[i-1];
11178 res->block0[i] = r->block0[i-1];
11179 res->block1[i] = r->block1[i-1];
11180 res->wvhdl[i] = r->wvhdl[i-1];
11181 }
11182
11183 // new 1st block
11184 res->order[0] = ringorder_C; // Prefix
11185 // removes useless secondary component order if defined in old ring
11186 for (int i=rBlocks(res); i>0; --i)
11187 {
11188 if (res->order[i] == ringorder_C || res->order[i] == ringorder_c)
11189 {
11190 res->order[i] = (rRingOrder_t)0;
11191 }
11192 }
11193 rComplete(res, 1);
11194#ifdef HAVE_PLURAL
11195 if (rIsPluralRing(r))
11196 {
11197 if ( nc_rComplete(r, res, false) ) // no qideal!
11198 {
11199#ifndef SING_NDEBUG
11200 WarnS("error in nc_rComplete");
11201#endif
11202 // cleanup?
11203
11204 // rDelete(res);
11205 // return r;
11206
11207 // just go on..
11208 }
11209 }
11210#endif
11211 strat->tailRing = res;
11212 return (res);
11213 }
11214 // if sbaOrder == 3 => degree - position - ring order
11215 if (strat->sbaOrder == 3)
11216 {
11217 ring res = rCopy0(r, TRUE, FALSE);
11218 res->order = (rRingOrder_t*)omAlloc0((n+2)*sizeof(rRingOrder_t));
11219 res->block0 = (int *)omAlloc0((n+2)*sizeof(int));
11220 res->block1 = (int *)omAlloc0((n+2)*sizeof(int));
11221 int **wvhdl = (int **)omAlloc0((n+2)*sizeof(int*));
11222 res->wvhdl = wvhdl;
11223 for (int i=2; i<n+2; i++)
11224 {
11225 res->order[i] = r->order[i-2];
11226 res->block0[i] = r->block0[i-2];
11227 res->block1[i] = r->block1[i-2];
11228 res->wvhdl[i] = r->wvhdl[i-2];
11229 }
11230
11231 // new 1st block
11232 res->order[0] = ringorder_a; // Prefix
11233 res->block0[0] = 1;
11234 res->wvhdl[0] = (int *)omAlloc(res->N*sizeof(int));
11235 for (int i=0; i<res->N; ++i)
11236 res->wvhdl[0][i] = 1;
11237 res->block1[0] = si_min(res->N, rVar(res));
11238 // new 2nd block
11239 res->order[1] = ringorder_C; // Prefix
11240 res->wvhdl[1] = NULL;
11241 // removes useless secondary component order if defined in old ring
11242 for (int i=rBlocks(res); i>1; --i)
11243 {
11244 if (res->order[i] == ringorder_C || res->order[i] == ringorder_c)
11245 {
11246 res->order[i] = (rRingOrder_t)0;
11247 }
11248 }
11249 rComplete(res, 1);
11250#ifdef HAVE_PLURAL
11251 if (rIsPluralRing(r))
11252 {
11253 if ( nc_rComplete(r, res, false) ) // no qideal!
11254 {
11255#ifndef SING_NDEBUG
11256 WarnS("error in nc_rComplete");
11257#endif
11258 // cleanup?
11259
11260 // rDelete(res);
11261 // return r;
11262
11263 // just go on..
11264 }
11265 }
11266#endif
11267 strat->tailRing = res;
11268 return (res);
11269 }
11270
11271 // not sbaOrder == 1 => use Schreyer order
11272 // this is done by a trick when initializing the signatures
11273 // in initSLSba():
11274 // Instead of using the signature 1e_i for F->m[i], we start
11275 // with the signature LM(F->m[i])e_i for F->m[i]. Doing this we get a
11276 // Schreyer order w.r.t. the underlying monomial order.
11277 // => we do not need to change the underlying polynomial ring at all!
11278
11279 // UPDATE/NOTE/TODO: use induced Schreyer ordering 'IS'!!!!????
11280
11281 /*
11282 else
11283 {
11284 ring res = rCopy0(r, FALSE, FALSE);
11285 // Create 2 more blocks for prefix/suffix:
11286 res->order=(int *)omAlloc0((n+2)*sizeof(int)); // 0 .. n+1
11287 res->block0=(int *)omAlloc0((n+2)*sizeof(int));
11288 res->block1=(int *)omAlloc0((n+2)*sizeof(int));
11289 int ** wvhdl =(int **)omAlloc0((n+2)*sizeof(int**));
11290
11291 // Encapsulate all existing blocks between induced Schreyer ordering markers: prefix and suffix!
11292 // Note that prefix and suffix have the same ringorder marker and only differ in block[] parameters!
11293
11294 // new 1st block
11295 int j = 0;
11296 res->order[j] = ringorder_IS; // Prefix
11297 res->block0[j] = res->block1[j] = 0;
11298 // wvhdl[j] = NULL;
11299 j++;
11300
11301 for(int i = 0; (i < n) && (r->order[i] != 0); i++, j++) // i = [0 .. n-1] <- non-zero old blocks
11302 {
11303 res->order [j] = r->order [i];
11304 res->block0[j] = r->block0[i];
11305 res->block1[j] = r->block1[i];
11306
11307 if (r->wvhdl[i] != NULL)
11308 {
11309 wvhdl[j] = (int*) omMemDup(r->wvhdl[i]);
11310 } // else wvhdl[j] = NULL;
11311 }
11312
11313 // new last block
11314 res->order [j] = ringorder_IS; // Suffix
11315 res->block0[j] = res->block1[j] = sgn; // Sign of v[o]: 1 for C, -1 for c
11316 // wvhdl[j] = NULL;
11317 j++;
11318
11319 // res->order [j] = 0; // The End!
11320 res->wvhdl = wvhdl;
11321
11322 // j == the last zero block now!
11323 assume(j == (n+1));
11324 assume(res->order[0]==ringorder_IS);
11325 assume(res->order[j-1]==ringorder_IS);
11326 assume(res->order[j]==0);
11327
11328 if (complete)
11329 {
11330 rComplete(res, 1);
11331
11332#ifdef HAVE_PLURAL
11333 if (rIsPluralRing(r))
11334 {
11335 if ( nc_rComplete(r, res, false) ) // no qideal!
11336 {
11337 }
11338 }
11339 assume(rIsPluralRing(r) == rIsPluralRing(res));
11340#endif
11341
11342
11343#ifdef HAVE_PLURAL
11344 ring old_ring = r;
11345
11346#endif
11347
11348 if (r->qideal!=NULL)
11349 {
11350 res->qideal= idrCopyR_NoSort(r->qideal, r, res);
11351
11352 assume(idRankFreeModule(res->qideal, res) == 0);
11353
11354#ifdef HAVE_PLURAL
11355 if( rIsPluralRing(res) )
11356 if( nc_SetupQuotient(res, r, true) )
11357 {
11358 // WarnS("error in nc_SetupQuotient"); // cleanup? rDelete(res); return r; // just go on...?
11359 }
11360
11361#endif
11362 assume(idRankFreeModule(res->qideal, res) == 0);
11363 }
11364
11365#ifdef HAVE_PLURAL
11366 assume((res->qideal==NULL) == (old_ring->qideal==NULL));
11367 assume(rIsPluralRing(res) == rIsPluralRing(old_ring));
11368 assume(rIsSCA(res) == rIsSCA(old_ring));
11369 assume(ncRingType(res) == ncRingType(old_ring));
11370#endif
11371 }
11372 strat->tailRing = res;
11373 return res;
11374 }
11375 */
11376
11377 assume(FALSE);
11378 return(NULL);
11379}
11380
11382{
11383 memset(this, 0, sizeof(skStrategy));
11384 strat_nr++;
11385 nr=strat_nr;
11387 P.tailRing = currRing;
11388 tl = -1;
11389 sl = -1;
11390#ifdef HAVE_LM_BIN
11392#endif
11393#ifdef HAVE_TAIL_BIN
11395#endif
11396 pOrigFDeg = currRing->pFDeg;
11397 pOrigLDeg = currRing->pLDeg;
11398}
11399
11400
11402{
11403 if (lmBin != NULL)
11405 if (tailBin != NULL)// && !rField_is_Ring(currRing))
11407 ((tailRing != NULL) ? tailRing->PolyBin:
11408 currRing->PolyBin));
11409 if (t_kNoether != NULL)
11411
11412 if (currRing != tailRing)
11415}
11416
11417#if 0
11419 T15 EDL DL EL L 1-2-3
11420Gonnet 43.26 42.30 38.34 41.98 38.40 100.04
11421Hairer_2_1 1.11 1.15 1.04 1.22 1.08 4.7
11422Twomat3 1.62 1.69 1.70 1.65 1.54 11.32
11423ahml 4.48 4.03 4.03 4.38 4.96 26.50
11424c7 15.02 13.98 15.16 13.24 17.31 47.89
11425c8 505.09 407.46 852.76 413.21 499.19 n/a
11426f855 12.65 9.27 14.97 8.78 14.23 33.12
11427gametwo6 11.47 11.35 14.57 11.20 12.02 35.07
11428gerhard_3 2.73 2.83 2.93 2.64 3.12 6.24
11429ilias13 22.89 22.46 24.62 20.60 23.34 53.86
11430noon8 40.68 37.02 37.99 36.82 35.59 877.16
11431rcyclic_19 48.22 42.29 43.99 45.35 51.51 204.29
11432rkat9 82.37 79.46 77.20 77.63 82.54 267.92
11433schwarz_11 16.46 16.81 16.76 16.81 16.72 35.56
11434test016 16.39 14.17 14.40 13.50 14.26 34.07
11435test017 34.70 36.01 33.16 35.48 32.75 71.45
11436test042 10.76 10.99 10.27 11.57 10.45 23.04
11437test058 6.78 6.75 6.51 6.95 6.22 9.47
11438test066 10.71 10.94 10.76 10.61 10.56 19.06
11439test073 10.75 11.11 10.17 10.79 8.63 58.10
11440test086 12.23 11.81 12.88 12.24 13.37 66.68
11441test103 5.05 4.80 5.47 4.64 4.89 11.90
11442test154 12.96 11.64 13.51 12.46 14.61 36.35
11443test162 65.27 64.01 67.35 59.79 67.54 196.46
11444test164 7.50 6.50 7.68 6.70 7.96 17.13
11445virasoro 3.39 3.50 3.35 3.47 3.70 7.66
11446#endif
11447
11448
11449//#ifdef HAVE_MORE_POS_IN_T
11450#if 1
11451// determines the position based on: 1.) Ecart 2.) FDeg 3.) pLength
11453{
11454
11455 if (length==-1) return 0;
11456
11457 int o = p.ecart;
11458 int op=p.GetpFDeg();
11459 int ol = p.GetpLength();
11460
11461 if (set[length].ecart < o)
11462 return length+1;
11463 if (set[length].ecart == o)
11464 {
11465 int oo=set[length].GetpFDeg();
11466 if ((oo < op) || ((oo==op) && (set[length].length < ol)))
11467 return length+1;
11468 }
11469
11470 int i;
11471 int an = 0;
11472 int en= length;
11473 loop
11474 {
11475 if (an >= en-1)
11476 {
11477 if (set[an].ecart > o)
11478 return an;
11479 if (set[an].ecart == o)
11480 {
11481 int oo=set[an].GetpFDeg();
11482 if((oo > op)
11483 || ((oo==op) && (set[an].pLength > ol)))
11484 return an;
11485 }
11486 return en;
11487 }
11488 i=(an+en) / 2;
11489 if (set[i].ecart > o)
11490 en=i;
11491 else if (set[i].ecart == o)
11492 {
11493 int oo=set[i].GetpFDeg();
11494 if ((oo > op)
11495 || ((oo == op) && (set[i].pLength > ol)))
11496 en=i;
11497 else
11498 an=i;
11499 }
11500 else
11501 an=i;
11502 }
11503}
11504
11505// determines the position based on: 1.) FDeg 2.) pLength
11506int posInT_FDegpLength(const TSet set,const int length,LObject &p)
11507{
11508
11509 if (length==-1) return 0;
11510
11511 int op=p.GetpFDeg();
11512 int ol = p.GetpLength();
11513
11514 int oo=set[length].GetpFDeg();
11515 if ((oo < op) || ((oo==op) && (set[length].length < ol)))
11516 return length+1;
11517
11518 int i;
11519 int an = 0;
11520 int en= length;
11521 loop
11522 {
11523 if (an >= en-1)
11524 {
11525 int oo=set[an].GetpFDeg();
11526 if((oo > op)
11527 || ((oo==op) && (set[an].pLength > ol)))
11528 return an;
11529 return en;
11530 }
11531 i=(an+en) / 2;
11532 int oo=set[i].GetpFDeg();
11533 if ((oo > op)
11534 || ((oo == op) && (set[i].pLength > ol)))
11535 en=i;
11536 else
11537 an=i;
11538 }
11539}
11540
11541
11542// determines the position based on: 1.) pLength
11543int posInT_pLength(const TSet set,const int length,LObject &p)
11544{
11545 int ol = p.GetpLength();
11546 if (length==-1)
11547 return 0;
11548 if (set[length].length<p.length)
11549 return length+1;
11550
11551 int i;
11552 int an = 0;
11553 int en= length;
11554
11555 loop
11556 {
11557 if (an >= en-1)
11558 {
11559 if (set[an].pLength>ol) return an;
11560 return en;
11561 }
11562 i=(an+en) / 2;
11563 if (set[i].pLength>ol) en=i;
11564 else an=i;
11565 }
11566}
11567#endif
11568
11569// kstd1.cc:
11570int redFirst (LObject* h,kStrategy strat);
11571int redEcart (LObject* h,kStrategy strat);
11572void enterSMora (LObject &p,int atS,kStrategy strat, int atR=-1);
11573void enterSMoraNF (LObject &p,int atS,kStrategy strat, int atR=-1);
11574// ../Singular/misc.cc:
11575extern char * showOption();
11576
11578{
11579 printf("red: ");
11580 if (strat->red==redFirst) printf("redFirst\n");
11581 else if (strat->red==redHoney) printf("redHoney\n");
11582 else if (strat->red==redEcart) printf("redEcart\n");
11583 else if (strat->red==redHomog) printf("redHomog\n");
11584 else if (strat->red==redLazy) printf("redLazy\n");
11585 else if (strat->red==redLiftstd) printf("redLiftstd\n");
11586 else printf("%p\n",(void*)strat->red);
11587 printf("posInT: ");
11588 if (strat->posInT==posInT0) printf("posInT0\n");
11589 else if (strat->posInT==posInT1) printf("posInT1\n");
11590 else if (strat->posInT==posInT11) printf("posInT11\n");
11591 else if (strat->posInT==posInT110) printf("posInT110\n");
11592 else if (strat->posInT==posInT13) printf("posInT13\n");
11593 else if (strat->posInT==posInT15) printf("posInT15\n");
11594 else if (strat->posInT==posInT17) printf("posInT17\n");
11595 else if (strat->posInT==posInT17_c) printf("posInT17_c\n");
11596 else if (strat->posInT==posInT19) printf("posInT19\n");
11597 else if (strat->posInT==posInT2) printf("posInT2\n");
11598 #ifdef HAVE_RINGS
11599 else if (strat->posInT==posInT11Ring) printf("posInT11Ring\n");
11600 else if (strat->posInT==posInT110Ring) printf("posInT110Ring\n");
11601 else if (strat->posInT==posInT15Ring) printf("posInT15Ring\n");
11602 else if (strat->posInT==posInT17Ring) printf("posInT17Ring\n");
11603 else if (strat->posInT==posInT17_cRing) printf("posInT17_cRing\n");
11604 #endif
11605#ifdef HAVE_MORE_POS_IN_T
11606 else if (strat->posInT==posInT_EcartFDegpLength) printf("posInT_EcartFDegpLength\n");
11607 else if (strat->posInT==posInT_FDegpLength) printf("posInT_FDegpLength\n");
11608 else if (strat->posInT==posInT_pLength) printf("posInT_pLength\n");
11609#endif
11610 else if (strat->posInT==posInT_EcartpLength) printf("posInT_EcartpLength\n");
11611 else printf("%p\n",(void*)strat->posInT);
11612 printf("posInL: ");
11613 if (strat->posInL==posInL0) printf("posInL0\n");
11614 else if (strat->posInL==posInL10) printf("posInL10\n");
11615 else if (strat->posInL==posInL11) printf("posInL11\n");
11616 else if (strat->posInL==posInL110) printf("posInL110\n");
11617 else if (strat->posInL==posInL13) printf("posInL13\n");
11618 else if (strat->posInL==posInL15) printf("posInL15\n");
11619 else if (strat->posInL==posInL17) printf("posInL17\n");
11620 else if (strat->posInL==posInL17_c) printf("posInL17_c\n");
11621 #ifdef HAVE_RINGS
11622 else if (strat->posInL==posInL0) printf("posInL0Ring\n");
11623 else if (strat->posInL==posInL11Ring) printf("posInL11Ring\n");
11624 else if (strat->posInL==posInL11Ringls) printf("posInL11Ringls\n");
11625 else if (strat->posInL==posInL110Ring) printf("posInL110Ring\n");
11626 else if (strat->posInL==posInL15Ring) printf("posInL15Ring\n");
11627 else if (strat->posInL==posInL17Ring) printf("posInL17Ring\n");
11628 else if (strat->posInL==posInL17_cRing) printf("posInL17_cRing\n");
11629 #endif
11630 else if (strat->posInL==posInLSpecial) printf("posInLSpecial\n");
11631 else printf("%p\n",(void*)strat->posInL);
11632 printf("enterS: ");
11633 if (strat->enterS==enterSBba) printf("enterSBba\n");
11634 else if (strat->enterS==enterSMora) printf("enterSMora\n");
11635 else if (strat->enterS==enterSMoraNF) printf("enterSMoraNF\n");
11636 else printf("%p\n",(void*)strat->enterS);
11637 printf("initEcart: ");
11638 if (strat->initEcart==initEcartBBA) printf("initEcartBBA\n");
11639 else if (strat->initEcart==initEcartNormal) printf("initEcartNormal\n");
11640 else printf("%p\n",(void*)strat->initEcart);
11641 printf("initEcartPair: ");
11642 if (strat->initEcartPair==initEcartPairBba) printf("initEcartPairBba\n");
11643 else if (strat->initEcartPair==initEcartPairMora) printf("initEcartPairMora\n");
11644 else printf("%p\n",(void*)strat->initEcartPair);
11645 printf("homog=%d, LazyDegree=%d, LazyPass=%d, ak=%d,\n",
11646 strat->homog, strat->LazyDegree,strat->LazyPass, strat->ak);
11647 printf("honey=%d, sugarCrit=%d, Gebauer=%d, noTailReduction=%d, use_buckets=%d\n",
11648 strat->honey,strat->sugarCrit,strat->Gebauer,strat->noTailReduction,strat->use_buckets);
11649 printf("chainCrit: ");
11650 if (strat->chainCrit==chainCritNormal) printf("chainCritNormal\n");
11651 else if (strat->chainCrit==chainCritOpt_1) printf("chainCritOpt_1\n");
11652 else printf("%p\n",(void*)strat->chainCrit);
11653 printf("posInLDependsOnLength=%d\n",
11654 strat->posInLDependsOnLength);
11655 printf("%s\n",showOption());
11656 printf("LDeg: ");
11657 if (currRing->pLDeg==pLDeg0) printf("pLDeg0");
11658 else if (currRing->pLDeg==pLDeg0c) printf("pLDeg0c");
11659 else if (currRing->pLDeg==pLDegb) printf("pLDegb");
11660 else if (currRing->pLDeg==pLDeg1) printf("pLDeg1");
11661 else if (currRing->pLDeg==pLDeg1c) printf("pLDeg1c");
11662 else if (currRing->pLDeg==pLDeg1_Deg) printf("pLDeg1_Deg");
11663 else if (currRing->pLDeg==pLDeg1c_Deg) printf("pLDeg1c_Deg");
11664 else if (currRing->pLDeg==pLDeg1_Totaldegree) printf("pLDeg1_Totaldegree");
11665 else if (currRing->pLDeg==pLDeg1c_Totaldegree) printf("pLDeg1c_Totaldegree");
11666 else if (currRing->pLDeg==pLDeg1_WFirstTotalDegree) printf("pLDeg1_WFirstTotalDegree");
11667 else if (currRing->pLDeg==pLDeg1c_WFirstTotalDegree) printf("pLDeg1c_WFirstTotalDegree");
11668 else if (currRing->pLDeg==maxdegreeWecart) printf("maxdegreeWecart");
11669 else printf("? (%lx)", (long)currRing->pLDeg);
11670 printf(" / ");
11671 if (strat->tailRing->pLDeg==pLDeg0) printf("pLDeg0");
11672 else if (strat->tailRing->pLDeg==pLDeg0c) printf("pLDeg0c");
11673 else if (strat->tailRing->pLDeg==pLDegb) printf("pLDegb");
11674 else if (strat->tailRing->pLDeg==pLDeg1) printf("pLDeg1");
11675 else if (strat->tailRing->pLDeg==pLDeg1c) printf("pLDeg1c");
11676 else if (strat->tailRing->pLDeg==pLDeg1_Deg) printf("pLDeg1_Deg");
11677 else if (strat->tailRing->pLDeg==pLDeg1c_Deg) printf("pLDeg1c_Deg");
11678 else if (strat->tailRing->pLDeg==pLDeg1_Totaldegree) printf("pLDeg1_Totaldegree");
11679 else if (strat->tailRing->pLDeg==pLDeg1c_Totaldegree) printf("pLDeg1c_Totaldegree");
11680 else if (strat->tailRing->pLDeg==pLDeg1_WFirstTotalDegree) printf("pLDeg1_WFirstTotalDegree");
11681 else if (strat->tailRing->pLDeg==pLDeg1c_WFirstTotalDegree) printf("pLDeg1c_WFirstTotalDegree");
11682 else if (strat->tailRing->pLDeg==maxdegreeWecart) printf("maxdegreeWecart");
11683 else printf("? (%lx)", (long)strat->tailRing->pLDeg);
11684 printf("\n");
11685 printf("currRing->pFDeg: ");
11686 if (currRing->pFDeg==p_Totaldegree) printf("p_Totaldegree");
11687 else if (currRing->pFDeg==p_WFirstTotalDegree) printf("pWFirstTotalDegree");
11688 else if (currRing->pFDeg==p_Deg) printf("p_Deg");
11689 else if (currRing->pFDeg==kHomModDeg) printf("kHomModDeg");
11690 else if (currRing->pFDeg==totaldegreeWecart) printf("totaldegreeWecart");
11691 else if (currRing->pFDeg==p_WTotaldegree) printf("p_WTotaldegree");
11692 else printf("? (%lx)", (long)currRing->pFDeg);
11693 printf("\n");
11694 printf(" syzring:%d, syzComp(strat):%d limit:%d\n",rIsSyzIndexRing(currRing),strat->syzComp,rGetCurrSyzLimit(currRing));
11696 printf(" degBound: %d\n", Kstd1_deg);
11697
11698 if( ecartWeights != NULL )
11699 {
11700 printf("ecartWeights: ");
11701 for (int i = rVar(currRing); i > 0; i--)
11702 printf("%hd ", ecartWeights[i]);
11703 printf("\n");
11705 }
11706
11707#ifndef SING_NDEBUG
11709#endif
11710}
11711
11712//LObject pCopyp2L(poly p, kStrategy strat)
11713//{
11714 /* creates LObject from the poly in currRing */
11715 /* actually put p into L.p and make L.t_p=NULL : does not work */
11716
11717//}
11718
11719/*2
11720* put the lcm(q,p) into the set B, q is the shift of some s[i]
11721*/
11722#ifdef HAVE_SHIFTBBA
11723static BOOLEAN enterOneStrongPolyShift (poly q, poly p, int /*ecart*/, int /*isFromQ*/, kStrategy strat, int atR, int /*ecartq*/, int /*qisFromQ*/, int shiftcount, int ifromS)
11724{
11725 number d, s, t;
11726 /* assume(atR >= 0); */
11729 poly m1, m2, gcd;
11730 //printf("\n--------------------------------\n");
11731 //pWrite(p);pWrite(si);
11732 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(q), &s, &t, currRing->cf);
11733
11734 if (nIsZero(s) || nIsZero(t)) // evtl. durch divBy tests ersetzen
11735 {
11736 nDelete(&d);
11737 nDelete(&s);
11738 nDelete(&t);
11739 return FALSE;
11740 }
11741
11742 assume(pIsInV(p));
11743
11744 k_GetStrongLeadTerms(p, q, currRing, m1, m2, gcd, strat->tailRing);
11745
11746 /* the V criterion */
11747 if (!pmIsInV(gcd))
11748 {
11749 strat->cv++;
11750 nDelete(&d);
11751 nDelete(&s);
11752 nDelete(&t);
11753 pLmFree(gcd);
11754 return FALSE;
11755 }
11756
11757 // disabled for Letterplace because it is not so easy to check
11758 /* if (!rHasLocalOrMixedOrdering(currRing)) { */
11759 /* unsigned long sev = pGetShortExpVector(gcd); */
11760
11761 /* for (int j = 0; j < strat->sl; j++) { */
11762 /* if (j == i) */
11763 /* continue; */
11764
11765 /* if (n_DivBy(d, pGetCoeff(strat->S[j]), currRing->cf) && */
11766 /* !(strat->sevS[j] & ~sev) && */
11767 /* p_LmDivisibleBy(strat->S[j], gcd, currRing)) { */
11768 /* nDelete(&d); */
11769 /* nDelete(&s); */
11770 /* nDelete(&t); */
11771 /* return FALSE; */
11772 /* } */
11773 /* } */
11774 /* } */
11775
11776 poly m12, m22;
11780 // manually free the coeffs, because pSetCoeff0 is used in the next step
11781 n_Delete(&(m1->coef), currRing->cf);
11782 n_Delete(&(m2->coef), currRing->cf);
11783
11784 //p_Test(m1,strat->tailRing);
11785 //p_Test(m2,strat->tailRing);
11786 /*if(!enterTstrong)
11787 {
11788 while (! kCheckStrongCreation(atR, m1, i, m2, strat) )
11789 {
11790 memset(&(strat->P), 0, sizeof(strat->P));
11791 kStratChangeTailRing(strat);
11792 strat->P = *(strat->R[atR]);
11793 p_LmFree(m1, strat->tailRing);
11794 p_LmFree(m2, strat->tailRing);
11795 p_LmFree(gcd, currRing);
11796 k_GetStrongLeadTerms(p, si, currRing, m1, m2, gcd, strat->tailRing);
11797 }
11798 }*/
11799 pSetCoeff0(m1, s);
11800 pSetCoeff0(m2, t);
11801 pSetCoeff0(gcd, d);
11802 p_Test(m1,strat->tailRing);
11803 p_Test(m2,strat->tailRing);
11804 p_Test(m12,strat->tailRing);
11805 p_Test(m22,strat->tailRing);
11806 assume(pmIsInV(m1));
11807 assume(pmIsInV(m2));
11808 assume(pmIsInV(m12));
11809 assume(pmIsInV(m22));
11810 //printf("\n===================================\n");
11811 //pWrite(m1);pWrite(m2);pWrite(gcd);
11812#ifdef KDEBUG
11813 if (TEST_OPT_DEBUG)
11814 {
11815 // Print("t = %d; s = %d; d = %d\n", nInt(t), nInt(s), nInt(d));
11816 PrintS("m1 = ");
11817 p_wrp(m1, strat->tailRing);
11818 PrintS("m12 = ");
11819 p_wrp(m12, strat->tailRing);
11820 PrintS(" ; m2 = ");
11821 p_wrp(m2, strat->tailRing);
11822 PrintS(" ; m22 = ");
11823 p_wrp(m22, strat->tailRing);
11824 PrintS(" ; gcd = ");
11825 wrp(gcd);
11826 PrintS("\n--- create strong gcd poly: ");
11827 PrintS("\n p: ");
11828 wrp(p);
11829 Print("\n q (strat->S[%d]): ", ifromS);
11830 wrp(q);
11831 PrintS(" ---> ");
11832 }
11833#endif
11834
11835 pNext(gcd) = p_Add_q(pp_Mult_mm(pp_mm_Mult(pNext(p), m1, strat->tailRing), m12, strat->tailRing), pp_Mult_mm(pp_mm_Mult(pNext(q), m2, strat->tailRing), m22, strat->tailRing), strat->tailRing);
11836 p_LmDelete(m1, strat->tailRing);
11837 p_LmDelete(m2, strat->tailRing);
11838 p_LmDelete(m12, strat->tailRing);
11839 p_LmDelete(m22, strat->tailRing);
11840
11841 assume(pIsInV(gcd));
11842
11843#ifdef KDEBUG
11844 if (TEST_OPT_DEBUG)
11845 {
11846 wrp(gcd);
11847 PrintLn();
11848 }
11849#endif
11850
11851 LObject h;
11852 h.p = gcd;
11853 h.tailRing = strat->tailRing;
11854 int posx;
11855 strat->initEcart(&h);
11856 h.sev = pGetShortExpVector(h.p);
11857 h.i_r1 = -1;h.i_r2 = -1;
11858 if (currRing!=strat->tailRing)
11859 h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing);
11860#if 1
11861 h.p1 = p;
11862 h.p2 = q;
11863#endif
11864 if (atR >= 0 && shiftcount == 0 && ifromS >= 0)
11865 {
11866 h.i_r2 = kFindInT(h.p1, strat);
11867 h.i_r1 = atR;
11868 }
11869 else
11870 {
11871 h.i_r1 = -1;
11872 h.i_r2 = -1;
11873 }
11874 if (strat->Ll==-1)
11875 posx =0;
11876 else
11877 posx = strat->posInL(strat->L,strat->Ll,&h,strat);
11878
11879 assume(pIsInV(h.p));
11880 assume(pIsInV(h.p1));
11881
11882 enterL(&strat->L,&strat->Ll,&strat->Lmax,h,posx);
11883 return TRUE;
11884}
11885#endif
11886
11887
11888/*2
11889* put the pair (q,p) into the set B, ecart=ecart(p), q is the shift of some s[i] (ring case)
11890*/
11891#ifdef HAVE_SHIFTBBA
11892static void enterOnePairRingShift (poly q, poly p, int /*ecart*/, int isFromQ, kStrategy strat, int atR, int /*ecartq*/, int qisFromQ, int shiftcount, int ifromS)
11893{
11894 /* assume(atR >= 0); */
11895 /* assume(i<=strat->sl); */
11896 assume(p!=NULL);
11898 assume(pIsInV(p));
11899 #if ALL_VS_JUST
11900 //Over rings, if we construct the strong pair, do not add the spair
11902 {
11903 number s,t,d;
11904 d = n_ExtGcd(pGetCoeff(p), pGetCoeff(q, &s, &t, currRing->cf);
11905
11906 if (!nIsZero(s) && !nIsZero(t)) // evtl. durch divBy tests ersetzen
11907 {
11908 nDelete(&d);
11909 nDelete(&s);
11910 nDelete(&t);
11911 return;
11912 }
11913 nDelete(&d);
11914 nDelete(&s);
11915 nDelete(&t);
11916 }
11917 #endif
11918 int j,compare,compareCoeff;
11919 LObject h;
11920
11921#ifdef KDEBUG
11922 h.ecart=0; h.length=0;
11923#endif
11924 /*- computes the lcm(s[i],p) -*/
11925 if(pHasNotCFRing(p,q))
11926 {
11927 strat->cp++;
11928 return;
11929 }
11930 h.lcm = p_Lcm(p,q,currRing);
11931 pSetCoeff0(h.lcm, n_Lcm(pGetCoeff(p), pGetCoeff(q), currRing->cf));
11932 if (nIsZero(pGetCoeff(h.lcm)))
11933 {
11934 strat->cp++;
11935 pLmDelete(h.lcm);
11936 return;
11937 }
11938
11939 /* the V criterion */
11940 if (!pmIsInV(h.lcm))
11941 {
11942 strat->cv++;
11943 pLmDelete(h.lcm);
11944 return;
11945 }
11946 // basic chain criterion
11947 /*
11948 *the set B collects the pairs of type (S[j],p)
11949 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p) != lcm(r,p)
11950 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
11951 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
11952 */
11953
11954 for(j = strat->Bl;j>=0;j--)
11955 {
11956 compare=pDivCompRing(strat->B[j].lcm,h.lcm);
11957 compareCoeff = n_DivComp(pGetCoeff(strat->B[j].lcm), pGetCoeff(h.lcm), currRing->cf);
11958 if(compare == pDivComp_EQUAL)
11959 {
11960 //They have the same LM
11962 {
11963 if ((strat->fromQ==NULL) || (isFromQ==0) || (qisFromQ==0))
11964 {
11965 strat->c3++;
11966 pLmDelete(h.lcm);
11967 return;
11968 }
11969 break;
11970 }
11972 {
11973 deleteInL(strat->B,&strat->Bl,j,strat);
11974 strat->c3++;
11975 }
11977 {
11978 if ((strat->fromQ==NULL) || (isFromQ==0) || (qisFromQ==0))
11979 {
11980 strat->c3++;
11981 pLmDelete(h.lcm);
11982 return;
11983 }
11984 break;
11985 }
11986 }
11987 if(compareCoeff == compare || compareCoeff == pDivComp_EQUAL)
11988 {
11989 if(compare == pDivComp_LESS)
11990 {
11991 if ((strat->fromQ==NULL) || (isFromQ==0) || (qisFromQ==0))
11992 {
11993 strat->c3++;
11994 pLmDelete(h.lcm);
11995 return;
11996 }
11997 break;
11998 }
11999 if(compare == pDivComp_GREATER)
12000 {
12001 deleteInL(strat->B,&strat->Bl,j,strat);
12002 strat->c3++;
12003 }
12004 }
12005 }
12006 number s, t;
12007 poly m1, m2, gcd = NULL;
12008 s = pGetCoeff(q);
12009 t = pGetCoeff(p);
12011
12012 poly m12, m22;
12016 // manually free the coeffs, because pSetCoeff0 is used in the next step
12017 n_Delete(&(m1->coef), currRing->cf);
12018 n_Delete(&(m2->coef), currRing->cf);
12019
12020 ksCheckCoeff(&s, &t, currRing->cf);
12021 pSetCoeff0(m1, s);
12022 pSetCoeff0(m2, t);
12023 m2 = pNeg(m2);
12024 p_Test(m1,strat->tailRing);
12025 p_Test(m2,strat->tailRing);
12026 p_Test(m12,strat->tailRing);
12027 p_Test(m22,strat->tailRing);
12028 assume(pmIsInV(m1));
12029 assume(pmIsInV(m2));
12030 assume(pmIsInV(m12));
12031 assume(pmIsInV(m22));
12032 poly pm1 = pp_Mult_mm(pp_mm_Mult(pNext(p), m1, strat->tailRing), m12, strat->tailRing);
12033 poly sim2 = pp_Mult_mm(pp_mm_Mult(pNext(q), m2, strat->tailRing), m22, strat->tailRing);
12034 assume(pIsInV(pm1));
12035 assume(pIsInV(sim2));
12036 p_LmDelete(m1, currRing);
12037 p_LmDelete(m2, currRing);
12040 if(sim2 == NULL)
12041 {
12042 if(pm1 == NULL)
12043 {
12044 if(h.lcm != NULL)
12045 {
12046 pLmDelete(h.lcm);
12047 h.lcm=NULL;
12048 }
12049 h.Clear();
12050 /* TEMPORARILY DISABLED FOR SHIFTS because there is no i*/
12051 /* if (strat->pairtest==NULL) initPairtest(strat); */
12052 /* strat->pairtest[i] = TRUE; */
12053 /* strat->pairtest[strat->sl+1] = TRUE; */
12054 return;
12055 }
12056 else
12057 {
12058 gcd = pm1;
12059 pm1 = NULL;
12060 }
12061 }
12062 else
12063 {
12064 if((pGetComp(q) == 0) && (0 != pGetComp(p)))
12065 {
12066 p_SetCompP(sim2, pGetComp(p), strat->tailRing);
12067 pSetmComp(sim2);
12068 }
12069 //p_Write(pm1,strat->tailRing);p_Write(sim2,strat->tailRing);
12070 gcd = p_Add_q(pm1, sim2, strat->tailRing);
12071 }
12072 p_Test(gcd, strat->tailRing);
12073 assume(pIsInV(gcd));
12074#ifdef KDEBUG
12075 if (TEST_OPT_DEBUG)
12076 {
12077 wrp(gcd);
12078 PrintLn();
12079 }
12080#endif
12081 h.p = gcd;
12082 h.i_r = -1;
12083 if(h.p == NULL)
12084 {
12085 /* TEMPORARILY DISABLED FOR SHIFTS because there is no i*/
12086 /* if (strat->pairtest==NULL) initPairtest(strat); */
12087 /* strat->pairtest[i] = TRUE; */
12088 /* strat->pairtest[strat->sl+1] = TRUE; */
12089 return;
12090 }
12091 h.tailRing = strat->tailRing;
12092 int posx;
12093 //h.pCleardenom();
12094 //pSetm(h.p);
12095 h.i_r1 = -1;h.i_r2 = -1;
12096 strat->initEcart(&h);
12097 #if 1
12098 h.p1 = p;
12099 h.p2 = q;
12100 #endif
12101 #if 1
12102 /* TEMPORARILY DISABLED FOR SHIFTS because there's no i*/
12103 /* at the beginning we DO NOT set atR = -1 ANYMORE*/
12104 if (atR >= 0 && shiftcount == 0 && ifromS >= 0)
12105 {
12106 h.i_r2 = kFindInT(h.p1, strat); //strat->S_2_R[i];
12107 h.i_r1 = atR;
12108 }
12109 else
12110 {
12111 /* END _ TEMPORARILY DISABLED FOR SHIFTS */
12112 h.i_r1 = -1;
12113 h.i_r2 = -1;
12114 }
12115 #endif
12116 if (strat->Bl==-1)
12117 posx =0;
12118 else
12119 posx = strat->posInL(strat->B,strat->Bl,&h,strat);
12120 h.sev = pGetShortExpVector(h.p);
12121 if (currRing!=strat->tailRing)
12122 h.t_p = k_LmInit_currRing_2_tailRing(h.p, strat->tailRing);
12123
12124 assume(pIsInV(h.p));
12125 assume(pIsInV(h.p1));
12126 assume(h.lcm != NULL);
12127 assume(pIsInV(h.lcm));
12128
12129 enterL(&strat->B,&strat->Bl,&strat->Bmax,h,posx);
12130 kTest_TS(strat);
12131}
12132#endif
12133
12134#ifdef HAVE_SHIFTBBA
12135// adds the strong pair and the normal pair for rings (aka gpoly and spoly)
12136static BOOLEAN enterOneStrongPolyAndEnterOnePairRingShift(poly q, poly p, int ecart, int isFromQ, kStrategy strat, int atR, int ecartq, int qisFromQ, int shiftcount, int ifromS)
12137{
12138 enterOneStrongPolyShift(q, p, ecart, isFromQ, strat, atR, ecartq, qisFromQ, shiftcount, ifromS); // "gpoly"
12139 enterOnePairRingShift(q, p, ecart, isFromQ, strat, atR, ecartq, qisFromQ, shiftcount, ifromS); // "spoly"
12140 return FALSE; // TODO: delete q?
12141}
12142#endif
12143
12144#ifdef HAVE_SHIFTBBA
12145// creates if possible (q,p), (shifts(q),p)
12146static BOOLEAN enterOnePairWithShifts (int q_inS /*also i*/, poly q, poly p, int ecartp, int p_isFromQ, kStrategy strat, int /*atR*/, int p_lastVblock, int q_lastVblock)
12147{
12148 // note: ecart and isFromQ is for p
12149 assume(q_inS < 0 || strat->S[q_inS] == q); // if q is from S, q_inS should be the index of q in S
12150 assume(pmFirstVblock(p) == 1);
12151 assume(pmFirstVblock(q) == 1);
12154
12155 // TODO: is ecartq = 0 still ok?
12156 int ecartq = 0; //Hans says it's ok; we're in the homog case, no ecart
12157
12158 int q_isFromQ = 0;
12159 if (strat->fromQ != NULL && q_inS >= 0)
12160 q_isFromQ = strat->fromQ[q_inS];
12161
12162 BOOLEAN (*enterPair)(poly, poly, int, int, kStrategy, int, int, int, int, int);
12163#ifdef HAVE_RINGS
12166 else
12167#endif
12169
12170 int degbound = currRing->N/currRing->isLPring;
12171 int neededShift = p_lastVblock - ((pGetComp(p) > 0 || pGetComp(q) > 0) ? 0 : 1); // in the module case, product criterion does not hold
12174 int firstShift = (q == p ? 1 : 0); // do not add (q,p) if q=p
12176 for (int j = firstShift; j <= maxShift; j++)
12177 {
12178 poly qq = pLPCopyAndShiftLM(q, j);
12179 if (enterPair(qq, p, ecartp, p_isFromQ, strat, -1, ecartq, q_isFromQ, j, q_inS))
12180 {
12181 if (j>0) pLmDelete(qq);
12182 // delete qq, if not it does not enter the pair set
12183 }
12184 else
12186 }
12187
12188#ifdef HAVE_RINGS
12190 {
12191 // add pairs (m*shifts(q), p) where m is a monomial and the pair has no overlap
12192 for (int j = p_lastVblock; j <= maxPossibleShift; j++)
12193 {
12195 for (int k = 0; k < IDELEMS(fillers); k++)
12196 {
12199 }
12200 idDelete(&fillers);
12201 }
12202 }
12203#endif
12204 return delete_pair;
12205}
12206#endif
12207
12208#ifdef HAVE_SHIFTBBA
12209// creates (q,p), use it when q is already shifted
12210// return TRUE, if (q,p) is discarded
12211static BOOLEAN enterOnePairWithoutShifts (int p_inS /*also i*/, poly q, poly p, int ecartq, int q_isFromQ, kStrategy strat, int /*atR*/, int p_lastVblock, int q_shift)
12212{
12213 // note: ecart and isFromQ is for p
12214 assume(p_inS < 0 || strat->S[p_inS] == p); // if p is from S, p_inS should be the index of p in S
12215 assume(pmFirstVblock(p) == 1);
12217 assume(q_shift == pmFirstVblock(q) - 1);
12218
12219 // TODO: is ecartp = 0 still ok?
12220 int ecartp = 0; //Hans says it's ok; we're in the homog e:, no ecart
12221
12222 int p_isFromQ = 0;
12223 if (strat->fromQ != NULL && p_inS >= 0)
12224 p_isFromQ = strat->fromQ[p_inS];
12225
12226#ifdef HAVE_RINGS
12228 {
12229 assume(q_shift <= p_lastVblock); // we allow the special case where there is no overlap
12231 }
12232 else
12233#endif
12234 {
12235 assume(q_shift <= p_lastVblock - ((pGetComp(q) > 0 || pGetComp(p) > 0) ? 0 : 1)); // there should be an overlap (in the module case epsilon overlap is also allowed)
12236 return enterOnePairShift(q, p, ecartp, p_isFromQ, strat, -1, ecartq, q_isFromQ, q_shift, -1);
12237 }
12238}
12239#endif
12240
12241
12242#ifdef KDEBUG
12243// enable to print which pairs are considered or discarded and why
12244/* #define CRITERION_DEBUG */
12245#endif
12246/*2
12247* put the pair (q,p) into the set B, ecart=ecart(p), q is the shift of some s[i]
12248* return TRUE, if (q,p) does not enter B
12249*/
12250#ifdef HAVE_SHIFTBBA
12251BOOLEAN enterOnePairShift (poly q, poly p, int ecart, int isFromQ, kStrategy strat, int atR, int ecartq, int qisFromQ, int shiftcount, int ifromS)
12252{
12253#ifdef CRITERION_DEBUG
12254 if (TEST_OPT_DEBUG)
12255 {
12256 PrintS("Consider pair ("); wrp(q); PrintS(", "); wrp(p); PrintS(")"); PrintLn();
12257 // also write the LMs in separate lines:
12258 poly lmq = pHead(q);
12259 poly lmp = pHead(p);
12260 pSetCoeff(lmq, n_Init(1, currRing->cf));
12261 pSetCoeff(lmp, n_Init(1, currRing->cf));
12262 Print(" %s\n", pString(lmq));
12263 Print(" %s\n", pString(lmp));
12264 pLmDelete(lmq);
12265 pLmDelete(lmp);
12266 }
12267#endif
12268
12269 /* Format: q and p are like strat->P.p, so lm in CR, tail in TR */
12270
12271 /* check this Formats: */
12276
12277 /* poly q stays for s[i], ecartq = ecart(q), qisFromQ = applies to q */
12278
12279 int qfromQ = qisFromQ;
12280
12281 /* need additionally: int up_to_degree, poly V0 with the variables in (0) or just the number lV = the length of the first block */
12282
12283 int l,j,compare;
12284 LObject Lp;
12285 Lp.i_r = -1;
12286
12287#ifdef KDEBUG
12288 Lp.ecart=0; Lp.length=0;
12289#endif
12290 /*- computes the lcm(s[i],p) -*/
12291 Lp.lcm = p_Lcm(p,q, currRing); // q is what was strat->S[i], so a poly in LM/TR presentation
12292
12293 /* the V criterion */
12294 if (!pmIsInV(Lp.lcm))
12295 {
12296 strat->cv++; // counter for applying the V criterion
12297 pLmFree(Lp.lcm);
12298#ifdef CRITERION_DEBUG
12299 if (TEST_OPT_DEBUG) PrintS("--- V crit\n");
12300#endif
12301 return TRUE;
12302 }
12303
12304 if (strat->sugarCrit && ALLOW_PROD_CRIT(strat))
12305 {
12306 if((!((ecartq>0)&&(ecart>0)))
12307 && pHasNotCF(p,q))
12308 {
12309 /*
12310 *the product criterion has applied for (s,p),
12311 *i.e. lcm(s,p)=product of the leading terms of s and p.
12312 *Suppose (s,r) is in L and the leading term
12313 *of p divides lcm(s,r)
12314 *(==> the leading term of p divides the leading term of r)
12315 *but the leading term of s does not divide the leading term of r
12316 *(notice that this condition is automatically satisfied if r is still
12317 *in S), then (s,r) can be cancelled.
12318 *This should be done here because the
12319 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
12320 *
12321 *Moreover, skipping (s,r) holds also for the noncommutative case.
12322 */
12323 strat->cp++;
12324 pLmFree(Lp.lcm);
12325#ifdef CRITERION_DEBUG
12326 if (TEST_OPT_DEBUG) PrintS("--- prod crit\n");
12327#endif
12328 return TRUE;
12329 }
12330 else
12331 Lp.ecart = si_max(ecart,ecartq);
12332 if (strat->fromT && (ecartq>ecart))
12333 {
12334 pLmFree(Lp.lcm);
12335#ifdef CRITERION_DEBUG
12336 if (TEST_OPT_DEBUG) PrintS("--- ecartq > ecart\n");
12337#endif
12338 return TRUE;
12339 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
12340 }
12341 /*
12342 *the set B collects the pairs of type (S[j],p)
12343 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
12344 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
12345 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
12346 */
12347 {
12348 j = strat->Bl;
12349 loop
12350 {
12351 if (j < 0) break;
12352 compare=pLPDivComp(strat->B[j].lcm,Lp.lcm);
12353 if ((compare==1)
12354 &&(sugarDivisibleBy(strat->B[j].ecart,Lp.ecart)))
12355 {
12356 strat->c3++;
12357 if ((strat->fromQ==NULL) || (isFromQ==0) || (qfromQ==0))
12358 {
12359 pLmFree(Lp.lcm);
12360#ifdef CRITERION_DEBUG
12361 if (TEST_OPT_DEBUG)
12362 {
12363 Print("--- chain crit using B[%d].lcm=%s\n", j, pString(strat->B[j].lcm));
12364 }
12365#endif
12366 return TRUE;
12367 }
12368 break;
12369 }
12370 else
12371 if ((compare ==-1)
12372 && sugarDivisibleBy(Lp.ecart,strat->B[j].ecart))
12373 {
12374#ifdef CRITERION_DEBUG
12375 if (TEST_OPT_DEBUG)
12376 {
12377 Print("--- chain crit using pair to remove B[%d].lcm=%s\n", j, pString(strat->B[j].lcm));
12378 }
12379#endif
12380 deleteInL(strat->B,&strat->Bl,j,strat);
12381 strat->c3++;
12382 }
12383 j--;
12384 }
12385 }
12386 }
12387 else /*sugarcrit*/
12388 {
12389 if (ALLOW_PROD_CRIT(strat))
12390 {
12391 // if currRing->nc_type!=quasi (or skew)
12392 // TODO: enable productCrit for super commutative algebras...
12393 if(/*(strat->ak==0) && productCrit(p,strat->S[i])*/
12394 pHasNotCF(p,q))
12395 {
12396 /*
12397 *the product criterion has applied for (s,p),
12398 *i.e. lcm(s,p)=product of the leading terms of s and p.
12399 *Suppose (s,r) is in L and the leading term
12400 *of p divides lcm(s,r)
12401 *(==> the leading term of p divides the leading term of r)
12402 *but the leading term of s does not divide the leading term of r
12403 *(notice that tis condition is automatically satisfied if r is still
12404 *in S), then (s,r) can be canceled.
12405 *This should be done here because the
12406 *case lcm(s,r)=lcm(s,p) is not covered by chainCrit.
12407 */
12408 strat->cp++;
12409 pLmFree(Lp.lcm);
12410#ifdef CRITERION_DEBUG
12411 if (TEST_OPT_DEBUG) PrintS("--- prod crit\n");
12412#endif
12413 return TRUE;
12414 }
12415 if (strat->fromT && (ecartq>ecart))
12416 {
12417 pLmFree(Lp.lcm);
12418#ifdef CRITERION_DEBUG
12419 if (TEST_OPT_DEBUG) PrintS("--- ecartq > ecart\n");
12420#endif
12421 return TRUE;
12422 /*the pair is (s[i],t[.]), discard it if the ecart is too big*/
12423 }
12424 /*
12425 *the set B collects the pairs of type (S[j],p)
12426 *suppose (r,p) is in B and (s,p) is the new pair and lcm(s,p)#lcm(r,p)
12427 *if the leading term of s divides lcm(r,p) then (r,p) will be canceled
12428 *if the leading term of r divides lcm(s,p) then (s,p) will not enter B
12429 */
12430 for(j = strat->Bl;j>=0;j--)
12431 {
12432 compare=pLPDivComp(strat->B[j].lcm,Lp.lcm);
12433 if (compare==1)
12434 {
12435 strat->c3++;
12436 if ((strat->fromQ==NULL) || (isFromQ==0) || (qfromQ==0))
12437 {
12438 pLmFree(Lp.lcm);
12439#ifdef CRITERION_DEBUG
12440 if (TEST_OPT_DEBUG)
12441 {
12442 Print("--- chain crit using B[%d].lcm=%s\n", j, pString(strat->B[j].lcm));
12443 }
12444#endif
12445 return TRUE;
12446 }
12447 break;
12448 }
12449 else
12450 if (compare ==-1)
12451 {
12452#ifdef CRITERION_DEBUG
12453 if (TEST_OPT_DEBUG)
12454 {
12455 Print("--- chain crit using pair to remove B[%d].lcm=%s\n", j, pString(strat->B[j].lcm));
12456 }
12457#endif
12458 deleteInL(strat->B,&strat->Bl,j,strat);
12459 strat->c3++;
12460 }
12461 }
12462 }
12463 }
12464 /*
12465 *the pair (S[i],p) enters B if the spoly != 0
12466 */
12467 /*- compute the short s-polynomial -*/
12468 if (strat->fromT && !TEST_OPT_INTSTRATEGY)
12469 pNorm(p);
12470 if ((q==NULL) || (p==NULL))
12471 {
12472#ifdef CRITERION_DEBUG
12473 if (TEST_OPT_DEBUG) PrintS("--- q == NULL || p == NULL\n");
12474#endif
12475 return FALSE;
12476 }
12477 if ((strat->fromQ!=NULL) && (isFromQ!=0) && (qfromQ!=0))
12478 {
12479 Lp.p=NULL;
12480#ifdef CRITERION_DEBUG
12481 if (TEST_OPT_DEBUG) PrintS("--- pair is from Q\n");
12482#endif
12483 }
12484 else
12485 {
12486// if ( rIsPluralRing(currRing) )
12487// {
12488// if(pHasNotCF(p, q))
12489// {
12490// if(ncRingType(currRing) == nc_lie)
12491// {
12492// // generalized prod-crit for lie-type
12493// strat->cp++;
12494// Lp.p = nc_p_Bracket_qq(pCopy(p),q, currRing);
12495// }
12496// else
12497// if( ALLOW_PROD_CRIT(strat) )
12498// {
12499// // product criterion for homogeneous case in SCA
12500// strat->cp++;
12501// Lp.p = NULL;
12502// }
12503// else
12504// Lp.p = nc_CreateSpoly(q,p,currRing); // ?
12505// }
12506// else Lp.p = nc_CreateSpoly(q,p,currRing);
12507// }
12508// else
12509// {
12510
12511 /* ksCreateShortSpoly needs two Lobject-kind presentations */
12512 /* p is already in this form, so convert q */
12513 Lp.p = ksCreateShortSpoly(q, p, strat->tailRing);
12514 // }
12515 }
12516 if (Lp.p == NULL)
12517 {
12518 /*- the case that the s-poly is 0 -*/
12519 // TODO: currently ifromS is only > 0 if called from enterOnePairWithShifts
12520 if (ifromS > 0)
12521 {
12522 if (strat->pairtest==NULL) initPairtest(strat);
12523 strat->pairtest[ifromS] = TRUE;/*- hint for spoly(S^[i],p)=0 -*/
12524 strat->pairtest[strat->sl+1] = TRUE;
12525 }
12526 //if (TEST_OPT_DEBUG){Print("!");} // option teach
12527 /* END _ TEMPORARILY DISABLED FOR SHIFTS */
12528 /*hint for spoly(S[i],p) == 0 for some i,0 <= i <= sl*/
12529 /*
12530 *suppose we have (s,r),(r,p),(s,p) and spoly(s,p) == 0 and (r,p) is
12531 *still in B (i.e. lcm(r,p) == lcm(s,p) or the leading term of s does not
12532 *divide lcm(r,p)). In the last case (s,r) can be canceled if the leading
12533 *term of p divides the lcm(s,r)
12534 *(this canceling should be done here because
12535 *the case lcm(s,p) == lcm(s,r) is not covered in chainCrit)
12536 *the first case is handled in chainCrit
12537 */
12538 if (Lp.lcm!=NULL) pLmFree(Lp.lcm);
12539#ifdef CRITERION_DEBUG
12540 if (TEST_OPT_DEBUG) PrintS("--- S-poly = 0\n");
12541#endif
12542 return TRUE;
12543 }
12544 else
12545 {
12546 /*- the pair (S[i],p) enters B -*/
12547 /* both of them should have their LM in currRing and TAIL in tailring */
12548 Lp.p1 = q; // already in the needed form
12549 Lp.p2 = p; // already in the needed form
12550
12551 if ( !rIsPluralRing(currRing) )
12552 pNext(Lp.p) = strat->tail;
12553
12554 /* TEMPORARILY DISABLED FOR SHIFTS because there's no i*/
12555 /* at the beginning we DO NOT set atR = -1 ANYMORE*/
12556 if ( (atR >= 0) && (shiftcount==0) && (ifromS >=0) )
12557 {
12558 Lp.i_r1 = kFindInT(Lp.p1,strat); //strat->S_2_R[ifromS];
12559 Lp.i_r2 = atR;
12560 }
12561 else
12562 {
12563 /* END _ TEMPORARILY DISABLED FOR SHIFTS */
12564 Lp.i_r1 = -1;
12565 Lp.i_r2 = -1;
12566 }
12567 strat->initEcartPair(&Lp,q,p,ecartq,ecart);
12568
12570 {
12573 && (Lp.p->coef!=NULL))
12574 nDelete(&(Lp.p->coef));
12575 }
12576
12577 l = strat->posInL(strat->B,strat->Bl,&Lp,strat);
12578 enterL(&strat->B,&strat->Bl,&strat->Bmax,Lp,l);
12579#ifdef CRITERION_DEBUG
12580 if (TEST_OPT_DEBUG) PrintS("+++ Entered pair\n");
12581#endif
12582 }
12583 return FALSE;
12584}
12585#endif
12586
12587/*3
12588*(s[0], s \dot h),...,(s[k],s \dot h) will be put to the pairset L
12589* also the pairs (h, s\dot s[0]), ..., (h, s\dot s[k]) enter L
12590* additionally we put the pairs (h, s \sdot h) for s>=1 to L
12591*/
12592#ifdef HAVE_SHIFTBBA
12593void initenterpairsShift (poly h,int k,int ecart,int isFromQ, kStrategy strat, int atR)
12594{
12597 // TODO: is it allowed to skip pairs with constants? also with constants from other components?
12598 if (h_lastVblock == 0) return;
12599 assume(pmFirstVblock(h) == 1);
12600 /* h comes from strat->P.p, that is LObject with LM in currRing and Tail in tailRing */
12601 // atR = -1;
12602 if ((strat->syzComp==0)
12603 || (pGetComp(h)<=strat->syzComp))
12604 {
12605 int i,j;
12607
12608 int degbound = currRing->N/currRing->isLPring;
12610
12611 if (pGetComp(h)==0)
12612 {
12613 if (strat->rightGB)
12614 {
12615 if (isFromQ)
12616 {
12617 // pairs (shifts(h),s[1..k]), (h, s[1..k])
12618 for (i=0; i<=maxShift; i++)
12619 {
12620 poly hh = pLPCopyAndShiftLM(h, i);
12622 for (j=0; j<=k; j++)
12623 {
12624 if (strat->fromQ == NULL || !strat->fromQ[j])
12625 {
12626 new_pair=TRUE;
12627 poly s = strat->S[j];
12628 if (!enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, pmLastVblock(s), i))
12630 }
12631 }
12632 if (delete_hh) pLmDelete(hh);
12633 }
12634 }
12635 else
12636 {
12637 new_pair=TRUE;
12638 for (j=0; j<=k; j++)
12639 {
12640 poly s = strat->S[j];
12641 if (strat->fromQ != NULL && strat->fromQ[j])
12642 {
12643 // pairs (shifts(s[j]),h), (s[j],h)
12645 }
12646 else
12647 {
12648 // pair (h, s[j])
12649 enterOnePairWithoutShifts(j, h, s, ecart, isFromQ, strat, atR, pmLastVblock(s), 0);
12650 }
12651 }
12652 }
12653 }
12654 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
12655 else if ((isFromQ)&&(strat->fromQ!=NULL))
12656 {
12657 // pairs (shifts(s[1..k]),h), (s[1..k],h)
12658 for (j=0; j<=k; j++)
12659 {
12660 if (!strat->fromQ[j])
12661 {
12662 new_pair=TRUE;
12663 poly s = strat->S[j];
12665 }
12666 }
12667 // pairs (shifts(h),s[1..k])
12668 if (new_pair)
12669 {
12670 for (i=1; i<=maxShift; i++)
12671 {
12673 poly hh = pLPCopyAndShiftLM(h, i);
12674 for (j=0; j<=k; j++)
12675 {
12676 if (!strat->fromQ[j])
12677 {
12678 poly s = strat->S[j];
12680 if (i < s_lastVblock || (pGetComp(s) > 0 && i == s_lastVblock)) // in the module case, product criterion does not hold (note: comp h is always zero here)
12681 {
12682 if(!enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, s_lastVblock, i))
12684 }
12685#ifdef HAVE_RINGS
12686 else if (rField_is_Ring(currRing))
12687 {
12688 assume(i >= s_lastVblock); // this is always the case, but just to be very sure
12690 for (int k = 0; k < IDELEMS(fillers); k++)
12691 {
12694 }
12695 idDelete(&fillers);
12696 }
12697#endif
12698 }
12699 }
12701 }
12702 }
12703 }
12704 else
12705 {
12706 new_pair=TRUE;
12707 // pairs (shifts(s[1..k]),h), (s[1..k],h)
12708 for (j=0; j<=k; j++)
12709 {
12710 poly s = strat->S[j];
12712 }
12713 // pairs (shifts(h),s[1..k]), (shifts(h), h)
12714 for (i=1; i<=maxShift; i++)
12715 {
12716 poly hh = pLPCopyAndShiftLM(h, i);
12718 for (j=0; j<=k; j++)
12719 {
12720 poly s = strat->S[j];
12722 if (i < s_lastVblock || (pGetComp(s) > 0 && i == s_lastVblock)) // in the module case, product criterion does not hold (note: comp h is always zero here)
12724 && delete_hh;
12725#ifdef HAVE_RINGS
12726 else if (rField_is_Ring(currRing))
12727 {
12728 assume(i >= s_lastVblock); // this is always the case, but just to be very sure
12730 for (int k = 0; k < IDELEMS(fillers); k++)
12731 {
12734 }
12735 idDelete(&fillers);
12736 }
12737#endif
12738 }
12739 if (i < h_lastVblock) // in the module case, product criterion does not hold (note: comp h is always zero here)
12741 && delete_hh;
12742#ifdef HAVE_RINGS
12743 else if (rField_is_Ring(currRing))
12744 {
12745 assume(i >= h_lastVblock); // this is always the case, but just to be very sure
12747 for (int k = 0; k < IDELEMS(fillers); k++)
12748 {
12751 }
12752 idDelete(&fillers);
12753 }
12754#endif
12755 if (delete_hh) pLmDelete(hh);
12756 }
12757 }
12758 }
12759 else
12760 {
12761 assume(isFromQ == 0); // an element from Q should always has 0 component
12762 new_pair=TRUE;
12763 if (strat->rightGB)
12764 {
12765 for (j=0; j<=k; j++)
12766 {
12767 if ((pGetComp(h)==pGetComp(strat->S[j]))
12768 || (pGetComp(strat->S[j])==0))
12769 {
12770 poly s = strat->S[j];
12771 if (strat->fromQ != NULL && strat->fromQ[j])
12772 {
12773 // pairs (shifts(s[j]),h), (s[j],h)
12775 }
12776 else
12777 {
12778 // pair (h, s[j])
12779 enterOnePairWithoutShifts(j, h, s, ecart, isFromQ, strat, atR, pmLastVblock(s), 0);
12780 }
12781 }
12782 }
12783 }
12784 else
12785 {
12786 // pairs (shifts(s[1..k]),h), (s[1..k],h)
12787 for (j=0; j<=k; j++)
12788 {
12789 if ((pGetComp(h)==pGetComp(strat->S[j]))
12790 || (pGetComp(strat->S[j])==0))
12791 {
12792 poly s = strat->S[j];
12794 }
12795 }
12796 // pairs (shifts(h),s[1..k]), (shifts(h), h)
12797 for (i=1; i<=maxShift; i++)
12798 {
12799 poly hh = pLPCopyAndShiftLM(h, i);
12800 for (j=0; j<=k; j++)
12801 {
12802 if ((pGetComp(h)==pGetComp(strat->S[j]))
12803 || (pGetComp(strat->S[j])==0))
12804 {
12805 poly s = strat->S[j];
12807 if (i <= s_lastVblock) // in the module case, product criterion does not hold
12808 enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, s_lastVblock, i);
12809#ifdef HAVE_RINGS
12810 else if (rField_is_Ring(currRing))
12811 {
12812 assume(i >= s_lastVblock); // this is always the case, but just to be very sure
12814 for (int k = 0; k < IDELEMS(fillers); k++)
12815 {
12818 }
12819 idDelete(&fillers);
12820 }
12821#endif
12822 }
12823 }
12824 if (i <= h_lastVblock) // in the module case, product criterion does not hold
12825 enterOnePairWithoutShifts(-1, hh, h, ecart, isFromQ, strat, atR, h_lastVblock, i);
12826#ifdef HAVE_RINGS
12827 else if (rField_is_Ring(currRing))
12828 {
12829 assume(i >= h_lastVblock); // this is always the case, but just to be very sure
12831 for (int k = 0; k < IDELEMS(fillers); k++)
12832 {
12838 }
12839 idDelete(&fillers);
12840 }
12841#endif
12842 }
12843 }
12844 }
12845
12846 if (new_pair)
12847 {
12848 strat->chainCrit(h,ecart,strat);
12849 }
12850 kMergeBintoL(strat);
12851 }
12852}
12853#endif
12854
12855/*3
12856*(s[0], s \dot h),...,(s[k],s \dot h) will be put to the pairset L
12857* also the pairs (h, s\dot s[0]), ..., (h, s\dot s[k]) enter L
12858* additionally we put the pairs (h, s \sdot h) for s>=1 to L
12859*/
12860#ifdef HAVE_SHIFTBBA
12861void initenterstrongPairsShift (poly h,int k,int ecart,int isFromQ, kStrategy strat, int atR)
12862{
12865 // TODO: is it allowed to skip pairs with constants? also with constants from other components?
12866 if (h_lastVblock == 0) return;
12867 assume(pmFirstVblock(h) == 1);
12868 /* h comes from strat->P.p, that is LObject with LM in currRing and Tail in tailRing */
12869 // atR = -1;
12870 if ((strat->syzComp==0)
12871 || (pGetComp(h)<=strat->syzComp))
12872 {
12873 int i,j;
12875
12876 int degbound = currRing->N/currRing->isLPring;
12878
12879 if (pGetComp(h)==0)
12880 {
12881 if (strat->rightGB)
12882 {
12883 if (isFromQ)
12884 {
12885 // pairs (shifts(h),s[1..k]), (h, s[1..k])
12886 for (i=0; i<=maxShift; i++)
12887 {
12888 poly hh = pLPCopyAndShiftLM(h, i);
12889 for (j=0; j<=k; j++)
12890 {
12891 if (strat->fromQ == NULL || !strat->fromQ[j])
12892 {
12893 new_pair=TRUE;
12894 poly s = strat->S[j];
12895 enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, pmLastVblock(s), i);
12896 }
12897 }
12898 }
12899 }
12900 else
12901 {
12902 new_pair=TRUE;
12903 for (j=0; j<=k; j++)
12904 {
12905 poly s = strat->S[j];
12906 if (strat->fromQ != NULL && strat->fromQ[j])
12907 {
12908 // pairs (shifts(s[j]),h), (s[j],h)
12910 }
12911 else
12912 {
12913 // pair (h, s[j])
12914 enterOnePairWithoutShifts(j, h, s, ecart, isFromQ, strat, atR, pmLastVblock(s), 0);
12915 }
12916 }
12917 }
12918 }
12919 /* for Q!=NULL: build pairs (f,q),(f1,f2), but not (q1,q2)*/
12920 else if ((isFromQ)&&(strat->fromQ!=NULL))
12921 {
12922 // pairs (shifts(s[1..k]),h), (s[1..k],h)
12923 for (j=0; j<=k; j++)
12924 {
12925 if (!strat->fromQ[j])
12926 {
12927 new_pair=TRUE;
12928 poly s = strat->S[j];
12930 }
12931 }
12932 // pairs (shifts(h),s[1..k])
12933 if (new_pair)
12934 {
12935 for (i=1; i<=maxShift; i++)
12936 {
12937 poly hh = pLPCopyAndShiftLM(h, i);
12938 for (j=0; j<=k; j++)
12939 {
12940 if (!strat->fromQ[j])
12941 {
12942 poly s = strat->S[j];
12943 enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, pmLastVblock(s), i);
12944 }
12945 }
12946 }
12947 }
12948 }
12949 else
12950 {
12951 new_pair=TRUE;
12952 // pairs (shifts(s[1..k]),h), (s[1..k],h)
12953 for (j=0; j<=k; j++)
12954 {
12955 poly s = strat->S[j];
12956 // TODO: cache lastVblock of s[1..k] for later use
12958 }
12959 // pairs (shifts(h),s[1..k]), (shifts(h), h)
12960 for (i=1; i<=maxShift; i++)
12961 {
12962 poly hh = pLPCopyAndShiftLM(h, i);
12964 for (j=0; j<=k; j++)
12965 {
12966 poly s = strat->S[j];
12967 if(!enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, pmLastVblock(s), i))
12969 }
12970 if(!enterOnePairWithoutShifts(-1, hh, h, ecart, isFromQ, strat, atR, h_lastVblock, i))
12973 }
12974 }
12975 }
12976 else
12977 {
12978 new_pair=TRUE;
12979 if (strat->rightGB)
12980 {
12981 for (j=0; j<=k; j++)
12982 {
12983 if ((pGetComp(h)==pGetComp(strat->S[j]))
12984 || (pGetComp(strat->S[j])==0))
12985 {
12986 assume(isFromQ == 0); // this case is not handled here and should also never happen
12987 poly s = strat->S[j];
12988 if (strat->fromQ != NULL && strat->fromQ[j])
12989 {
12990 // pairs (shifts(s[j]),h), (s[j],h)
12992 }
12993 else
12994 {
12995 // pair (h, s[j])
12996 enterOnePairWithoutShifts(j, h, s, ecart, isFromQ, strat, atR, pmLastVblock(s), 0);
12997 }
12998 }
12999 }
13000 }
13001 else
13002 {
13003 // pairs (shifts(s[1..k]),h), (s[1..k],h)
13004 for (j=0; j<=k; j++)
13005 {
13006 if ((pGetComp(h)==pGetComp(strat->S[j]))
13007 || (pGetComp(strat->S[j])==0))
13008 {
13009 poly s = strat->S[j];
13011 }
13012 }
13013 // pairs (shifts(h),s[1..k]), (shifts(h), h)
13014 for (i=1; i<=maxShift; i++)
13015 {
13016 poly hh = pLPCopyAndShiftLM(h, i);
13017 for (j=0; j<=k; j++)
13018 {
13019 if ((pGetComp(h)==pGetComp(strat->S[j]))
13020 || (pGetComp(strat->S[j])==0))
13021 {
13022 poly s = strat->S[j];
13023 enterOnePairWithoutShifts(j, hh, s, ecart, isFromQ, strat, atR, pmLastVblock(s), i);
13024 }
13025 }
13026 enterOnePairWithoutShifts(-1, hh, h, ecart, isFromQ, strat, atR, h_lastVblock, i);
13027 }
13028 }
13029 }
13030
13031 if (new_pair)
13032 {
13033 strat->chainCrit(h,ecart,strat);
13034 }
13035 kMergeBintoL(strat);
13036 }
13037}
13038#endif
13039
13040/*2
13041*(s[0],h),...,(s[k],h) will be put to the pairset L(via initenterpairs)
13042*superfluous elements in S will be deleted
13043*/
13044#ifdef HAVE_SHIFTBBA
13045void enterpairsShift (poly h,int k,int ecart,int pos,kStrategy strat, int atR)
13046{
13047 /* h is strat->P.p, that is LObject with LM in currRing and Tail in tailRing */
13048 /* Q: what is exactly the strat->fromT ? A: a local case trick; don't need it yet*/
13049 int j=pos;
13050
13051 /* if (!(rField_is_Domain(currRing))) enterExtendedSpoly(h, strat); */ // TODO: enterExtendedSpoly not for LP yet
13052 initenterpairsShift(h,k,ecart,0,strat, atR);
13053 if ( (!strat->fromT)
13054 && ((strat->syzComp==0)
13055 ||(pGetComp(h)<=strat->syzComp)))
13056 {
13057 unsigned long h_sev = pGetShortExpVector(h);
13058 loop
13059 {
13060 if (j > k) break;
13061 // TODO this currently doesn't clear all possible elements because of commutative division
13062 if (!(strat->rightGB && strat->fromQ != NULL && strat->fromQ[j]))
13063 clearS(h,h_sev, &j,&k,strat);
13064 j++;
13065 }
13066 }
13067}
13068#endif
13069
13070/*2
13071* enteres all admissible shifts of p into T
13072* assumes that p is already in T!
13073*/
13074#ifdef HAVE_SHIFTBBA
13076{
13077 /* determine how many elements we have to insert */
13078 /* x(0)y(1)z(2) : lastVblock-1=2, to add until lastVblock=uptodeg-1 */
13079 /* hence, a total number of elt's to add is: */
13080 /* int toInsert = 1 + (uptodeg-1) - (pLastVblock(p.p, lV) -1); */
13081 pAssume(p.p != NULL);
13082
13084
13085 for (int i = 1; i <= maxPossibleShift; i++)
13086 {
13087 LObject qq;
13088 qq.p = pLPCopyAndShiftLM(p.p, i); // don't use Set() because it'll test the poly order
13089 qq.shift = i;
13090 strat->initEcart(&qq); // initEcartBBA sets length, pLength, FDeg and ecart
13091
13092 enterT(qq, strat, atT); // enterT is modified, so it doesn't copy and delete the tail of shifted polys
13093 }
13094}
13095#endif
13096
13097#ifdef HAVE_SHIFTBBA
13099{
13100 /* for the shift case need to run it with withT = TRUE */
13101 strat->redTailChange=FALSE;
13102 if (strat->noTailReduction) return L->GetLmCurrRing();
13103 poly h, p;
13104 p = h = L->GetLmTailRing();
13105 if ((h==NULL) || (pNext(h)==NULL))
13106 return L->GetLmCurrRing();
13107
13108 TObject* With;
13109 // placeholder in case strat->tl < 0
13110 TObject With_s(strat->tailRing);
13111
13112 LObject Ln(pNext(h), strat->tailRing);
13113 Ln.pLength = L->GetpLength() - 1;
13114
13115 pNext(h) = NULL;
13116 if (L->p != NULL) pNext(L->p) = NULL;
13117 L->pLength = 1;
13118
13119 Ln.PrepareRed(strat->use_buckets);
13120
13121 while(!Ln.IsNull())
13122 {
13123 loop
13124 {
13125 Ln.SetShortExpVector();
13126 if (withT)
13127 {
13128 int j;
13129 j = kFindDivisibleByInT(strat, &Ln);
13130 if (j < 0) break;
13131 With = &(strat->T[j]);
13132 }
13133 else
13134 {
13135 With = kFindDivisibleByInS_T(strat, pos, &Ln, &With_s);
13136 if (With == NULL) break;
13137 }
13138 if (normalize && (!TEST_OPT_INTSTRATEGY) && (!nIsOne(pGetCoeff(With->p))))
13139 {
13140 With->pNorm();
13141 //if (TEST_OPT_PROT) { PrintS("n"); mflush(); }
13142 }
13143 strat->redTailChange=TRUE;
13144 if (ksReducePolyTail(L, With, &Ln))
13145 {
13146 // reducing the tail would violate the exp bound
13147 // set a flag and hope for a retry (in bba)
13149 if ((Ln.p != NULL) && (Ln.t_p != NULL)) Ln.p=NULL;
13150 do
13151 {
13152 pNext(h) = Ln.LmExtractAndIter();
13153 pIter(h);
13154 L->pLength++;
13155 } while (!Ln.IsNull());
13156 goto all_done;
13157 }
13158 if (Ln.IsNull()) goto all_done;
13159 if (! withT) With_s.Init(currRing);
13160 }
13161 pNext(h) = Ln.LmExtractAndIter();
13162 pIter(h);
13163 L->pLength++;
13164 }
13165
13166 all_done:
13167 Ln.Delete();
13168 if (L->p != NULL) pNext(L->p) = pNext(p);
13169
13170 if (strat->redTailChange)
13171 {
13172 L->length = 0;
13173 }
13174 L->Normalize(); // HANNES: should have a test
13175 kTest_L(L,strat);
13176 return L->GetLmCurrRing();
13177}
13178#endif
static int si_max(const int a, const int b)
Definition auxiliary.h:124
int BOOLEAN
Definition auxiliary.h:87
#define TRUE
Definition auxiliary.h:100
#define FALSE
Definition auxiliary.h:96
static int si_min(const int a, const int b)
Definition auxiliary.h:125
CanonicalForm lc(const CanonicalForm &f)
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition cf_gcd.cc:676
int l
Definition cfEzgcd.cc:100
int i
Definition cfEzgcd.cc:132
int k
Definition cfEzgcd.cc:99
int p
Definition cfModGcd.cc:4086
bool equal
Definition cfModGcd.cc:4134
CanonicalForm b
Definition cfModGcd.cc:4111
static CanonicalForm bound(const CFMatrix &M)
Definition cf_linsys.cc:460
int length() const
poly p
Definition kutil.h:73
poly t_p
Definition kutil.h:74
ring tailRing
Definition kutil.h:76
void wrp()
Definition kutil.cc:773
KINLINE poly kNoetherTail()
Definition kInline.h:66
unsigned long * sevSyz
Definition kutil.h:323
kStrategy next
Definition kutil.h:277
bool sigdrop
Definition kutil.h:359
poly t_kNoether
Definition kutil.h:330
int syzComp
Definition kutil.h:354
int * S_2_R
Definition kutil.h:342
ring tailRing
Definition kutil.h:343
void(* chainCrit)(poly p, int ecart, kStrategy strat)
Definition kutil.h:291
char noTailReduction
Definition kutil.h:378
int currIdx
Definition kutil.h:317
int nrsyzcrit
Definition kutil.h:360
intset lenS
Definition kutil.h:319
int nrrewcrit
Definition kutil.h:361
pFDegProc pOrigFDeg_TailRing
Definition kutil.h:298
int Ll
Definition kutil.h:351
TSet T
Definition kutil.h:326
BOOLEAN(* rewCrit1)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:293
char news
Definition kutil.h:400
omBin lmBin
Definition kutil.h:344
int syzmax
Definition kutil.h:349
int Bl
Definition kutil.h:352
intset ecartS
Definition kutil.h:309
int syzidxmax
Definition kutil.h:349
char honey
Definition kutil.h:377
char rightGB
Definition kutil.h:369
polyset S
Definition kutil.h:306
int minim
Definition kutil.h:357
poly kNoether
Definition kutil.h:329
BOOLEAN * NotUsedAxis
Definition kutil.h:332
LSet B
Definition kutil.h:328
BOOLEAN * pairtest
Definition kutil.h:333
int cp
Definition kutil.h:347
int ak
Definition kutil.h:353
TObject ** R
Definition kutil.h:340
BOOLEAN(* rewCrit3)(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int start)
Definition kutil.h:295
int tl
Definition kutil.h:350
unsigned long * sevT
Definition kutil.h:325
unsigned long * sevSig
Definition kutil.h:324
int nr
Definition kutil.h:346
poly tail
Definition kutil.h:334
char sugarCrit
Definition kutil.h:377
int(* posInL)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition kutil.h:284
KINLINE TObject * s_2_t(int i)
Definition kInline.h:47
intset syzIdx
Definition kutil.h:313
ideal Shdl
Definition kutil.h:303
int syzl
Definition kutil.h:349
unsigned sbaOrder
Definition kutil.h:316
pFDegProc pOrigFDeg
Definition kutil.h:296
int tmax
Definition kutil.h:350
polyset sig
Definition kutil.h:308
polyset syz
Definition kutil.h:307
char LDegLast
Definition kutil.h:385
void(* initEcartPair)(LObject *h, poly f, poly g, int ecartF, int ecartG)
Definition kutil.h:287
BOOLEAN(* syzCrit)(poly sig, unsigned long not_sevSig, kStrategy strat)
Definition kutil.h:292
wlen_set lenSw
Definition kutil.h:320
char kAllAxis
Definition kutil.h:376
int cv
Definition kutil.h:368
pShallowCopyDeleteProc p_shallow_copy_delete
Definition kutil.h:338
char Gebauer
Definition kutil.h:378
intset fromQ
Definition kutil.h:321
void(* enterS)(LObject &h, int pos, kStrategy strat, int atR)
Definition kutil.h:286
char newt
Definition kutil.h:401
char use_buckets
Definition kutil.h:383
char interpt
Definition kutil.h:371
char redTailChange
Definition kutil.h:399
int newIdeal
Definition kutil.h:356
char fromT
Definition kutil.h:379
char completeReduce_retry
Definition kutil.h:403
void(* initEcart)(TObject *L)
Definition kutil.h:280
omBin tailBin
Definition kutil.h:345
LObject P
Definition kutil.h:302
KINLINE TObject * S_2_T(int i)
Definition kInline.h:38
char noClearS
Definition kutil.h:402
int Lmax
Definition kutil.h:351
char z2homog
Definition kutil.h:374
int LazyPass
Definition kutil.h:353
char overflow
Definition kutil.h:404
void(* enterOnePair)(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.h:290
LSet L
Definition kutil.h:327
int(* posInT)(const TSet T, const int tl, LObject &h)
Definition kutil.h:281
int(* red)(LObject *L, kStrategy strat)
Definition kutil.h:278
int sl
Definition kutil.h:348
int LazyDegree
Definition kutil.h:353
char posInLDependsOnLength
Definition kutil.h:389
unsigned long * sevS
Definition kutil.h:322
char homog
Definition kutil.h:372
pLDegProc pOrigLDeg
Definition kutil.h:297
int(* posInLSba)(const LSet set, const int length, LObject *L, const kStrategy strat)
Definition kutil.h:282
pLDegProc pOrigLDeg_TailRing
Definition kutil.h:299
int Bmax
Definition kutil.h:352
int c3
Definition kutil.h:347
static FORCE_INLINE BOOLEAN nCoeff_is_Z(const coeffs r)
Definition coeffs.h:820
@ n_Q
rational (GMP) numbers
Definition coeffs.h:30
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition coeffs.h:668
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition coeffs.h:519
static FORCE_INLINE number n_Ann(number a, const coeffs r)
if r is a ring with zero divisors, return an annihilator!=0 of b otherwise return NULL
Definition coeffs.h:683
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition coeffs.h:704
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL
Definition numbers.cc:419
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition coeffs.h:459
static FORCE_INLINE number n_Lcm(number a, number b, const coeffs r)
in Z: return the lcm of 'a' and 'b' in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ,...
Definition coeffs.h:694
static FORCE_INLINE number n_ExtGcd(number a, number b, number *s, number *t, const coeffs r)
beware that ExtGCD is only relevant for a few chosen coeff. domains and may perform something unexpec...
Definition coeffs.h:675
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition coeffs.h:542
static FORCE_INLINE number n_IntMod(number a, number b, const coeffs r)
for r a field, return n_Init(0,r) always: n_Div(a,b,r)*b+n_IntMod(a,b,r)==a n_IntMod(a,...
Definition coeffs.h:632
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition coeffs.h:757
static FORCE_INLINE int n_DivComp(number a, number b, const coeffs r)
Definition coeffs.h:526
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition coeffs.h:80
void nKillChar(coeffs r)
undo all initialisations
Definition numbers.cc:574
#define Print
Definition emacs.cc:80
#define WarnS
Definition emacs.cc:78
const CanonicalForm int s
Definition facAbsFact.cc:51
CanonicalForm res
Definition facAbsFact.cc:60
bool found
int j
Definition facHensel.cc:110
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
static int min(int a, int b)
Definition fast_mult.cc:268
static int max(int a, int b)
Definition fast_mult.cc:264
#define STATIC_VAR
Definition globaldefs.h:7
#define VAR
Definition globaldefs.h:5
void scComputeHC(ideal S, ideal Q, int ak, poly &hEdge)
Definition hdegree.cc:1076
ideal idSyzygies(ideal h1, tHomog h, intvec **w, BOOLEAN setSyzComp, BOOLEAN setRegularity, int *deg, GbVariant alg)
Definition ideals.cc:830
#define idDelete(H)
delete an ideal
Definition ideals.h:29
#define idIsConstant(I)
Definition ideals.h:40
BOOLEAN idInsertPoly(ideal h1, poly h2)
insert h2 into h1 (if h2 is not the zero polynomial) return TRUE iff h2 was indeed inserted
BOOLEAN idIs0(ideal h)
returns true if h is the zero ideal
ideal idCopy(ideal A)
Definition ideals.h:60
#define idPosConstant(I)
index of generator with leading term in ground ring (if any); otherwise -1
Definition ideals.h:37
static BOOLEAN length(leftv result, leftv arg)
Definition interval.cc:257
STATIC_VAR jList * T
Definition janet.cc:30
STATIC_VAR Poly * h
Definition janet.cc:971
KINLINE poly k_LmInit_currRing_2_tailRing(poly p, ring tailRing, omBin tailBin)
Definition kInline.h:958
KINLINE TSet initT()
Definition kInline.h:84
KINLINE void k_GetStrongLeadTerms(const poly p1, const poly p2, const ring leadRing, poly &m1, poly &m2, poly &lcm, const ring tailRing)
Definition kInline.h:1060
KINLINE int ksReducePolyTailLC_Z(LObject *PR, TObject *PW, LObject *Red)
Definition kInline.h:1108
KINLINE poly ksOldSpolyRed(poly p1, poly p2, poly spNoether)
Definition kInline.h:1175
KINLINE TObject ** initR()
Definition kInline.h:95
KINLINE int ksReducePolyTail(LObject *PR, TObject *PW, LObject *Red)
Definition kInline.h:1148
KINLINE poly ksOldSpolyRedNew(poly p1, poly p2, poly spNoether)
Definition kInline.h:1185
KINLINE void clearS(poly p, unsigned long p_sev, int *at, int *k, kStrategy strat)
Definition kInline.h:1238
KINLINE BOOLEAN k_GetLeadTerms(const poly p1, const poly p2, const ring p_r, poly &m1, poly &m2, const ring m_r)
Definition kInline.h:1017
KINLINE int ksReducePolyTail_Z(LObject *PR, TObject *PW, LObject *Red)
Definition kInline.h:1126
KINLINE unsigned long * initsevT()
Definition kInline.h:100
int redLiftstd(LObject *h, kStrategy strat)
Definition kLiftstd.cc:167
BOOLEAN kbTest(kBucket_pt bucket)
Tests.
Definition kbuckets.cc:197
void kBucketDestroy(kBucket_pt *bucket_pt)
Definition kbuckets.cc:216
int ksCheckCoeff(number *a, number *b, const coeffs r)
Definition kbuckets.cc:1504
BOOLEAN pCompareChainPart(poly p, poly p1, poly p2, poly lcm, const ring R)
Definition kpolys.cc:71
BOOLEAN pCompareChain(poly p, poly p1, poly p2, poly lcm, const ring R)
Returns TRUE if.
Definition kpolys.cc:17
poly ksCreateShortSpoly(poly p1, poly p2, ring tailRing)
Definition kspoly.cc:1453
long kHomModDeg(poly p, const ring r)
Definition kstd1.cc:2428
int posInL10(const LSet set, const int length, LObject *p, const kStrategy strat)
Definition kstd1.cc:1365
poly kNF(ideal F, ideal Q, poly p, int syzComp, int lazyReduce)
Definition kstd1.cc:3227
ideal kStd(ideal F, ideal Q, tHomog h, intvec **w, intvec *hilb, int syzComp, int newIdeal, intvec *vw, s_poly_proc_t sp)
Definition kstd1.cc:2475
int kFindDivisibleByInT_Z(const kStrategy strat, const LObject *L, const int start)
Definition kstd2.cc:213
int redHoney(LObject *h, kStrategy strat)
Definition kstd2.cc:2074
int redHomog(LObject *h, kStrategy strat)
Definition kstd2.cc:1114
int redLazy(LObject *h, kStrategy strat)
Definition kstd2.cc:1869
poly redNF(poly h, int &max_ind, int nonorm, kStrategy strat)
Definition kstd2.cc:2309
int redRing(LObject *h, kStrategy strat)
Definition kstd2.cc:951
int kFindDivisibleByInT(const kStrategy strat, const LObject *L, const int start)
return -1 if no divisor is found number of first divisor in T, otherwise
Definition kstd2.cc:321
void initSbaPos(kStrategy strat)
Definition kutil.cc:9928
void message(int i, int *reduc, int *olddeg, kStrategy strat, int red_result)
Definition kutil.cc:7512
poly redtail(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:6883
int posInL17Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6339
#define pDivComp_LESS
Definition kutil.cc:136
int posInL17_cRing(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6454
int getIndexRng(long coeff)
Definition kutil.cc:6035
int posInL110(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6093
int posInT17(const TSet set, const int length, LObject &p)
Definition kutil.cc:5306
void initBuchMora(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:9817
int redFirst(LObject *h, kStrategy strat)
Definition kstd1.cc:797
VAR int HCord
Definition kutil.cc:246
void kMergeBintoL(kStrategy strat)
Definition kutil.cc:3174
static void enlargeT(TSet &T, TObject **&R, unsigned long *&sevT, int &length, const int incr)
Definition kutil.cc:544
BOOLEAN arriRewCriterionPre(poly sig, unsigned long not_sevSig, poly lm, kStrategy strat, int)
Definition kutil.cc:6689
void enterSyz(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9397
int posInL11Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5876
int redEcart(LObject *h, kStrategy strat)
Definition kstd1.cc:169
int posInT11(const TSet set, const int length, LObject &p)
Definition kutil.cc:4975
void enterT(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9195
int posInT1(const TSet set, const int length, LObject &p)
Definition kutil.cc:4918
void enterTShift(LObject p, kStrategy strat, int atT)
Definition kutil.cc:13075
int posInT110Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5096
BOOLEAN arriRewCriterion(poly, unsigned long, poly, kStrategy strat, int start=0)
Definition kutil.cc:6664
void enterSSba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8969
BOOLEAN kTest(kStrategy strat)
Definition kutil.cc:1012
void initenterpairsSigRing(poly h, poly hSig, int hFrom, int k, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:3947
void enterSMoraNF(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1681
poly redtailBbaBound(LObject *L, int end_pos, kStrategy strat, int bound, BOOLEAN withT, BOOLEAN normalize)
Definition kutil.cc:7072
int posInT_EcartpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:5172
TObject * kFindDivisibleByInS_T(kStrategy strat, int end_pos, LObject *L, TObject *T, long ecart)
Definition kutil.cc:6740
int posInT0(const TSet, const int length, LObject &)
Definition kutil.cc:4907
BOOLEAN kTest_TS(kStrategy strat)
Definition kutil.cc:1073
void enterOnePairNormal(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:1952
int kFindInT(poly p, TSet T, int tlength)
returns index of p in TSet, or -1 if not found
Definition kutil.cc:718
BOOLEAN kCheckStrongCreation(int atR, poly m1, int atS, poly m2, kStrategy strat)
Definition kutil.cc:10590
VAR int Kstd1_mu
Definition kutil.cc:248
void initenterstrongPairsShift(poly h, int k, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.cc:12861
void enterpairsSig(poly h, poly hSig, int hFrom, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4535
static void enterOnePairRingShift(poly q, poly p, int, int isFromQ, kStrategy strat, int atR, int, int qisFromQ, int shiftcount, int ifromS)
Definition kutil.cc:11892
static const char * kTest_LmEqual(poly p, poly t_p, ring tailRing)
Definition kutil.cc:783
void enterL(LSet *set, int *length, int *LSetmax, LObject p, int at)
Definition kutil.cc:1280
BOOLEAN faugereRewCriterion(poly sig, unsigned long not_sevSig, poly, kStrategy strat, int start=0)
Definition kutil.cc:6605
static BOOLEAN enterOneStrongPolyAndEnterOnePairRingShift(poly q, poly p, int ecart, int isFromQ, kStrategy strat, int atR, int ecartq, int qisFromQ, int shiftcount, int ifromS)
Definition kutil.cc:12136
void clearSbatch(poly h, int k, int pos, kStrategy strat)
Definition kutil.cc:4452
static int pLPDivComp(poly p, poly q)
Definition kutil.cc:232
int posInT2(const TSet set, const int length, LObject &p)
Definition kutil.cc:4947
int posInL13(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6182
int posInL110Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6135
#define kFalseReturn(x)
Definition kutil.cc:780
static BOOLEAN enterOnePairWithShifts(int q_inS, poly q, poly p, int ecartp, int p_isFromQ, kStrategy strat, int, int p_lastVblock, int q_lastVblock)
Definition kutil.cc:12146
int posInT_pLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11543
static intset initec(const int maxnr)
Definition kutil.cc:530
BOOLEAN kPosInLDependsOnLength(int(*pos_in_l)(const LSet set, const int length, LObject *L, const kStrategy strat))
Definition kutil.cc:9629
void enterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4509
int posInT13(const TSet set, const int length, LObject &p)
Definition kutil.cc:5143
void redtailBbaAlsoLC_Z(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:7188
BOOLEAN syzCriterionInc(poly sig, unsigned long not_sevSig, kStrategy strat)
Definition kutil.cc:6556
static void deleteHCBucket(LObject *L, kStrategy strat)
Definition kutil.cc:250
void initHilbCrit(ideal, ideal, intvec **hilb, kStrategy strat)
Definition kutil.cc:9475
static BOOLEAN enterOnePairWithoutShifts(int p_inS, poly q, poly p, int ecartq, int q_isFromQ, kStrategy strat, int, int p_lastVblock, int q_shift)
Definition kutil.cc:12211
void chainCritSig(poly p, int, kStrategy strat)
Definition kutil.cc:3474
int posInSMonFirst(const kStrategy strat, const int length, const poly p)
Definition kutil.cc:4786
void initEcartPairMora(LObject *Lp, poly, poly, int ecartF, int ecartG)
Definition kutil.cc:1326
void initenterstrongPairs(poly h, int k, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:4167
void superenterpairsSig(poly h, poly hSig, int hFrom, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4491
static poly redMora(poly h, int maxIndex, kStrategy strat)
Definition kutil.cc:8566
int posInL0Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5671
static int pDivCompRing(poly p, poly q)
Definition kutil.cc:144
void initBuchMoraPos(kStrategy strat)
Definition kutil.cc:9644
void initenterpairs(poly h, int k, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.cc:3822
void initS(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7635
BOOLEAN kStratChangeTailRing(kStrategy strat, LObject *L, TObject *T, unsigned long expbound)
Definition kutil.cc:11038
poly redtailBba(LObject *L, int end_pos, kStrategy strat, BOOLEAN withT, BOOLEAN normalize)
Definition kutil.cc:6959
poly redtailBba_Z(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:7317
ring sbaRing(kStrategy strat, const ring r, BOOLEAN, int)
Definition kutil.cc:11159
void initPairtest(kStrategy strat)
Definition kutil.cc:693
static BOOLEAN p_HasNotCF_Lift(poly p1, poly p2, const ring r)
p_HasNotCF for the IDLIFT case and syzComp==1: ignore component
Definition kutil.cc:2215
int posInL0(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5643
void initSSpecial(ideal F, ideal Q, ideal P, kStrategy strat)
Definition kutil.cc:8140
void chainCritOpt_1(poly, int, kStrategy strat)
Definition kutil.cc:3458
int posInT11Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5012
static void enterOnePairRing(int i, poly p, int, int isFromQ, kStrategy strat, int atR)
Definition kutil.cc:1346
static poly redBba(poly h, int maxIndex, kStrategy strat)
Definition kutil.cc:8542
void cancelunit1(LObject *p, int *suc, int index, kStrategy strat)
Definition kutil.cc:8454
void initenterpairsShift(poly h, int k, int ecart, int isFromQ, kStrategy strat, int atR)
Definition kutil.cc:12593
static void initenterstrongPairsSig(poly h, poly hSig, int k, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:4222
void initenterpairsSig(poly h, poly hSig, int hFrom, int k, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:3887
int posInL15(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6217
static void enlargeL(LSet *L, int *length, const int incr)
Definition kutil.cc:683
int posInT17_c(const TSet set, const int length, LObject &p)
Definition kutil.cc:5414
poly redtailBbaShift(LObject *L, int pos, kStrategy strat, BOOLEAN withT, BOOLEAN normalize)
Definition kutil.cc:13098
int posInT_EcartFDegpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11452
int posInT15(const TSet set, const int length, LObject &p)
Definition kutil.cc:5210
void enterT_strong(LObject &p, kStrategy strat, int atT)
Definition kutil.cc:9295
void postReduceByMon(LObject *h, kStrategy strat)
used for GB over ZZ: intermediate reduction by monomial elements background: any known constant eleme...
Definition kutil.cc:10780
BOOLEAN syzCriterion(poly sig, unsigned long not_sevSig, kStrategy strat)
Definition kutil.cc:6521
void HEckeTest(poly pp, kStrategy strat)
Definition kutil.cc:500
int posInLSpecial(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5599
STATIC_VAR BOOLEAN sloppy_max
Definition kutil.cc:800
VAR int Kstd1_deg
Definition kutil.cc:247
void enterExtendedSpolySig(poly h, poly hSig, kStrategy strat)
Definition kutil.cc:4333
void enterpairsShift(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:13045
static void enterOnePairSig(int i, poly p, poly pSig, int, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:2446
BOOLEAN kTest_L(LObject *L, kStrategy strat, BOOLEAN testp, int lpos, TSet T, int tlength)
Definition kutil.cc:926
void exitBuchMora(kStrategy strat)
Definition kutil.cc:9902
void messageStatSBA(int hilbcount, kStrategy strat)
Definition kutil.cc:7566
void initEcartNormal(TObject *h)
Definition kutil.cc:1304
int posInS(const kStrategy strat, const int length, const poly p, const int ecart_p)
Definition kutil.cc:4685
void updateS(BOOLEAN toT, kStrategy strat)
Definition kutil.cc:8611
static BOOLEAN is_shifted_p1(const poly p, const kStrategy strat)
Definition kutil.cc:1188
void initSLSba(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7831
int posInL11Ringls(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5946
void enterOnePairSpecial(int i, poly p, int ecart, kStrategy strat, int atR=-1)
Definition kutil.cc:3105
static int * initS_2_R(const int maxnr)
Definition kutil.cc:539
int posInL17(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6294
void initSyzRules(kStrategy strat)
Definition kutil.cc:7985
int posInLSig(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5703
void initSbaBuchMora(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:10030
BOOLEAN kCheckSpolyCreation(LObject *L, kStrategy strat, poly &m1, poly &m2)
Definition kutil.cc:10551
void cleanT(kStrategy strat)
Definition kutil.cc:565
static void enterOnePairLift(int i, poly p, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:2234
int posInT110(const TSet set, const int length, LObject &p)
Definition kutil.cc:5053
BOOLEAN kTest_S(kStrategy strat)
Definition kutil.cc:1055
int posInSyz(const kStrategy strat, poly sig)
Definition kutil.cc:5792
void replaceInLAndSAndT(LObject &p, int tj, kStrategy strat)
Definition kutil.cc:9104
void reorderS(int *suc, kStrategy strat)
Definition kutil.cc:4632
void enterExtendedSpoly(poly h, kStrategy strat)
Definition kutil.cc:4249
int posInL15Ring(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6253
#define pDivComp_INCOMP
Definition kutil.cc:138
BOOLEAN kTest_T(TObject *T, kStrategy strat, int i, char TN)
Definition kutil.cc:801
void kMergeBintoLSba(kStrategy strat)
Definition kutil.cc:3195
void deleteHC(LObject *L, kStrategy strat, BOOLEAN fromNext)
Definition kutil.cc:293
void updateResult(ideal r, ideal Q, kStrategy strat)
Definition kutil.cc:10145
void superenterpairs(poly h, int k, int ecart, int pos, kStrategy strat, int atR)
Definition kutil.cc:4478
static BOOLEAN sugarDivisibleBy(int ecart1, int ecart2)
Definition kutil.cc:1337
int posInT19(const TSet set, const int length, LObject &p)
Definition kutil.cc:5542
poly redtailBba_NF(poly p, kStrategy strat)
Definition kutil.cc:7398
#define pDivComp_GREATER
Definition kutil.cc:137
void exitSba(kStrategy strat)
Definition kutil.cc:10105
int posInT15Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5265
int posInT17Ring(const TSet set, const int length, LObject &p)
Definition kutil.cc:5368
static BOOLEAN enterOneStrongPoly(int i, poly p, int, int, kStrategy strat, int atR, bool enterTstrong)
Definition kutil.cc:1550
BOOLEAN enterOnePairShift(poly q, poly p, int ecart, int isFromQ, kStrategy strat, int atR, int ecartq, int qisFromQ, int shiftcount, int ifromS)
Definition kutil.cc:12251
void kDebugPrint(kStrategy strat)
Output some debug info about a given strategy.
Definition kutil.cc:11577
void deleteInL(LSet set, int *length, int j, kStrategy strat)
Definition kutil.cc:1215
void kStratInitChangeTailRing(kStrategy strat)
Definition kutil.cc:11131
void chainCritPart(poly p, int ecart, kStrategy strat)
Definition kutil.cc:3533
void enterSMora(LObject &p, int atS, kStrategy strat, int atR=-1)
Definition kstd1.cc:1628
void initBuchMoraCrit(kStrategy strat)
Definition kutil.cc:9493
void cleanTSbaRing(kStrategy strat)
Definition kutil.cc:624
int posInT17_cRing(const TSet set, const int length, LObject &p)
Definition kutil.cc:5476
static int pDivComp(poly p, poly q)
Definition kutil.cc:183
void completeReduce(kStrategy strat, BOOLEAN withT)
Definition kutil.cc:10357
int posInL17_c(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:6389
void initBuchMoraPosRing(kStrategy strat)
Definition kutil.cc:9730
int kFindInTShift(poly p, TSet T, int tlength)
Definition kutil.cc:743
void postReduceByMonSig(LObject *h, kStrategy strat)
Definition kutil.cc:10856
static BOOLEAN enterOneStrongPolyShift(poly q, poly p, int, int, kStrategy strat, int atR, int, int, int shiftcount, int ifromS)
Definition kutil.cc:11723
void messageSets(kStrategy strat)
Definition kutil.cc:7585
void deleteInS(int i, kStrategy strat)
Definition kutil.cc:1139
static poly redBba1(poly h, int maxIndex, kStrategy strat)
Definition kutil.cc:8437
int posInT_FDegpLength(const TSet set, const int length, LObject &p)
Definition kutil.cc:11506
int posInLSigRing(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5728
BOOLEAN isInPairsetL(int length, poly p1, poly p2, int *k, kStrategy strat)
Definition kutil.cc:702
BOOLEAN sbaCheckGcdPair(LObject *h, kStrategy strat)
Definition kutil.cc:1700
int posInLF5CRing(const LSet set, int start, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5910
poly preIntegerCheck(const ideal Forig, const ideal Q)
used for GB over ZZ: look for constant and monomial elements in the ideal background: any known const...
Definition kutil.cc:10613
static unsigned long * initsevS(const int maxnr)
Definition kutil.cc:535
void enterpairsSpecial(poly h, int k, int ecart, int pos, kStrategy strat, int atR=-1)
Definition kutil.cc:4558
void chainCritNormal(poly p, int ecart, kStrategy strat)
Definition kutil.cc:3217
void initEcartBBA(TObject *h)
Definition kutil.cc:1312
VAR denominator_list DENOMINATOR_LIST
Definition kutil.cc:84
static void enterOnePairSigRing(int i, poly p, poly pSig, int, int ecart, int isFromQ, kStrategy strat, int atR=-1)
Definition kutil.cc:2703
void enterSBbaShift(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8946
int posInL11(const LSet set, const int length, LObject *p, const kStrategy)
Definition kutil.cc:5833
char * showOption()
Definition misc_ip.cc:709
poly redtailBba_Ring(LObject *L, int end_pos, kStrategy strat)
Definition kutil.cc:7423
int posInLF5C(const LSet, const int, LObject *, const kStrategy strat)
Definition kutil.cc:5821
void initEcartPairBba(LObject *Lp, poly, poly, int, int)
Definition kutil.cc:1319
void messageStat(int hilbcount, kStrategy strat)
Definition kutil.cc:7553
static BOOLEAN enterOneStrongPolySig(int i, poly p, poly sig, int, int, kStrategy strat, int atR)
Definition kutil.cc:1758
void chainCritRing(poly p, int, kStrategy strat)
Definition kutil.cc:4009
void initSSpecialSba(ideal F, ideal Q, ideal P, kStrategy strat)
Definition kutil.cc:8288
void initSL(ideal F, ideal Q, kStrategy strat)
Definition kutil.cc:7730
int posInIdealMonFirst(const ideal F, const poly p, int start, int end)
Definition kutil.cc:4863
void finalReduceByMon(kStrategy strat)
used for GB over ZZ: final reduction by constant elements background: any known constant element of i...
Definition kutil.cc:10945
void enterSBba(LObject &p, int atS, kStrategy strat, int atR)
Definition kutil.cc:8846
void initSbaCrit(kStrategy strat)
Definition kutil.cc:9558
BOOLEAN newHEdge(kStrategy strat)
Definition kutil.cc:10479
#define pDivComp_EQUAL
Definition kutil.cc:135
void cancelunit(LObject *L, BOOLEAN inNF)
Definition kutil.cc:372
denominator_list_s * denominator_list
Definition kutil.h:63
TObject * TSet
Definition kutil.h:59
#define setmaxL
Definition kutil.h:30
#define setmaxTinc
Definition kutil.h:34
static int kFindInL1(const poly p, const kStrategy strat)
Definition kutil.h:851
#define setmax
Definition kutil.h:29
EXTERN_VAR int strat_nr
Definition kutil.h:181
int64 wlen_type
Definition kutil.h:54
static LSet initL(int nr=setmaxL)
Definition kutil.h:420
LObject * LSet
Definition kutil.h:60
static void kDeleteLcm(LObject *P)
Definition kutil.h:880
int * intset
Definition kutil.h:53
#define ALLOW_PROD_CRIT(A)
Definition kutil.h:395
#define setmaxT
Definition kutil.h:33
#define setmaxLinc
Definition kutil.h:31
class sTObject TObject
Definition kutil.h:57
#define REDTAIL_CANONICALIZE
Definition kutil.h:38
class sLObject LObject
Definition kutil.h:58
static bool rIsSCA(const ring r)
Definition nc.h:190
poly nc_CreateShortSpoly(poly p1, poly p2, const ring r)
@ nc_lie
Definition nc.h:18
static nc_type & ncRingType(nc_struct *p)
Definition nc.h:159
poly nc_p_Bracket_qq(poly p, const poly q, const ring r)
returns [p,q], destroys p
int lcm(unsigned long *l, unsigned long *a, unsigned long *b, unsigned long p, int dega, int degb)
Definition minpoly.cc:709
#define assume(x)
Definition mod2.h:387
#define r_assume(x)
Definition mod2.h:388
int dReportError(const char *fmt,...)
Definition dError.cc:44
#define p_GetComp(p, r)
Definition monomials.h:64
#define pFalseReturn(cond)
Definition monomials.h:139
#define pIter(p)
Definition monomials.h:37
#define pNext(p)
Definition monomials.h:36
#define pSetCoeff0(p, n)
Definition monomials.h:59
#define p_GetCoeff(p, r)
Definition monomials.h:50
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition monomials.h:44
#define __p_GetComp(p, r)
Definition monomials.h:63
#define rRing_has_Comp(r)
Definition monomials.h:266
#define pAssume(cond)
Definition monomials.h:90
STATIC_VAR gmp_float * diff
#define nDelete(n)
Definition numbers.h:16
#define nIsZero(n)
Definition numbers.h:19
#define nEqual(n1, n2)
Definition numbers.h:20
#define nCopy(n)
Definition numbers.h:15
#define nGreater(a, b)
Definition numbers.h:28
#define nGreaterZero(n)
Definition numbers.h:27
#define nInvers(a)
Definition numbers.h:33
#define nIsOne(n)
Definition numbers.h:25
#define nInit(i)
Definition numbers.h:24
#define nTest(a)
Definition numbers.h:35
#define omFreeSize(addr, size)
#define omCheckBinAddrSize(addr, size)
#define omAlloc(size)
#define omReallocSize(addr, o_size, size)
#define omAlloc0(size)
#define omRealloc0Size(addr, o_size, size)
#define omSizeWOfBin(bin_ptr)
#define NULL
Definition omList.c:12
omBin_t * omBin
Definition omStructs.h:12
#define REGISTER
Definition omalloc.h:27
#define TEST_OPT_WEIGHTM
Definition options.h:121
#define TEST_OPT_IDLIFT
Definition options.h:129
#define TEST_OPT_INTSTRATEGY
Definition options.h:110
#define TEST_OPT_REDTAIL
Definition options.h:116
#define TEST_OPT_INFREDTAIL
Definition options.h:118
#define TEST_OPT_SUGARCRIT
Definition options.h:107
#define TEST_OPT_OLDSTD
Definition options.h:123
#define TEST_OPT_REDSB
Definition options.h:104
#define TEST_OPT_DEGBOUND
Definition options.h:113
#define TEST_OPT_SB_1
Definition options.h:119
#define TEST_OPT_NOT_SUGAR
Definition options.h:106
#define TEST_OPT_PROT
Definition options.h:103
#define OPT_INTERRUPT
Definition options.h:79
#define TEST_OPT_CANCELUNIT
Definition options.h:128
#define BTEST1(a)
Definition options.h:34
#define TEST_OPT_DEBUG
Definition options.h:108
#define TEST_OPT_CONTENTSB
Definition options.h:127
pShallowCopyDeleteProc pGetShallowCopyDeleteProc(ring, ring)
static int index(p_Length length, p_Ord ord)
poly p_GetMaxExpP(poly p, const ring r)
return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0,...
Definition p_polys.cc:1141
void p_Cleardenom_n(poly ph, const ring r, number &c)
Definition p_polys.cc:2960
long pLDegb(poly p, int *l, const ring r)
Definition p_polys.cc:814
long pLDeg1_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:978
long p_WFirstTotalDegree(poly p, const ring r)
Definition p_polys.cc:596
long pLDeg1_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1041
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition p_polys.cc:3671
long pLDeg1c_WFirstTotalDegree(poly p, int *l, const ring r)
Definition p_polys.cc:1071
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition p_polys.cc:4576
long pLDeg1c_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:944
long pLDeg1(poly p, int *l, const ring r)
Definition p_polys.cc:844
unsigned long p_GetShortExpVector(const poly p, const ring r)
Definition p_polys.cc:4830
long pLDeg1_Deg(poly p, int *l, const ring r)
Definition p_polys.cc:913
long p_WTotaldegree(poly p, const ring r)
Definition p_polys.cc:613
BOOLEAN p_OneComp(poly p, const ring r)
return TRUE if all monoms have the same component
Definition p_polys.cc:1211
poly p_Cleardenom(poly p, const ring r)
Definition p_polys.cc:2851
long pLDeg1c(poly p, int *l, const ring r)
Definition p_polys.cc:880
long pLDeg1c_Totaldegree(poly p, int *l, const ring r)
Definition p_polys.cc:1008
long pLDeg0c(poly p, int *l, const ring r)
Definition p_polys.cc:773
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max)
return the maximal exponent of p in form of the maximal long var
Definition p_polys.cc:1178
long pLDeg0(poly p, int *l, const ring r)
Definition p_polys.cc:742
poly p_One(const ring r)
Definition p_polys.cc:1316
poly p_Sub(poly p1, poly p2, const ring r)
Definition p_polys.cc:1996
void pEnlargeSet(poly **p, int l, int increment)
Definition p_polys.cc:3718
long p_Deg(poly a, const ring r)
Definition p_polys.cc:587
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition p_polys.cc:1661
static poly p_Neg(poly p, const ring r)
Definition p_polys.h:1107
static int pLength(poly a)
Definition p_polys.h:190
static void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
Definition p_polys.h:1425
static poly p_Add_q(poly p, poly q, const ring r)
Definition p_polys.h:936
static void p_LmDelete(poly p, const ring r)
Definition p_polys.h:723
static void p_ExpVectorAdd(poly p1, poly p2, const ring r)
Definition p_polys.h:1411
BOOLEAN p_CheckIsFromRing(poly p, ring r)
Definition pDebug.cc:105
static BOOLEAN _p_LmDivisibleByPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition p_polys.h:1856
static long p_FDeg(const poly p, const ring r)
Definition p_polys.h:380
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition p_polys.h:781
static void p_ExpVectorCopy(poly d_p, poly s_p, const ring r)
Definition p_polys.h:1313
static void p_LmDelete0(poly p, const ring r)
Definition p_polys.h:733
static int p_Cmp(poly p1, poly p2, ring r)
Definition p_polys.h:1727
#define __pp_Mult_nn(p, n, r)
Definition p_polys.h:1002
static poly pp_mm_Mult(poly p, poly m, const ring r)
Definition p_polys.h:1041
static poly pp_Mult_mm(poly p, poly m, const ring r)
Definition p_polys.h:1031
static int p_LtCmpNoAbs(poly p, poly q, const ring r)
Definition p_polys.h:1647
static void p_SetCompP(poly p, int i, ring r)
Definition p_polys.h:254
#define pp_Test(p, lmRing, tailRing)
Definition p_polys.h:163
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition p_polys.h:247
static void p_Setm(poly p, const ring r)
Definition p_polys.h:233
static number p_SetCoeff(poly p, number n, ring r)
Definition p_polys.h:412
static int p_LmCmp(poly p, poly q, const ring r)
Definition p_polys.h:1580
static BOOLEAN p_LmShortDivisibleBy(poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
Definition p_polys.h:1910
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition p_polys.h:469
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition pDebug.cc:74
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition p_polys.h:1891
static poly p_ShallowCopyDelete(poly p, const ring r, omBin bin)
Definition p_polys.h:928
static void p_Delete(poly *p, const ring r)
Definition p_polys.h:901
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition pDebug.cc:115
static poly p_LmFreeAndNext(poly p, ring)
Definition p_polys.h:711
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition p_polys.h:1051
static void p_LmFree(poly p, ring)
Definition p_polys.h:683
#define p_LmTest(p, r)
Definition p_polys.h:162
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition p_polys.h:1507
static BOOLEAN p_LmExpVectorAddIsOk(const poly p1, const poly p2, const ring r)
Definition p_polys.h:1999
#define p_Test(p, r)
Definition p_polys.h:161
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition polys0.cc:373
void rChangeCurrRing(ring r)
Definition polys.cc:15
VAR ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition polys.cc:13
Compatibility layer for legacy polynomial operations (over currRing)
#define pLtCmp(p, q)
Definition polys.h:123
#define pLtCmpOrdSgnDiffM(p, q)
Definition polys.h:125
#define pDelete(p_ptr)
Definition polys.h:186
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL
Definition polys.h:67
#define pLmIsConstantComp(p)
like above, except that p must be != NULL
Definition polys.h:242
#define pSetm(p)
Definition polys.h:271
#define pIsConstant(p)
like above, except that Comp must be 0
Definition polys.h:238
#define pHasNotCF(p1, p2)
Definition polys.h:263
#define pLtCmpOrdSgnDiffP(p, q)
Definition polys.h:126
#define pNeg(p)
Definition polys.h:198
#define pLmEqual(p1, p2)
Definition polys.h:111
#define ppMult_mm(p, m)
Definition polys.h:201
#define pGetComp(p)
Component.
Definition polys.h:37
#define pIsVector(p)
Definition polys.h:250
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
Definition polys.h:31
void pNorm(poly p)
Definition polys.h:362
#define pJet(p, m)
Definition polys.h:367
#define pLmShortDivisibleBy(a, sev_a, b, not_sev_b)
Divisibility tests based on Short Exponent vectors sev_a == pGetShortExpVector(a) not_sev_b == ~ pGet...
Definition polys.h:146
#define pCmp(p1, p2)
pCmp: args may be NULL returns: (p2==NULL ? 1 : (p1 == NULL ? -1 : p_LmCmp(p1, p2)))
Definition polys.h:115
#define pDivideM(a, b)
Definition polys.h:294
#define pLmInit(p)
like pInit, except that expvector is initialized to that of p, p must be != NULL
Definition polys.h:64
#define pSetComp(p, v)
Definition polys.h:38
#define pLmDelete(p)
assume p != NULL, deletes Lm(p)->coef and Lm(p)
Definition polys.h:76
#define pGetShortExpVector(a)
returns the "Short Exponent Vector" – used to speed up divisibility tests (see polys-impl....
Definition polys.h:152
void wrp(poly p)
Definition polys.h:310
#define pLmDivisibleBy(a, b)
like pDivisibleBy, except that it is assumed that a!=NULL, b!=NULL
Definition polys.h:140
static void pLmFree(poly p)
frees the space of the monomial m, assumes m != NULL coef is not freed, m is not advanced
Definition polys.h:70
void pWrite(poly p)
Definition polys.h:308
#define pGetExp(p, i)
Exponent.
Definition polys.h:41
#define pSetmComp(p)
TODO:
Definition polys.h:273
#define pHasNotCFRing(p1, p2)
Definition polys.h:262
#define pNormalize(p)
Definition polys.h:317
#define pIsPurePower(p)
Definition polys.h:248
#define pInit()
allocates a new monomial and initializes everything to 0
Definition polys.h:61
#define pEqualPolys(p1, p2)
Definition polys.h:399
#define pDivisibleBy(a, b)
returns TRUE, if leading monom of a divides leading monom of b i.e., if there exists a expvector c > ...
Definition polys.h:138
#define pSetExp(p, i, v)
Definition polys.h:42
#define pLmCmp(p, q)
returns 0|1|-1 if p=q|p>q|p<q w.r.t monomial ordering
Definition polys.h:105
#define pLtCmpOrdSgnEqP(p, q)
Definition polys.h:128
char * pString(poly p)
Definition polys.h:306
#define pCopy(p)
return a copy of the poly
Definition polys.h:185
#define pOne()
Definition polys.h:315
poly * polyset
Definition polys.h:259
#define pDecrExp(p, i)
Definition polys.h:44
#define pLcm(a, b, m)
Definition polys.h:295
poly prMapR(poly src, nMapFunc nMap, ring src_r, ring dest_r)
Definition prCopy.cc:45
void pLcmRat(poly a, poly b, poly m, int rat_shift)
Definition ratgring.cc:30
void PrintS(const char *s)
Definition reporter.cc:284
void PrintLn()
Definition reporter.cc:310
#define mflush()
Definition reporter.h:58
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
Definition ring.cc:3466
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
Definition ring.cc:5773
void rKillModifiedRing(ring r)
Definition ring.cc:3075
ring rAssure_c_dp(const ring r)
Definition ring.cc:5074
ring rModifyRing(ring r, BOOLEAN omit_degree, BOOLEAN try_omit_comp, unsigned long exp_limit)
Definition ring.cc:2714
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
Definition ring.cc:1423
void rDebugPrint(const ring r)
Definition ring.cc:4154
void rDelete(ring r)
unconditionally deletes fields in r
Definition ring.cc:452
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition ring.h:405
static int rBlocks(const ring r)
Definition ring.h:573
static int rGetCurrSyzLimit(const ring r)
Definition ring.h:728
static BOOLEAN rField_is_Domain(const ring r)
Definition ring.h:492
static BOOLEAN rIsRatGRing(const ring r)
Definition ring.h:432
static BOOLEAN rIsLPRing(const ring r)
Definition ring.h:416
rRingOrder_t
order stuff
Definition ring.h:68
@ ringorder_a
Definition ring.h:70
@ ringorder_C
Definition ring.h:73
@ ringorder_c
Definition ring.h:72
BOOLEAN rHasMixedOrdering(const ring r)
Definition ring.h:768
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition ring.h:725
poly(* pShallowCopyDeleteProc)(poly s_p, ring source_r, ring dest_r, omBin dest_bin)
returns a poly from dest_r which is a ShallowCopy of s_p from source_r assumes that source_r->N == de...
Definition ring.h:44
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition ring.h:597
BOOLEAN rHasGlobalOrdering(const ring r)
Definition ring.h:766
BOOLEAN rHasLocalOrMixedOrdering(const ring r)
Definition ring.h:767
#define rField_is_Ring(R)
Definition ring.h:490
int p_mLPmaxPossibleShift(poly p, const ring r)
Definition shiftgb.cc:45
#define pLPCopyAndShiftLM(p, sh)
Definition shiftgb.h:15
BOOLEAN _p_LPLmDivisibleByNoComp(poly a, poly b, const ring r)
Definition shiftop.cc:796
int p_mFirstVblock(poly p, const ring ri)
Definition shiftop.cc:478
void k_SplitFrame(poly &m1, poly &m2, int at, const ring r)
Definition shiftop.cc:600
void p_mLPshift(poly m, int sh, const ring ri)
Definition shiftop.cc:362
#define pmFirstVblock(p)
Definition shiftop.h:35
#define pLPDivisibleBy(a, b)
Definition shiftop.h:57
#define pIsInV(p)
Definition shiftop.h:50
#define pmIsInV(p)
Definition shiftop.h:51
#define pmLastVblock(p)
Definition shiftop.h:33
#define pLPLmDivisibleBy(a, b)
Definition shiftop.h:58
ideal idInit(int idsize, int rank)
initialise an ideal / module
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
ideal id_MaxIdeal(const ring r)
initialise the maximal ideal (at 0)
void idSkipZeroes(ideal ide)
gives an ideal/module the minimal possible size
#define IDELEMS(i)
static int idElem(const ideal F)
number of non-zero polys in F
#define R
Definition sirandom.c:27
#define Q
Definition sirandom.c:26
@ isHomog
Definition structs.h:37
@ isNotHomog
Definition structs.h:36
skStrategy * kStrategy
Definition structs.h:58
#define loop
Definition structs.h:75
static poly normalize(poly next_p, ideal add_generators, syStrategy syzstr, int *g_l, int *p_l, int crit_comp)
Definition syz3.cc:1027
#define degbound(p)
Definition tgb.cc:153
int gcd(int a, int b)
long totaldegreeWecart(poly p, ring r)
Definition weight.cc:217
long maxdegreeWecart(poly p, int *l, ring r)
Definition weight.cc:247
EXTERN_VAR short * ecartWeights
Definition weight.h:12
#define omGetStickyBinOfBin(B)
Definition xalloc.h:247
#define omMergeStickyBinIntoBin(A, B)
Definition xalloc.h:275