My Project
Macros | Functions | Variables
p_polys.cc File Reference
#include <ctype.h>
#include "misc/auxiliary.h"
#include "misc/options.h"
#include "misc/intvec.h"
#include "coeffs/longrat.h"
#include "coeffs/numbers.h"
#include "polys/PolyEnumerator.h"
#include "polys/ext_fields/transext.h"
#include "polys/ext_fields/algext.h"
#include "polys/weight.h"
#include "polys/simpleideals.h"
#include "ring.h"
#include "p_polys.h"
#include "polys/templates/p_MemCmp.h"
#include "polys/templates/p_MemAdd.h"
#include "polys/templates/p_MemCopy.h"
#include "nc/nc.h"
#include "nc/sca.h"
#include "polys/shiftop.h"
#include "clapsing.h"
#include "polys/templates/p_Delete__T.cc"

Go to the source code of this file.

Macros

#define TRANSEXT_PRIVATES
 
#define MYTEST   0
 
#define CLEARENUMERATORS   1
 
#define Sy_bit_L(x)   (((unsigned long)1L)<<(x))
 
#define LINKAGE
 
#define p_Delete__T   p_ShallowDelete
 
#define n_Delete__T(n, r)   do {} while (0)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
void p_Setm_General (poly p, const ring r)
 
void p_Setm_Syz (poly p, ring r, int *Components, long *ShiftedComponents)
 
void p_Setm_Dummy (poly p, const ring r)
 
void p_Setm_TotalDegree (poly p, const ring r)
 
void p_Setm_WFirstTotalDegree (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
long p_Deg (poly a, const ring r)
 
long p_WFirstTotalDegree (poly p, const ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_DegW (poly p, const int *w, const ring R)
 
int p_Weight (int i, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, const ring r)
 
long pLDeg0c (poly p, int *l, const ring r)
 
long pLDegb (poly p, int *l, const ring r)
 
long pLDeg1 (poly p, int *l, const ring r)
 
long pLDeg1c (poly p, int *l, const ring r)
 
long pLDeg1_Deg (poly p, int *l, const ring r)
 
long pLDeg1c_Deg (poly p, int *l, const ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, const ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, const ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, const ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, const ring r)
 
static unsigned long p_GetMaxExpL2 (unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
 
static unsigned long p_GetMaxExpL2 (unsigned long l1, unsigned long l2, const ring r)
 
poly p_GetMaxExpP (poly p, const ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set More...
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max)
 return the maximal exponent of p in form of the maximal long var More...
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component More...
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i) More...
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i) More...
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0) More...
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i More...
 
poly p_One (const ring r)
 
void p_Split (poly p, poly *h)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
BOOLEAN p_HasNotCFRing (poly p1, poly p2, const ring r)
 
const char * p_Read (const char *st, poly &rc, const ring r)
 
poly p_mInit (const char *st, BOOLEAN &ok, const ring r)
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n More...
 
poly p_MDivide (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial More...
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly pp_DivideM (poly a, poly b, const ring r)
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account More...
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_Lcm (const poly a, const poly b, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor: More...
 
poly p_Diff (poly a, int k, const ring r)
 
static poly p_DiffOpM (poly a, poly b, BOOLEAN multiply, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
poly p_Sub (poly p1, poly p2, const ring r)
 
static poly p_MonPower (poly p, int exp, const ring r)
 
static void p_MonMult (poly p, poly q, const ring r)
 
static poly p_MonMultC (poly p, poly q, const ring rr)
 
static number * pnBin (int exp, const ring r)
 
static void pnFreeBin (number *bin, int exp, const coeffs r)
 
static poly p_TwoMonPower (poly p, int exp, const ring r)
 
static poly p_Pow (poly p, int i, const ring r)
 
static poly p_Pow_charp (poly p, int i, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
void p_Content (poly ph, const ring r)
 
void p_Content_n (poly ph, number &c, const ring r)
 
void p_ContentForGB (poly ph, const ring r)
 
void p_SimpleContent (poly ph, int smax, const ring r)
 
number p_InitContent (poly ph, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly ph, const ring r, number &c)
 
void p_ProjectiveUnique (poly ph, const ring r)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
poly p_TakeOutComp1 (poly *p, int k, const ring r)
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_TakeOutComp (poly *r_p, long comp, poly *r_q, int *lq, const ring r)
 
void p_DeleteComp (poly *p, int k, const ring r)
 
poly p_Vec2Poly (poly v, int k, const ring r)
 
void p_Vec2Array (poly v, poly *p, int len, const ring r)
 vector to already allocated array (len>=p_MaxComp(v,r)) More...
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
static long pModDeg (poly p, ring r)
 
void p_SetModDeg (intvec *w, ring r)
 
void pEnlargeSet (poly **p, int l, int increment)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
static void p_SplitAndReversePoly (poly p, int n, poly *non_zero, poly *zero, const ring r)
 
static poly p_Subst1 (poly p, int n, const ring r)
 
static poly p_Subst2 (poly p, int n, number e, const ring r)
 
static poly p_Subst0 (poly p, int n, const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
poly n_PermNumber (const number z, const int *par_perm, const int, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, int *w, const ring R)
 
poly p_JetW (poly p, int m, int *w, const ring R)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
static poly p_Invers (int n, poly u, intvec *w, const ring R)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r1, const ring r2)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings More...
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL More...
 
poly p_Last (const poly p, int &l, const ring r)
 
int p_Var (poly m, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1 More...
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i More...
 
static unsigned long GetBitFields (const long e, const unsigned int s, const unsigned int n)
 
unsigned long p_GetShortExpVector (const poly p, const ring r)
 
unsigned long p_GetShortExpVector (const poly p, const poly pp, const ring r)
 p_GetShortExpVector of p * pp More...
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon More...
 
poly p_CopyPowerProduct0 (const poly p, number n, const ring r)
 like p_Head, but with coefficient n More...
 
poly p_CopyPowerProduct (const poly p, const ring r)
 like p_Head, but with coefficient 1 More...
 
poly p_Head0 (const poly p, const ring r)
 like p_Head, but allow NULL coeff More...
 
int p_MaxExpPerVar (poly p, int i, const ring r)
 max exponent of variable x_i in p More...
 

Variables

STATIC_VAR int * _components = NULL
 
STATIC_VAR long * _componentsShifted = NULL
 
STATIC_VAR int _componentsExternal = 0
 
VAR BOOLEAN pSetm_error =0
 
STATIC_VAR pFDegProc pOldFDeg
 
STATIC_VAR pLDegProc pOldLDeg
 
STATIC_VAR BOOLEAN pOldLexOrder
 

Macro Definition Documentation

◆ CLEARENUMERATORS

#define CLEARENUMERATORS   1

Definition at line 2418 of file p_polys.cc.

◆ LINKAGE

#define LINKAGE

Definition at line 4960 of file p_polys.cc.

◆ MYTEST

#define MYTEST   0

Definition at line 155 of file p_polys.cc.

◆ n_Delete__T

#define n_Delete__T (   n,
 
)    do {} while (0)

Definition at line 4964 of file p_polys.cc.

◆ p_Delete__T

#define p_Delete__T   p_ShallowDelete

Definition at line 4962 of file p_polys.cc.

◆ Sy_bit_L

#define Sy_bit_L (   x)    (((unsigned long)1L)<<(x))

◆ TRANSEXT_PRIVATES

#define TRANSEXT_PRIVATES

Definition at line 24 of file p_polys.cc.

Function Documentation

◆ GetBitFields()

static unsigned long GetBitFields ( const long  e,
const unsigned int  s,
const unsigned int  n 
)
inlinestatic

Definition at line 4813 of file p_polys.cc.

4815 {
4816 #define Sy_bit_L(x) (((unsigned long)1L)<<(x))
4817  unsigned int i = 0;
4818  unsigned long ev = 0L;
4819  assume(n > 0 && s < BIT_SIZEOF_LONG);
4820  do
4821  {
4823  if (e > (long) i) ev |= Sy_bit_L(s+i);
4824  else break;
4825  i++;
4826  }
4827  while (i < n);
4828  return ev;
4829 }
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:80
int i
Definition: cfEzgcd.cc:132
const CanonicalForm int s
Definition: facAbsFact.cc:51
#define assume(x)
Definition: mod2.h:387
#define Sy_bit_L(x)

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int *  par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 4092 of file p_polys.cc.

4093 {
4094 #if 0
4095  PrintS("\nSource Ring: \n");
4096  rWrite(src);
4097 
4098  if(0)
4099  {
4100  number zz = n_Copy(z, src->cf);
4101  PrintS("z: "); n_Write(zz, src);
4102  n_Delete(&zz, src->cf);
4103  }
4104 
4105  PrintS("\nDestination Ring: \n");
4106  rWrite(dst);
4107 
4108  /*Print("\nOldPar: %d\n", OldPar);
4109  for( int i = 1; i <= OldPar; i++ )
4110  {
4111  Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
4112  }*/
4113 #endif
4114  if( z == NULL )
4115  return NULL;
4116 
4117  const coeffs srcCf = src->cf;
4118  assume( srcCf != NULL );
4119 
4120  assume( !nCoeff_is_GF(srcCf) );
4121  assume( src->cf->extRing!=NULL );
4122 
4123  poly zz = NULL;
4124 
4125  const ring srcExtRing = srcCf->extRing;
4126  assume( srcExtRing != NULL );
4127 
4128  const coeffs dstCf = dst->cf;
4129  assume( dstCf != NULL );
4130 
4131  if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
4132  {
4133  zz = (poly) z;
4134  if( zz == NULL ) return NULL;
4135  }
4136  else if (nCoeff_is_transExt(srcCf))
4137  {
4138  assume( !IS0(z) );
4139 
4140  zz = NUM((fraction)z);
4141  p_Test (zz, srcExtRing);
4142 
4143  if( zz == NULL ) return NULL;
4144  if( !DENIS1((fraction)z) )
4145  {
4146  if (!p_IsConstant(DEN((fraction)z),srcExtRing))
4147  WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denominator.");
4148  }
4149  }
4150  else
4151  {
4152  assume (FALSE);
4153  WerrorS("Number permutation is not implemented for this data yet!");
4154  return NULL;
4155  }
4156 
4157  assume( zz != NULL );
4158  p_Test (zz, srcExtRing);
4159 
4160  nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
4161 
4162  assume( nMap != NULL );
4163 
4164  poly qq;
4165  if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
4166  {
4167  int* perm;
4168  perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
4169  for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
4170  perm[i]=-i;
4171  qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
4172  omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
4173  }
4174  else
4175  qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
4176 
4177  if(nCoeff_is_transExt(srcCf)
4178  && (!DENIS1((fraction)z))
4179  && p_IsConstant(DEN((fraction)z),srcExtRing))
4180  {
4181  number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
4182  qq=p_Div_nn(qq,n,dst);
4183  n_Delete(&n,dstCf);
4184  p_Normalize(qq,dst);
4185  }
4186  p_Test (qq, dst);
4187 
4188  return qq;
4189 }
#define FALSE
Definition: auxiliary.h:96
void * ADDRESS
Definition: auxiliary.h:119
static int si_min(const int a, const int b)
Definition: auxiliary.h:125
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
Definition: coeffs.h:451
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:839
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:700
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete 'p'
Definition: coeffs.h:455
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:591
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:910
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:918
#define WarnS
Definition: emacs.cc:78
void WerrorS(const char *s)
Definition: feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy
Definition: monomials.h:44
The main handler for Singular numbers which are suitable for Singular polynomials.
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define omAlloc0(size)
Definition: omAllocDecl.h:211
#define NULL
Definition: omList.c:12
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4195
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1501
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3879
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:2011
#define p_Test(p, r)
Definition: p_polys.h:162
@ NUM
Definition: readcf.cc:170
void PrintS(const char *s)
Definition: reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:226
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:600
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:593

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly *  xx,
number *  x,
number *  q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 88 of file p_polys.cc.

89 {
90  poly r,h,hh;
91  int j;
92  poly res_p=NULL;
93  loop
94  {
95  /* search the lead term */
96  r=NULL;
97  for(j=rl-1;j>=0;j--)
98  {
99  h=xx[j];
100  if ((h!=NULL)
101  &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
102  r=h;
103  }
104  /* nothing found -> return */
105  if (r==NULL) break;
106  /* create the monomial in h */
107  h=p_Head(r,R);
108  /* collect the coeffs in x[..]*/
109  for(j=rl-1;j>=0;j--)
110  {
111  hh=xx[j];
112  if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
113  {
114  x[j]=pGetCoeff(hh);
115  hh=p_LmFreeAndNext(hh,R);
116  xx[j]=hh;
117  }
118  else
119  x[j]=n_Init(0, R->cf);
120  }
121  number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
122  for(j=rl-1;j>=0;j--)
123  {
124  x[j]=NULL; // n_Init(0...) takes no memory
125  }
126  if (n_IsZero(n,R->cf)) p_Delete(&h,R);
127  else
128  {
129  //Print("new mon:");pWrite(h);
130  p_SetCoeff(h,n,R);
131  pNext(h)=res_p;
132  res_p=h; // building res_p in reverse order!
133  }
134  }
135  res_p=pReverse(res_p);
136  p_Test(res_p, R);
137  return res_p;
138 }
#define TRUE
Definition: auxiliary.h:100
Variable x
Definition: cfModGcd.cc:4082
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff 'n' represents the zero element.
Definition: coeffs.h:464
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:764
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:538
int j
Definition: facHensel.cc:110
STATIC_VAR Poly * h
Definition: janet.cc:971
#define pNext(p)
Definition: monomials.h:36
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:412
static poly pReverse(poly p)
Definition: p_polys.h:335
static poly p_Head(const poly p, const ring r)
copy the (leading) term of p
Definition: p_polys.h:860
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1580
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:901
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:711
#define R
Definition: sirandom.c:27
#define loop
Definition: structs.h:75

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2910 of file p_polys.cc.

2911 {
2912  if( p == NULL )
2913  return NULL;
2914 
2915  assume( r != NULL );
2916  assume( r->cf != NULL );
2917  const coeffs C = r->cf;
2918 
2919 #if CLEARENUMERATORS
2920  if( 0 )
2921  {
2922  CPolyCoeffsEnumerator itr(p);
2923  n_ClearDenominators(itr, C);
2924  n_ClearContent(itr, C); // divide out the content
2925  p_Test(p, r); n_Test(pGetCoeff(p), C);
2926  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2927 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2928  return p;
2929  }
2930 #endif
2931 
2932  number d, h;
2933 
2934  if (rField_is_Ring(r))
2935  {
2936  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2937  return p;
2938  }
2939 
2941  {
2942  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2943  return p;
2944  }
2945 
2946  assume(p != NULL);
2947 
2948  if(pNext(p)==NULL)
2949  {
2950  if (!TEST_OPT_CONTENTSB)
2951  p_SetCoeff(p,n_Init(1,C),r);
2952  else if(!n_GreaterZero(pGetCoeff(p),C))
2953  p = p_Neg(p,r);
2954  return p;
2955  }
2956 
2957  assume(pNext(p)!=NULL);
2958  poly start=p;
2959 
2960 #if 0 && CLEARENUMERATORS
2961 //CF: does not seem to work that well..
2962 
2963  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2964  {
2965  CPolyCoeffsEnumerator itr(p);
2966  n_ClearDenominators(itr, C);
2967  n_ClearContent(itr, C); // divide out the content
2968  p_Test(p, r); n_Test(pGetCoeff(p), C);
2969  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2970 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2971  return start;
2972  }
2973 #endif
2974 
2975  if(1)
2976  {
2977  // get lcm of all denominators ----------------------------------
2978  h = n_Init(1,C);
2979  while (p!=NULL)
2980  {
2981  n_Normalize(pGetCoeff(p),C);
2983  n_Delete(&h,C);
2984  h=d;
2985  pIter(p);
2986  }
2987  /* h now contains the 1/lcm of all denominators */
2988  if(!n_IsOne(h,C))
2989  {
2990  // multiply by the lcm of all denominators
2991  p = start;
2992  while (p!=NULL)
2993  {
2994  d=n_Mult(h,pGetCoeff(p),C);
2995  n_Normalize(d,C);
2996  p_SetCoeff(p,d,r);
2997  pIter(p);
2998  }
2999  }
3000  n_Delete(&h,C);
3001  p=start;
3002 
3003  p_ContentForGB(p,r);
3004 #ifdef HAVE_RATGRING
3005  if (rIsRatGRing(r))
3006  {
3007  /* quick unit detection in the rational case is done in gr_nc_bba */
3008  p_ContentRat(p, r);
3009  start=p;
3010  }
3011 #endif
3012  }
3013 
3014  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
3015 
3016  return start;
3017 }
int p
Definition: cfModGcd.cc:4078
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of 'a' and 'b', i.e., a*b
Definition: coeffs.h:636
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1,...
Definition: coeffs.h:695
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:712
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff 'n' is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2),...
Definition: coeffs.h:494
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:806
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:935
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:885
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:928
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:578
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
Definition: coeffs.h:468
#define pIter(p)
Definition: monomials.h:37
#define TEST_OPT_INTSTRATEGY
Definition: options.h:110
#define TEST_OPT_CONTENTSB
Definition: options.h:127
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1740
void p_ContentForGB(poly ph, const ring r)
Definition: p_polys.cc:2420
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1107
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:501
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:427
#define rField_is_Ring(R)
Definition: ring.h:486

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  ph,
const ring  r,
number &  c 
)

Definition at line 3019 of file p_polys.cc.

3020 {
3021  const coeffs C = r->cf;
3022  number d, h;
3023 
3024  assume( ph != NULL );
3025 
3026  poly p = ph;
3027 
3028 #if CLEARENUMERATORS
3029  if( 0 )
3030  {
3031  CPolyCoeffsEnumerator itr(ph);
3032 
3033  n_ClearDenominators(itr, d, C); // multiply with common denom. d
3034  n_ClearContent(itr, h, C); // divide by the content h
3035 
3036  c = n_Div(d, h, C); // d/h
3037 
3038  n_Delete(&d, C);
3039  n_Delete(&h, C);
3040 
3041  n_Test(c, C);
3042 
3043  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3044  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3045 /*
3046  if(!n_GreaterZero(pGetCoeff(ph),C))
3047  {
3048  ph = p_Neg(ph,r);
3049  c = n_InpNeg(c, C);
3050  }
3051 */
3052  return;
3053  }
3054 #endif
3055 
3056 
3057  if( pNext(p) == NULL )
3058  {
3059  if(!TEST_OPT_CONTENTSB)
3060  {
3061  c=n_Invers(pGetCoeff(p), C);
3062  p_SetCoeff(p, n_Init(1, C), r);
3063  }
3064  else
3065  {
3066  c=n_Init(1,C);
3067  }
3068 
3069  if(!n_GreaterZero(pGetCoeff(ph),C))
3070  {
3071  ph = p_Neg(ph,r);
3072  c = n_InpNeg(c, C);
3073  }
3074 
3075  return;
3076  }
3077  if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
3078 
3079  assume( pNext(p) != NULL );
3080 
3081 #if CLEARENUMERATORS
3082  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
3083  {
3084  CPolyCoeffsEnumerator itr(ph);
3085 
3086  n_ClearDenominators(itr, d, C); // multiply with common denom. d
3087  n_ClearContent(itr, h, C); // divide by the content h
3088 
3089  c = n_Div(d, h, C); // d/h
3090 
3091  n_Delete(&d, C);
3092  n_Delete(&h, C);
3093 
3094  n_Test(c, C);
3095 
3096  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
3097  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
3098 /*
3099  if(!n_GreaterZero(pGetCoeff(ph),C))
3100  {
3101  ph = p_Neg(ph,r);
3102  c = n_InpNeg(c, C);
3103  }
3104 */
3105  return;
3106  }
3107 #endif
3108 
3109 
3110 
3111 
3112  if(1)
3113  {
3114  h = n_Init(1,C);
3115  while (p!=NULL)
3116  {
3117  n_Normalize(pGetCoeff(p),C);
3119  n_Delete(&h,C);
3120  h=d;
3121  pIter(p);
3122  }
3123  c=h;
3124  /* contains the 1/lcm of all denominators */
3125  if(!n_IsOne(h,C))
3126  {
3127  p = ph;
3128  while (p!=NULL)
3129  {
3130  /* should be: // NOTE: don't use ->coef!!!!
3131  * number hh;
3132  * nGetDenom(p->coef,&hh);
3133  * nMult(&h,&hh,&d);
3134  * nNormalize(d);
3135  * nDelete(&hh);
3136  * nMult(d,p->coef,&hh);
3137  * nDelete(&d);
3138  * nDelete(&(p->coef));
3139  * p->coef =hh;
3140  */
3141  d=n_Mult(h,pGetCoeff(p),C);
3142  n_Normalize(d,C);
3143  p_SetCoeff(p,d,r);
3144  pIter(p);
3145  }
3146  if (rField_is_Q_a(r))
3147  {
3148  loop
3149  {
3150  h = n_Init(1,C);
3151  p=ph;
3152  while (p!=NULL)
3153  {
3155  n_Delete(&h,C);
3156  h=d;
3157  pIter(p);
3158  }
3159  /* contains the 1/lcm of all denominators */
3160  if(!n_IsOne(h,C))
3161  {
3162  p = ph;
3163  while (p!=NULL)
3164  {
3165  /* should be: // NOTE: don't use ->coef!!!!
3166  * number hh;
3167  * nGetDenom(p->coef,&hh);
3168  * nMult(&h,&hh,&d);
3169  * nNormalize(d);
3170  * nDelete(&hh);
3171  * nMult(d,p->coef,&hh);
3172  * nDelete(&d);
3173  * nDelete(&(p->coef));
3174  * p->coef =hh;
3175  */
3176  d=n_Mult(h,pGetCoeff(p),C);
3177  n_Normalize(d,C);
3178  p_SetCoeff(p,d,r);
3179  pIter(p);
3180  }
3181  number t=n_Mult(c,h,C);
3182  n_Delete(&c,C);
3183  c=t;
3184  }
3185  else
3186  {
3187  break;
3188  }
3189  n_Delete(&h,C);
3190  }
3191  }
3192  }
3193  }
3194 
3195  if(!n_GreaterZero(pGetCoeff(ph),C))
3196  {
3197  ph = p_Neg(ph,r);
3198  c = n_InpNeg(c, C);
3199  }
3200 
3201 }
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of 'a'; raise an error if 'a' is not invertible
Definition: coeffs.h:564
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:557
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of 'a' and 'b', i.e., a/b; raises an error if 'b' is not invertible in r exceptio...
Definition: coeffs.h:615
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:540

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4972 of file p_polys.cc.

4973 {
4974  int r=p_Cmp(a,b,R);
4975  if ((r==0)&&(a!=NULL))
4976  {
4977  number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4978  /* compare lead coeffs */
4979  r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4980  n_Delete(&h,R->cf);
4981  }
4982  else if (a==NULL)
4983  {
4984  if (b==NULL)
4985  {
4986  /* compare 0, 0 */
4987  r=0;
4988  }
4989  else if(p_IsConstant(b,R))
4990  {
4991  /* compare 0, const */
4992  r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4993  }
4994  }
4995  else if (b==NULL)
4996  {
4997  if (p_IsConstant(a,R))
4998  {
4999  /* compare const, 0 */
5000  r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
5001  }
5002  }
5003  return(r);
5004 }
CanonicalForm b
Definition: cfModGcd.cc:4103
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of 'a' and 'b', i.e., a-b
Definition: coeffs.h:655
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1735

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4641 of file p_polys.cc.

4642 {
4643  number n,nn;
4644  pAssume(p1 != NULL && p2 != NULL);
4645 
4646  if (!p_LmEqual(p1,p2,r)) //compare leading mons
4647  return FALSE;
4648  if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4649  return FALSE;
4650  if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4651  return FALSE;
4652  if (pLength(p1) != pLength(p2))
4653  return FALSE;
4654  #ifdef HAVE_RINGS
4655  if (rField_is_Ring(r))
4656  {
4657  if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4658  }
4659  #endif
4660  n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4661  while ((p1 != NULL) /*&& (p2 != NULL)*/)
4662  {
4663  if ( ! p_LmEqual(p1, p2,r))
4664  {
4665  n_Delete(&n, r->cf);
4666  return FALSE;
4667  }
4668  if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4669  {
4670  n_Delete(&n, r->cf);
4671  n_Delete(&nn, r->cf);
4672  return FALSE;
4673  }
4674  n_Delete(&nn, r->cf);
4675  pIter(p1);
4676  pIter(p2);
4677  }
4678  n_Delete(&n, r->cf);
4679  return TRUE;
4680 }
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether 'a' is divisible 'b'; for r encoding a field: TRUE iff 'b' does not represent zero in Z:...
Definition: coeffs.h:753
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff 'a' and 'b' represent the same number; they may have different representations.
Definition: coeffs.h:460
#define pAssume(cond)
Definition: monomials.h:90
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1731
static unsigned pLength(poly a)
Definition: p_polys.h:191

◆ p_Content()

void p_Content ( poly  ph,
const ring  r 
)

Definition at line 2291 of file p_polys.cc.

2292 {
2293  if (ph==NULL) return;
2294  const coeffs cf=r->cf;
2295  if (pNext(ph)==NULL)
2296  {
2297  p_SetCoeff(ph,n_Init(1,cf),r);
2298  return;
2299  }
2300  if ((cf->cfSubringGcd==ndGcd)
2301  || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2302  return;
2303  number h;
2304  if ((rField_is_Q(r))
2305  || (rField_is_Q_a(r))
2306  || (rField_is_Zp_a)(r)
2307  || (rField_is_Z(r))
2308  )
2309  {
2310  h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2311  }
2312  else
2313  {
2314  h=n_Copy(pGetCoeff(ph),cf);
2315  }
2316  poly p;
2317  if(n_IsOne(h,cf))
2318  {
2319  goto content_finish;
2320  }
2321  p=ph;
2322  // take the SubringGcd of all coeffs
2323  while (p!=NULL)
2324  {
2326  number d=n_SubringGcd(h,pGetCoeff(p),cf);
2327  n_Delete(&h,cf);
2328  h = d;
2329  if(n_IsOne(h,cf))
2330  {
2331  goto content_finish;
2332  }
2333  pIter(p);
2334  }
2335  // if found<>1, divide by it
2336  p = ph;
2337  while (p!=NULL)
2338  {
2339  number d = n_ExactDiv(pGetCoeff(p),h,cf);
2340  p_SetCoeff(p,d,r);
2341  pIter(p);
2342  }
2343 content_finish:
2344  n_Delete(&h,r->cf);
2345  // and last: check leading sign:
2346  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2347 }
CanonicalForm cf
Definition: cfModGcd.cc:4083
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:622
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:666
number ndGcd(number, number, const coeffs r)
Definition: numbers.cc:165
number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2700
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:530
static BOOLEAN rField_is_Z(const ring r)
Definition: ring.h:510
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:507

◆ p_Content_n()

void p_Content_n ( poly  ph,
number &  c,
const ring  r 
)

Definition at line 2349 of file p_polys.cc.

2350 {
2351  const coeffs cf=r->cf;
2352  if (ph==NULL)
2353  {
2354  c=n_Init(1,cf);
2355  return;
2356  }
2357  if (pNext(ph)==NULL)
2358  {
2359  c=pGetCoeff(ph);
2360  p_SetCoeff0(ph,n_Init(1,cf),r);
2361  }
2362  if ((cf->cfSubringGcd==ndGcd)
2363  || (cf->cfGcd==ndGcd)) /* trivial gcd*/
2364  {
2365  c=n_Init(1,r->cf);
2366  return;
2367  }
2368  number h;
2369  if ((rField_is_Q(r))
2370  || (rField_is_Q_a(r))
2371  || (rField_is_Zp_a)(r)
2372  || (rField_is_Z(r))
2373  )
2374  {
2375  h=p_InitContent(ph,r); /* first guess of a gcd of all coeffs */
2376  }
2377  else
2378  {
2379  h=n_Copy(pGetCoeff(ph),cf);
2380  }
2381  poly p;
2382  if(n_IsOne(h,cf))
2383  {
2384  goto content_finish;
2385  }
2386  p=ph;
2387  // take the SubringGcd of all coeffs
2388  while (p!=NULL)
2389  {
2391  number d=n_SubringGcd(h,pGetCoeff(p),cf);
2392  n_Delete(&h,cf);
2393  h = d;
2394  if(n_IsOne(h,cf))
2395  {
2396  goto content_finish;
2397  }
2398  pIter(p);
2399  }
2400  // if found<>1, divide by it
2401  p = ph;
2402  while (p!=NULL)
2403  {
2404  number d = n_ExactDiv(pGetCoeff(p),h,cf);
2405  p_SetCoeff(p,d,r);
2406  pIter(p);
2407  }
2408 content_finish:
2409  c=h;
2410  // and last: check leading sign:
2411  if(!n_GreaterZero(pGetCoeff(ph),r->cf))
2412  {
2413  c = n_InpNeg(c,r->cf);
2414  ph = p_Neg(ph,r);
2415  }
2416 }
#define p_SetCoeff0(p, n, r)
Definition: monomials.h:60

◆ p_ContentForGB()

void p_ContentForGB ( poly  ph,
const ring  r 
)

Definition at line 2420 of file p_polys.cc.

2421 {
2422  if(TEST_OPT_CONTENTSB) return;
2423  assume( ph != NULL );
2424 
2425  assume( r != NULL ); assume( r->cf != NULL );
2426 
2427 
2428 #if CLEARENUMERATORS
2429  if( 0 )
2430  {
2431  const coeffs C = r->cf;
2432  // experimentall (recursive enumerator treatment) of alg. Ext!
2433  CPolyCoeffsEnumerator itr(ph);
2434  n_ClearContent(itr, r->cf);
2435 
2436  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2437  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2438 
2439  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2440  return;
2441  }
2442 #endif
2443 
2444 
2445 #ifdef HAVE_RINGS
2446  if (rField_is_Ring(r))
2447  {
2448  if (rField_has_Units(r))
2449  {
2450  number k = n_GetUnit(pGetCoeff(ph),r->cf);
2451  if (!n_IsOne(k,r->cf))
2452  {
2453  number tmpGMP = k;
2454  k = n_Invers(k,r->cf);
2455  n_Delete(&tmpGMP,r->cf);
2456  poly h = pNext(ph);
2457  p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2458  while (h != NULL)
2459  {
2460  p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2461  pIter(h);
2462  }
2463 // assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2464 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2465  }
2466  n_Delete(&k,r->cf);
2467  }
2468  return;
2469  }
2470 #endif
2471  number h,d;
2472  poly p;
2473 
2474  if(pNext(ph)==NULL)
2475  {
2476  p_SetCoeff(ph,n_Init(1,r->cf),r);
2477  }
2478  else
2479  {
2480  assume( pNext(ph) != NULL );
2481 #if CLEARENUMERATORS
2482  if( nCoeff_is_Q(r->cf) )
2483  {
2484  // experimentall (recursive enumerator treatment) of alg. Ext!
2485  CPolyCoeffsEnumerator itr(ph);
2486  n_ClearContent(itr, r->cf);
2487 
2488  p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2489  assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2490 
2491  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2492  return;
2493  }
2494 #endif
2495 
2496  n_Normalize(pGetCoeff(ph),r->cf);
2497  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2498  if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2499  {
2500  h=p_InitContent(ph,r);
2501  p=ph;
2502  }
2503  else
2504  {
2505  h=n_Copy(pGetCoeff(ph),r->cf);
2506  p = pNext(ph);
2507  }
2508  while (p!=NULL)
2509  {
2510  n_Normalize(pGetCoeff(p),r->cf);
2511  d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2512  n_Delete(&h,r->cf);
2513  h = d;
2514  if(n_IsOne(h,r->cf))
2515  {
2516  break;
2517  }
2518  pIter(p);
2519  }
2520  //number tmp;
2521  if(!n_IsOne(h,r->cf))
2522  {
2523  p = ph;
2524  while (p!=NULL)
2525  {
2526  //d = nDiv(pGetCoeff(p),h);
2527  //tmp = nExactDiv(pGetCoeff(p),h);
2528  //if (!nEqual(d,tmp))
2529  //{
2530  // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2531  // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2532  // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2533  //}
2534  //nDelete(&tmp);
2535  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2536  p_SetCoeff(p,d,r);
2537  pIter(p);
2538  }
2539  }
2540  n_Delete(&h,r->cf);
2541  if (rField_is_Q_a(r))
2542  {
2543  // special handling for alg. ext.:
2544  if (getCoeffType(r->cf)==n_algExt)
2545  {
2546  h = n_Init(1, r->cf->extRing->cf);
2547  p=ph;
2548  while (p!=NULL)
2549  { // each monom: coeff in Q_a
2550  poly c_n_n=(poly)pGetCoeff(p);
2551  poly c_n=c_n_n;
2552  while (c_n!=NULL)
2553  { // each monom: coeff in Q
2554  d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2555  n_Delete(&h,r->cf->extRing->cf);
2556  h=d;
2557  pIter(c_n);
2558  }
2559  pIter(p);
2560  }
2561  /* h contains the 1/lcm of all denominators in c_n_n*/
2562  //n_Normalize(h,r->cf->extRing->cf);
2563  if(!n_IsOne(h,r->cf->extRing->cf))
2564  {
2565  p=ph;
2566  while (p!=NULL)
2567  { // each monom: coeff in Q_a
2568  poly c_n=(poly)pGetCoeff(p);
2569  while (c_n!=NULL)
2570  { // each monom: coeff in Q
2571  d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2572  n_Normalize(d,r->cf->extRing->cf);
2573  n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2574  pGetCoeff(c_n)=d;
2575  pIter(c_n);
2576  }
2577  pIter(p);
2578  }
2579  }
2580  n_Delete(&h,r->cf->extRing->cf);
2581  }
2582  /*else
2583  {
2584  // special handling for rat. functions.:
2585  number hzz =NULL;
2586  p=ph;
2587  while (p!=NULL)
2588  { // each monom: coeff in Q_a (Z_a)
2589  fraction f=(fraction)pGetCoeff(p);
2590  poly c_n=NUM(f);
2591  if (hzz==NULL)
2592  {
2593  hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2594  pIter(c_n);
2595  }
2596  while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2597  { // each monom: coeff in Q (Z)
2598  d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2599  n_Delete(&hzz,r->cf->extRing->cf);
2600  hzz=d;
2601  pIter(c_n);
2602  }
2603  pIter(p);
2604  }
2605  // hzz contains the gcd of all numerators in f
2606  h=n_Invers(hzz,r->cf->extRing->cf);
2607  n_Delete(&hzz,r->cf->extRing->cf);
2608  n_Normalize(h,r->cf->extRing->cf);
2609  if(!n_IsOne(h,r->cf->extRing->cf))
2610  {
2611  p=ph;
2612  while (p!=NULL)
2613  { // each monom: coeff in Q_a (Z_a)
2614  fraction f=(fraction)pGetCoeff(p);
2615  NUM(f)=__p_Mult_nn(NUM(f),h,r->cf->extRing);
2616  p_Normalize(NUM(f),r->cf->extRing);
2617  pIter(p);
2618  }
2619  }
2620  n_Delete(&h,r->cf->extRing->cf);
2621  }*/
2622  }
2623  }
2624  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2625 }
int k
Definition: cfEzgcd.cc:99
@ n_algExt
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic
Definition: coeffs.h:35
@ n_transExt
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:38
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:532
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:421
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:491

◆ p_ContentRat()

void p_ContentRat ( poly &  ph,
const ring  r 
)

Definition at line 1740 of file p_polys.cc.

1743 {
1744  // init array of RatLeadCoeffs
1745  // poly p_GetCoeffRat(poly p, int ishift, ring r);
1746 
1747  int len=pLength(ph);
1748  poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1749  poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1750  int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1751  int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1752  int k = 0;
1753  poly p = p_Copy(ph, r); // ph will be needed below
1754  int mintdeg = p_Totaldegree(p, r);
1755  int minlen = len;
1756  int dd = 0; int i;
1757  int HasConstantCoef = 0;
1758  int is = r->real_var_start - 1;
1759  while (p!=NULL)
1760  {
1761  LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1762  C[k] = p_GetCoeffRat(p, is, r);
1763  D[k] = p_Totaldegree(C[k], r);
1764  mintdeg = si_min(mintdeg,D[k]);
1765  L[k] = pLength(C[k]);
1766  minlen = si_min(minlen,L[k]);
1767  if (p_IsConstant(C[k], r))
1768  {
1769  // C[k] = const, so the content will be numerical
1770  HasConstantCoef = 1;
1771  // smth like goto cleanup and return(pContent(p));
1772  }
1773  p_LmDeleteAndNextRat(&p, is, r);
1774  k++;
1775  }
1776 
1777  // look for 1 element of minimal degree and of minimal length
1778  k--;
1779  poly d;
1780  int mindeglen = len;
1781  if (k<=0) // this poly is not a ratgring poly -> pContent
1782  {
1783  p_Delete(&C[0], r);
1784  p_Delete(&LM[0], r);
1785  p_ContentForGB(ph, r);
1786  goto cleanup;
1787  }
1788 
1789  int pmindeglen;
1790  for(i=0; i<=k; i++)
1791  {
1792  if (D[i] == mintdeg)
1793  {
1794  if (L[i] < mindeglen)
1795  {
1796  mindeglen=L[i];
1797  pmindeglen = i;
1798  }
1799  }
1800  }
1801  d = p_Copy(C[pmindeglen], r);
1802  // there are dd>=1 mindeg elements
1803  // and pmideglen is the coordinate of one of the smallest among them
1804 
1805  // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1806  // return naGcd(d,d2,currRing);
1807 
1808  // adjoin pContentRat here?
1809  for(i=0; i<=k; i++)
1810  {
1811  d=singclap_gcd(d,p_Copy(C[i], r), r);
1812  if (p_Totaldegree(d, r)==0)
1813  {
1814  // cleanup, pContent, return
1815  p_Delete(&d, r);
1816  for(;k>=0;k--)
1817  {
1818  p_Delete(&C[k], r);
1819  p_Delete(&LM[k], r);
1820  }
1821  p_ContentForGB(ph, r);
1822  goto cleanup;
1823  }
1824  }
1825  for(i=0; i<=k; i++)
1826  {
1827  poly h=singclap_pdivide(C[i],d, r);
1828  p_Delete(&C[i], r);
1829  C[i]=h;
1830  }
1831 
1832  // zusammensetzen,
1833  p=NULL; // just to be sure
1834  for(i=0; i<=k; i++)
1835  {
1836  p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1837  C[i]=NULL; LM[i]=NULL;
1838  }
1839  p_Delete(&ph, r); // do not need it anymore
1840  ph = p;
1841  // aufraeumen, return
1842 cleanup:
1843  omFree(C);
1844  omFree(LM);
1845  omFree(D);
1846  omFree(L);
1847 }
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:624
#define D(A)
Definition: gentable.cc:131
#define omFree(addr)
Definition: omAllocDecl.h:261
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1696
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1718
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:936
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1114
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1372
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:846
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1507
poly singclap_gcd(poly f, poly g, const ring r)
polynomial gcd via singclap_gcd_r resp. idSyzygies destroys f and g
Definition: polys.cc:380

◆ p_CopyPowerProduct()

poly p_CopyPowerProduct ( const poly  p,
const ring  r 
)

like p_Head, but with coefficient 1

Definition at line 5056 of file p_polys.cc.

5057 {
5058  if (p == NULL) return NULL;
5059  return p_CopyPowerProduct0(p,n_Init(1,r->cf),r);
5060 }
poly p_CopyPowerProduct0(const poly p, number n, const ring r)
like p_Head, but with coefficient n
Definition: p_polys.cc:5044

◆ p_CopyPowerProduct0()

poly p_CopyPowerProduct0 ( const poly  p,
number  n,
const ring  r 
)

like p_Head, but with coefficient n

Definition at line 5044 of file p_polys.cc.

5045 {
5046  p_LmCheckPolyRing1(p, r);
5047  poly np;
5048  omTypeAllocBin(poly, np, r->PolyBin);
5049  p_SetRingOfLm(np, r);
5050  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
5051  pNext(np) = NULL;
5052  pSetCoeff0(np, n);
5053  return np;
5054 }
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:177
#define pSetCoeff0(p, n)
Definition: monomials.h:59
#define p_SetRingOfLm(p, r)
Definition: monomials.h:144
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 587 of file p_polys.cc.

588 {
589  p_LmCheckPolyRing(a, r);
590 // assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
591  return p_GetOrder(a, r);
592 }
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:120
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:421

◆ p_DegW()

long p_DegW ( poly  p,
const int *  w,
const ring  R 
)

Definition at line 690 of file p_polys.cc.

691 {
692  p_Test(p, R);
693  assume( w != NULL );
694  long r=-LONG_MAX;
695 
696  while (p!=NULL)
697  {
698  long t=totaldegreeWecart_IV(p,R,w);
699  if (t>r) r=t;
700  pIter(p);
701  }
702  return r;
703 }
const CanonicalForm & w
Definition: facAbsFact.cc:51
long totaldegreeWecart_IV(poly p, ring r, const int *w)
Definition: weight.cc:231

◆ p_DeleteComp()

void p_DeleteComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3622 of file p_polys.cc.

3623 {
3624  poly q;
3625  long unsigned kk=k;
3626 
3627  while ((*p!=NULL) && (__p_GetComp(*p,r)==kk)) p_LmDelete(p,r);
3628  if (*p==NULL) return;
3629  q = *p;
3630  if (__p_GetComp(q,r)>kk)
3631  {
3632  p_SubComp(q,1,r);
3633  p_SetmComp(q,r);
3634  }
3635  while (pNext(q)!=NULL)
3636  {
3637  if (__p_GetComp(pNext(q),r)==kk)
3638  p_LmDelete(&(pNext(q)),r);
3639  else
3640  {
3641  pIter(q);
3642  if (__p_GetComp(q,r)>kk)
3643  {
3644  p_SubComp(q,1,r);
3645  p_SetmComp(q,r);
3646  }
3647  }
3648  }
3649 }
#define __p_GetComp(p, r)
Definition: monomials.h:63
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:723
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:453
#define p_SetmComp
Definition: p_polys.h:244

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1894 of file p_polys.cc.

1895 {
1896  poly res, f, last;
1897  number t;
1898 
1899  last = res = NULL;
1900  while (a!=NULL)
1901  {
1902  if (p_GetExp(a,k,r)!=0)
1903  {
1904  f = p_LmInit(a,r);
1905  t = n_Init(p_GetExp(a,k,r),r->cf);
1906  pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1907  n_Delete(&t,r->cf);
1908  if (n_IsZero(pGetCoeff(f),r->cf))
1909  p_LmDelete(&f,r);
1910  else
1911  {
1912  p_DecrExp(f,k,r);
1913  p_Setm(f,r);
1914  if (res==NULL)
1915  {
1916  res=last=f;
1917  }
1918  else
1919  {
1920  pNext(last)=f;
1921  last=f;
1922  }
1923  }
1924  }
1925  pIter(a);
1926  }
1927  return res;
1928 }
FILE * f
Definition: checklibs.c:9
CanonicalForm res
Definition: facAbsFact.cc:60
STATIC_VAR poly last
Definition: hdegree.cc:1151
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1335
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:233
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent @Note: the integer VarOffset encodes:
Definition: p_polys.h:469
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:598

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1969 of file p_polys.cc.

1970 {
1971  poly result=NULL;
1972  poly h;
1973  for(;a!=NULL;pIter(a))
1974  {
1975  for(h=b;h!=NULL;pIter(h))
1976  {
1977  result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1978  }
1979  }
1980  return result;
1981 }
return result
Definition: facAbsBiFact.cc:75
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1930

◆ p_DiffOpM()

static poly p_DiffOpM ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)
static

Definition at line 1930 of file p_polys.cc.

1931 {
1932  int i,j,s;
1933  number n,h,hh;
1934  poly p=p_One(r);
1935  n=n_Mult(pGetCoeff(a),pGetCoeff(b),r->cf);
1936  for(i=rVar(r);i>0;i--)
1937  {
1938  s=p_GetExp(b,i,r);
1939  if (s<p_GetExp(a,i,r))
1940  {
1941  n_Delete(&n,r->cf);
1942  p_LmDelete(&p,r);
1943  return NULL;
1944  }
1945  if (multiply)
1946  {
1947  for(j=p_GetExp(a,i,r); j>0;j--)
1948  {
1949  h = n_Init(s,r->cf);
1950  hh=n_Mult(n,h,r->cf);
1951  n_Delete(&h,r->cf);
1952  n_Delete(&n,r->cf);
1953  n=hh;
1954  s--;
1955  }
1956  p_SetExp(p,i,s,r);
1957  }
1958  else
1959  {
1960  p_SetExp(p,i,s-p_GetExp(a,i,r),r);
1961  }
1962  }
1963  p_Setm(p,r);
1964  /*if (multiply)*/ p_SetCoeff(p,n,r);
1965  if (n_IsZero(n,r->cf)) p=p_LmDeleteAndNext(p,r); // return NULL as p is a monomial
1966  return p;
1967 }
poly p_One(const ring r)
Definition: p_polys.cc:1313
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent @Note: VarOffset encodes the position in p->exp
Definition: p_polys.h:488
static poly p_LmDeleteAndNext(poly p, const ring r)
Definition: p_polys.h:755

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1534 of file p_polys.cc.

1535 {
1536  p_Test(p, r);
1537  p_Test(m, r);
1538  poly result = p;
1539  poly prev = NULL;
1540  number n=pGetCoeff(m);
1541  while (p!=NULL)
1542  {
1543  number nc = n_Div(pGetCoeff(p),n,r->cf);
1544  n_Normalize(nc,r->cf);
1545  if (!n_IsZero(nc,r->cf))
1546  {
1547  p_SetCoeff(p,nc,r);
1548  prev=p;
1549  p_ExpVectorSub(p,m,r);
1550  pIter(p);
1551  }
1552  else
1553  {
1554  if (prev==NULL)
1555  {
1556  p_LmDelete(&result,r);
1557  p=result;
1558  }
1559  else
1560  {
1561  p_LmDelete(&pNext(prev),r);
1562  p=pNext(prev);
1563  }
1564  }
1565  }
1566  p_Test(result,r);
1567  return(result);
1568 }
int m
Definition: cfEzgcd.cc:128
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1440

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1501 of file p_polys.cc.

1502 {
1503  pAssume(!n_IsZero(n,r->cf));
1504  p_Test(p, r);
1505  poly result = p;
1506  poly prev = NULL;
1507  while (p!=NULL)
1508  {
1509  number nc = n_Div(pGetCoeff(p),n,r->cf);
1510  if (!n_IsZero(nc,r->cf))
1511  {
1512  p_SetCoeff(p,nc,r);
1513  prev=p;
1514  pIter(p);
1515  }
1516  else
1517  {
1518  if (prev==NULL)
1519  {
1520  p_LmDelete(&result,r);
1521  p=result;
1522  }
1523  else
1524  {
1525  p_LmDelete(&pNext(prev),r);
1526  p=pNext(prev);
1527  }
1528  }
1529  }
1530  p_Test(result,r);
1531  return(result);
1532 }

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1574 of file p_polys.cc.

1575 {
1576  if (a==NULL) { p_Delete(&b,r); return NULL; }
1577  poly result=a;
1578 
1579  if(!p_IsConstant(b,r))
1580  {
1581  if (rIsNCRing(r))
1582  {
1583  WerrorS("p_DivideM not implemented for non-commuative rings");
1584  return NULL;
1585  }
1586  poly prev=NULL;
1587  while (a!=NULL)
1588  {
1589  if (p_DivisibleBy(b,a,r))
1590  {
1591  p_ExpVectorSub(a,b,r);
1592  prev=a;
1593  pIter(a);
1594  }
1595  else
1596  {
1597  if (prev==NULL)
1598  {
1599  p_LmDelete(&result,r);
1600  a=result;
1601  }
1602  else
1603  {
1604  p_LmDelete(&pNext(prev),r);
1605  a=pNext(prev);
1606  }
1607  }
1608  }
1609  }
1610  if (result!=NULL)
1611  {
1612  number inv=pGetCoeff(b);
1613  //if ((!rField_is_Ring(r)) || n_IsUnit(inv,r->cf))
1614  if (rField_is_Zp(r))
1615  {
1616  inv = n_Invers(inv,r->cf);
1617  __p_Mult_nn(result,inv,r);
1618  n_Delete(&inv, r->cf);
1619  }
1620  else
1621  {
1622  result = p_Div_nn(result,inv,r);
1623  }
1624  }
1625  p_Delete(&b, r);
1626  return result;
1627 }
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1912
#define __p_Mult_nn(p, n, r)
Definition: p_polys.h:971
static BOOLEAN rIsNCRing(const ring r)
Definition: ring.h:421

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1638 of file p_polys.cc.

1639 {
1640  int exponent;
1641  for(int i = (int)rVar(r); i>0; i--)
1642  {
1643  exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1644  if (exponent < 0) return FALSE;
1645  }
1646  return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1647 }
g
Definition: cfModGcd.cc:4090
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4577 of file p_polys.cc.

4578 {
4579  while ((p1 != NULL) && (p2 != NULL))
4580  {
4581  if (! p_LmEqual(p1, p2,r))
4582  return FALSE;
4583  if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4584  return FALSE;
4585  pIter(p1);
4586  pIter(p2);
4587  }
4588  return (p1==p2);
4589 }
#define p_GetCoeff(p, r)
Definition: monomials.h:50

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4615 of file p_polys.cc.

4616 {
4617  assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4618  assume( r1->cf == r2->cf );
4619 
4620  while ((p1 != NULL) && (p2 != NULL))
4621  {
4622  // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4623  // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4624 
4625  if (! p_ExpVectorEqual(p1, p2, r1, r2))
4626  return FALSE;
4627 
4628  if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4629  return FALSE;
4630 
4631  pIter(p1);
4632  pIter(p2);
4633  }
4634  return (p1==p2);
4635 }
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4591
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1799

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)
inlinestatic

Definition at line 4591 of file p_polys.cc.

4592 {
4593  assume( r1 == r2 || rSamePolyRep(r1, r2) );
4594 
4595  p_LmCheckPolyRing1(p1, r1);
4596  p_LmCheckPolyRing1(p2, r2);
4597 
4598  int i = r1->ExpL_Size;
4599 
4600  assume( r1->ExpL_Size == r2->ExpL_Size );
4601 
4602  unsigned long *ep = p1->exp;
4603  unsigned long *eq = p2->exp;
4604 
4605  do
4606  {
4607  i--;
4608  if (ep[i] != eq[i]) return FALSE;
4609  }
4610  while (i);
4611 
4612  return TRUE;
4613 }

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 54 of file p_polys.cc.

55 {
56  poly h=p_Copy(p,r);
57  poly hh=h;
58  while(h!=NULL)
59  {
60  number c=pGetCoeff(h);
61  pSetCoeff0(h,n_Farey(c,N,r->cf));
62  n_Delete(&c,r->cf);
63  pIter(h);
64  }
65  while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
66  {
67  p_LmDelete(&hh,r);
68  }
69  h=hh;
70  while((h!=NULL) && (pNext(h)!=NULL))
71  {
72  if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
73  {
74  p_LmDelete(&pNext(h),r);
75  }
76  else pIter(h);
77  }
78  return hh;
79 }
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:56
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:767

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 5006 of file p_polys.cc.

5007 {
5008  assume(f!=NULL);
5009  assume(g!=NULL);
5010  assume(pNext(f)==NULL);
5011  poly G=p_Head(f,r);
5012  poly h=g;
5013  int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
5014  p_GetExpV(f,mf,r);
5015  int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
5016  BOOLEAN const_mon;
5017  BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
5018  loop
5019  {
5020  if (h==NULL) break;
5021  if(!one_coeff)
5022  {
5023  number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
5024  one_coeff=n_IsOne(n,r->cf);
5025  p_SetCoeff(G,n,r);
5026  }
5027  p_GetExpV(h,mh,r);
5028  const_mon=TRUE;
5029  for(unsigned j=r->N;j!=0;j--)
5030  {
5031  if (mh[j]<mf[j]) mf[j]=mh[j];
5032  if (mf[j]>0) const_mon=FALSE;
5033  }
5034  if (one_coeff && const_mon) break;
5035  pIter(h);
5036  }
5037  mf[0]=0;
5038  p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
5039  omFreeSize(mf,(r->N+1)*sizeof(int));
5040  omFreeSize(mh,(r->N+1)*sizeof(int));
5041  return G;
5042 }
int BOOLEAN
Definition: auxiliary.h:87
STATIC_VAR TreeM * G
Definition: janet.cc:31
#define omAlloc(size)
Definition: omAllocDecl.h:210
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1544
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1520

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1718 of file p_polys.cc.

1719 {
1720  poly q = pNext(p);
1721  poly res; // = p_Head(p,r);
1722  res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1723  p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1724  poly s;
1725  long cmp = p_GetComp(p, r);
1726  while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1727  {
1728  s = p_GetExp_k_n(q, ishift+1, r->N, r);
1729  p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1730  res = p_Add_q(res,s,r);
1731  q = pNext(q);
1732  }
1733  cmp = 0;
1734  p_SetCompP(res,cmp,r);
1735  return res;
1736 }
#define p_GetComp(p, r)
Definition: monomials.h:64
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:640
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:254

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1175 of file p_polys.cc.

1176 {
1177  unsigned long l_p, divmask = r->divmask;
1178  int i;
1179 
1180  while (p != NULL)
1181  {
1182  l_p = p->exp[r->VarL_Offset[0]];
1183  if (l_p > l_max ||
1184  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1185  l_max = p_GetMaxExpL2(l_max, l_p, r);
1186  for (i=1; i<r->VarL_Size; i++)
1187  {
1188  l_p = p->exp[r->VarL_Offset[i]];
1189  // do the divisibility trick to find out whether l has an exponent
1190  if (l_p > l_max ||
1191  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1192  l_max = p_GetMaxExpL2(l_max, l_p, r);
1193  }
1194  pIter(p);
1195  }
1196  return l_max;
1197 }
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1107

◆ p_GetMaxExpL2() [1/2]

static unsigned long p_GetMaxExpL2 ( unsigned long  l1,
unsigned long  l2,
const ring  r 
)
inlinestatic

Definition at line 1133 of file p_polys.cc.

1134 {
1135  return p_GetMaxExpL2(l1, l2, r, r->ExpPerLong);
1136 }

◆ p_GetMaxExpL2() [2/2]

static unsigned long p_GetMaxExpL2 ( unsigned long  l1,
unsigned long  l2,
const ring  r,
unsigned long  number_of_exp 
)
inlinestatic

Definition at line 1107 of file p_polys.cc.

1109 {
1110  const unsigned long bitmask = r->bitmask;
1111  unsigned long ml1 = l1 & bitmask;
1112  unsigned long ml2 = l2 & bitmask;
1113  unsigned long max = (ml1 > ml2 ? ml1 : ml2);
1114  unsigned long j = number_of_exp - 1;
1115 
1116  if (j > 0)
1117  {
1118  unsigned long mask = bitmask << r->BitsPerExp;
1119  while (1)
1120  {
1121  ml1 = l1 & mask;
1122  ml2 = l2 & mask;
1123  max |= ((ml1 > ml2 ? ml1 : ml2) & mask);
1124  j--;
1125  if (j == 0) break;
1126  mask = mask << r->BitsPerExp;
1127  }
1128  }
1129  return max;
1130 }
static int max(int a, int b)
Definition: fast_mult.cc:264

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
const ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1138 of file p_polys.cc.

1139 {
1140  p_CheckPolyRing(p, r);
1141  if (p == NULL) return p_Init(r);
1142  poly max = p_LmInit(p, r);
1143  pIter(p);
1144  if (p == NULL) return max;
1145  int i, offset;
1146  unsigned long l_p, l_max;
1147  unsigned long divmask = r->divmask;
1148 
1149  do
1150  {
1151  offset = r->VarL_Offset[0];
1152  l_p = p->exp[offset];
1153  l_max = max->exp[offset];
1154  // do the divisibility trick to find out whether l has an exponent
1155  if (l_p > l_max ||
1156  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1157  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1158 
1159  for (i=1; i<r->VarL_Size; i++)
1160  {
1161  offset = r->VarL_Offset[i];
1162  l_p = p->exp[offset];
1163  l_max = max->exp[offset];
1164  // do the divisibility trick to find out whether l has an exponent
1165  if (l_p > l_max ||
1166  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1167  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1168  }
1169  pIter(p);
1170  }
1171  while (p != NULL);
1172  return max;
1173 }
STATIC_VAR int offset
Definition: janet.cc:29
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:112
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1320

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 560 of file p_polys.cc.

561 {
562  // covers lp, rp, ls,
563  if (r->typ == NULL) return p_Setm_Dummy;
564 
565  if (r->OrdSize == 1)
566  {
567  if (r->typ[0].ord_typ == ro_dp &&
568  r->typ[0].data.dp.start == 1 &&
569  r->typ[0].data.dp.end == r->N &&
570  r->typ[0].data.dp.place == r->pOrdIndex)
571  return p_Setm_TotalDegree;
572  if (r->typ[0].ord_typ == ro_wp &&
573  r->typ[0].data.wp.start == 1 &&
574  r->typ[0].data.wp.end == r->N &&
575  r->typ[0].data.wp.place == r->pOrdIndex &&
576  r->typ[0].data.wp.weights == r->firstwv)
578  }
579  return p_Setm_General;
580 }
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:554
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:541
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:547
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:158
@ ro_dp
Definition: ring.h:52
@ ro_wp
Definition: ring.h:53

◆ p_GetShortExpVector() [1/2]

unsigned long p_GetShortExpVector ( const poly  p,
const poly  pp,
const ring  r 
)

p_GetShortExpVector of p * pp

Definition at line 4899 of file p_polys.cc.

4900 {
4901  assume(p != NULL);
4902  assume(pp != NULL);
4903 
4904  unsigned long ev = 0; // short exponent vector
4905  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4906  unsigned int m1; // highest bit which is filled with (n+1)
4907  int j=1;
4908  unsigned long i = 0L;
4909 
4910  if (n == 0)
4911  {
4912  if (r->N <2*BIT_SIZEOF_LONG)
4913  {
4914  n=1;
4915  m1=0;
4916  }
4917  else
4918  {
4919  for (; j<=r->N; j++)
4920  {
4921  if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++;
4922  if (i == BIT_SIZEOF_LONG) break;
4923  }
4924  if (i>0)
4925  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4926  return ev;
4927  }
4928  }
4929  else
4930  {
4931  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4932  }
4933 
4934  n++;
4935  while (i<m1)
4936  {
4937  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4938  i += n;
4939  j++;
4940  }
4941 
4942  n--;
4943  while (i<BIT_SIZEOF_LONG)
4944  {
4945  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4946  i += n;
4947  j++;
4948  }
4949  return ev;
4950 }
CanonicalForm FACTORY_PUBLIC pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:676
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4813

◆ p_GetShortExpVector() [2/2]

unsigned long p_GetShortExpVector ( const poly  p,
const ring  r 
)

Definition at line 4846 of file p_polys.cc.

4847 {
4848  assume(p != NULL);
4849  unsigned long ev = 0; // short exponent vector
4850  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4851  unsigned int m1; // highest bit which is filled with (n+1)
4852  unsigned int i=0;
4853  int j=1;
4854 
4855  if (n == 0)
4856  {
4857  if (r->N <2*BIT_SIZEOF_LONG)
4858  {
4859  n=1;
4860  m1=0;
4861  }
4862  else
4863  {
4864  for (; j<=r->N; j++)
4865  {
4866  if (p_GetExp(p,j,r) > 0) i++;
4867  if (i == BIT_SIZEOF_LONG) break;
4868  }
4869  if (i>0)
4870  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4871  return ev;
4872  }
4873  }
4874  else
4875  {
4876  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4877  }
4878 
4879  n++;
4880  while (i<m1)
4881  {
4882  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4883  i += n;
4884  j++;
4885  }
4886 
4887  n--;
4888  while (i<BIT_SIZEOF_LONG)
4889  {
4890  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4891  i += n;
4892  j++;
4893  }
4894  return ev;
4895 }

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int *  e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1267 of file p_polys.cc.

1268 {
1269  int i;
1270  int n=0;
1271  while(p!=NULL)
1272  {
1273  n=0;
1274  for(i=r->N; i>0; i--)
1275  {
1276  if(e[i]==0)
1277  {
1278  if (p_GetExp(p,i,r)>0)
1279  {
1280  e[i]=1;
1281  n++;
1282  }
1283  }
1284  else
1285  n++;
1286  }
1287  if (n==r->N) break;
1288  pIter(p);
1289  }
1290  return n;
1291 }

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1329 of file p_polys.cc.

1330 {
1331 
1332  if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1333  return FALSE;
1334  int i = rVar(r);
1335  loop
1336  {
1337  if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1338  return FALSE;
1339  i--;
1340  if (i == 0)
1341  return TRUE;
1342  }
1343 }

◆ p_HasNotCFRing()

BOOLEAN p_HasNotCFRing ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1345 of file p_polys.cc.

1346 {
1347 
1348  if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1349  return FALSE;
1350  int i = rVar(r);
1351  loop
1352  {
1353  if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1354  return FALSE;
1355  i--;
1356  if (i == 0) {
1357  if (n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf) ||
1358  n_DivBy(pGetCoeff(p2), pGetCoeff(p1), r->cf)) {
1359  return FALSE;
1360  } else {
1361  return TRUE;
1362  }
1363  }
1364  }
1365 }

◆ p_Head0()

poly p_Head0 ( const poly  p,
const ring  r 
)

like p_Head, but allow NULL coeff

Definition at line 5062 of file p_polys.cc.

5063 {
5064  if (p==NULL) return NULL;
5065  if (pGetCoeff(p)==NULL) return p_CopyPowerProduct0(p,NULL,r);
5066  return p_Head(p,r);
5067 }

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3335 of file p_polys.cc.

3336 {
3337  pFDegProc deg;
3338  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3339  deg=p_Totaldegree;
3340  else
3341  deg=r->pFDeg;
3342 
3343  poly q=NULL, qn;
3344  int o,ii;
3345  sBucket_pt bp;
3346 
3347  if (p!=NULL)
3348  {
3349  if ((varnum < 1) || (varnum > rVar(r)))
3350  {
3351  return NULL;
3352  }
3353  o=deg(p,r);
3354  q=pNext(p);
3355  while (q != NULL)
3356  {
3357  ii=deg(q,r);
3358  if (ii>o) o=ii;
3359  pIter(q);
3360  }
3361  q = p_Copy(p,r);
3362  bp = sBucketCreate(r);
3363  while (q != NULL)
3364  {
3365  ii = o-deg(q,r);
3366  if (ii!=0)
3367  {
3368  p_AddExp(q,varnum, (long)ii,r);
3369  p_Setm(q,r);
3370  }
3371  qn = pNext(q);
3372  pNext(q) = NULL;
3373  sBucket_Add_m(bp, q);
3374  q = qn;
3375  }
3376  sBucketDestroyAdd(bp, &q, &ii);
3377  }
3378  return q;
3379 }
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:606
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:38
@ ringorder_lp
Definition: ring.h:77
void sBucket_Add_m(sBucket_pt bucket, poly p)
Definition: sbuckets.cc:173
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:96
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:68

◆ p_InitContent()

number p_InitContent ( poly  ph,
const ring  r 
)

Definition at line 2700 of file p_polys.cc.

2703 {
2705  assume(ph!=NULL);
2706  assume(pNext(ph)!=NULL);
2707  assume(rField_is_Q(r));
2708  if (pNext(pNext(ph))==NULL)
2709  {
2710  return n_GetNumerator(pGetCoeff(pNext(ph)),r->cf);
2711  }
2712  poly p=ph;
2713  number n1=n_GetNumerator(pGetCoeff(p),r->cf);
2714  pIter(p);
2715  number n2=n_GetNumerator(pGetCoeff(p),r->cf);
2716  pIter(p);
2717  number d;
2718  number t;
2719  loop
2720  {
2721  nlNormalize(pGetCoeff(p),r->cf);
2722  t=n_GetNumerator(pGetCoeff(p),r->cf);
2723  if (nlGreaterZero(t,r->cf))
2724  d=nlAdd(n1,t,r->cf);
2725  else
2726  d=nlSub(n1,t,r->cf);
2727  nlDelete(&t,r->cf);
2728  nlDelete(&n1,r->cf);
2729  n1=d;
2730  pIter(p);
2731  if (p==NULL) break;
2732  nlNormalize(pGetCoeff(p),r->cf);
2733  t=n_GetNumerator(pGetCoeff(p),r->cf);
2734  if (nlGreaterZero(t,r->cf))
2735  d=nlAdd(n2,t,r->cf);
2736  else
2737  d=nlSub(n2,t,r->cf);
2738  nlDelete(&t,r->cf);
2739  nlDelete(&n2,r->cf);
2740  n2=d;
2741  pIter(p);
2742  if (p==NULL) break;
2743  }
2744  d=nlGcd(n1,n2,r->cf);
2745  nlDelete(&n1,r->cf);
2746  nlDelete(&n2,r->cf);
2747  return d;
2748 }
2749 #else
2750 {
2751  /* ph has al least 2 terms */
2752  number d=pGetCoeff(ph);
2753  int s=n_Size(d,r->cf);
2754  pIter(ph);
2755  number d2=pGetCoeff(ph);
2756  int s2=n_Size(d2,r->cf);
2757  pIter(ph);
2758  if (ph==NULL)
2759  {
2760  if (s<s2) return n_Copy(d,r->cf);
2761  else return n_Copy(d2,r->cf);
2762  }
2763  do
2764  {
2765  number nd=pGetCoeff(ph);
2766  int ns=n_Size(nd,r->cf);
2767  if (ns<=2)
2768  {
2769  s2=s;
2770  d2=d;
2771  d=nd;
2772  s=ns;
2773  break;
2774  }
2775  else if (ns<s)
2776  {
2777  s2=s;
2778  d2=d;
2779  d=nd;
2780  s=ns;
2781  }
2782  pIter(ph);
2783  }
2784  while(ph!=NULL);
2785  return n_SubringGcd(d,d2,r->cf);
2786 }
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:570
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n)
Definition: coeffs.h:608
LINLINE number nlAdd(number la, number li, const coeffs r)
Definition: longrat.cc:2701
LINLINE number nlSub(number la, number li, const coeffs r)
Definition: longrat.cc:2767
LINLINE void nlDelete(number *a, const coeffs r)
Definition: longrat.cc:2666
BOOLEAN nlGreaterZero(number za, const coeffs r)
Definition: longrat.cc:1308
number nlGcd(number a, number b, const coeffs r)
Definition: longrat.cc:1345
void nlNormalize(number &x, const coeffs r)
Definition: longrat.cc:1486

◆ p_Invers()

static poly p_Invers ( int  n,
poly  u,
intvec w,
const ring  R 
)
static

Definition at line 4534 of file p_polys.cc.

4535 {
4536  if(n<0)
4537  return NULL;
4538  number u0=n_Invers(pGetCoeff(u),R->cf);
4539  poly v=p_NSet(u0,R);
4540  if(n==0)
4541  return v;
4542  int *ww=iv2array(w,R);
4543  poly u1=p_JetW(p_Sub(p_One(R),__p_Mult_nn(u,u0,R),R),n,ww,R);
4544  if(u1==NULL)
4545  {
4546  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4547  return v;
4548  }
4549  poly v1=__p_Mult_nn(p_Copy(u1,R),u0,R);
4550  v=p_Add_q(v,p_Copy(v1,R),R);
4551  for(int i=n/p_MinDeg(u1,w,R);i>1;i--)
4552  {
4553  v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R);
4554  v=p_Add_q(v,p_Copy(v1,R),R);
4555  }
4556  p_Delete(&u1,R);
4557  p_Delete(&v1,R);
4558  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4559  return v;
4560 }
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:39
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4513
poly p_Sub(poly p1, poly p2, const ring r)
Definition: p_polys.cc:1986
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition: p_polys.cc:1469
poly p_JetW(poly p, int m, int *w, const ring R)
Definition: p_polys.cc:4495
int * iv2array(intvec *iv, const ring R)
Definition: weight.cc:200

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1297 of file p_polys.cc.

1298 {
1299  poly rc = NULL;
1300  if (i!=0)
1301  {
1302  rc = p_Init(r);
1303  pSetCoeff0(rc,n_Init(i,r->cf));
1304  if (n_IsZero(pGetCoeff(rc),r->cf))
1305  p_LmDelete(&rc,r);
1306  }
1307  return rc;
1308 }

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3384 of file p_polys.cc.

3385 {
3386  poly qp=p;
3387  int o;
3388 
3389  if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3390  pFDegProc d;
3391  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3392  d=p_Totaldegree;
3393  else
3394  d=r->pFDeg;
3395  o = d(p,r);
3396  do
3397  {
3398  if (d(qp,r) != o) return FALSE;
3399  pIter(qp);
3400  }
3401  while (qp != NULL);
3402  return TRUE;
3403 }

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1226 of file p_polys.cc.

1227 {
1228  int i,k=0;
1229 
1230  for (i=r->N;i;i--)
1231  {
1232  if (p_GetExp(p,i, r)!=0)
1233  {
1234  if(k!=0) return 0;
1235  k=i;
1236  }
1237  }
1238  return k;
1239 }

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1247 of file p_polys.cc.

1248 {
1249  int i,k=-1;
1250 
1251  while (p!=NULL)
1252  {
1253  for (i=r->N;i;i--)
1254  {
1255  if (p_GetExp(p,i, r)!=0)
1256  {
1257  if((k!=-1)&&(k!=i)) return 0;
1258  k=i;
1259  }
1260  }
1261  pIter(p);
1262  }
1263  return k;
1264 }

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4451 of file p_polys.cc.

4452 {
4453  while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4454  if (p==NULL) return NULL;
4455  poly r=p;
4456  while (pNext(p)!=NULL)
4457  {
4458  if (p_Totaldegree(pNext(p),R)>m)
4459  {
4460  p_LmDelete(&pNext(p),R);
4461  }
4462  else
4463  pIter(p);
4464  }
4465  return r;
4466 }

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4495 of file p_polys.cc.

4496 {
4497  while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4498  if (p==NULL) return NULL;
4499  poly r=p;
4500  while (pNext(p)!=NULL)
4501  {
4502  if (totaldegreeWecart_IV(pNext(p),R,w)>m)
4503  {
4504  p_LmDelete(&pNext(p),R);
4505  }
4506  else
4507  pIter(p);
4508  }
4509  return r;
4510 }

◆ p_Last()

poly p_Last ( const poly  p,
int &  l,
const ring  r 
)

Definition at line 4686 of file p_polys.cc.

4687 {
4688  if (p == NULL)
4689  {
4690  l = 0;
4691  return NULL;
4692  }
4693  l = 1;
4694  poly a = p;
4695  if (! rIsSyzIndexRing(r))
4696  {
4697  poly next = pNext(a);
4698  while (next!=NULL)
4699  {
4700  a = next;
4701  next = pNext(a);
4702  l++;
4703  }
4704  }
4705  else
4706  {
4707  long unsigned curr_limit = rGetCurrSyzLimit(r);
4708  poly pp = a;
4709  while ((a=pNext(a))!=NULL)
4710  {
4711  if (__p_GetComp(a,r)<=curr_limit/*syzComp*/)
4712  l++;
4713  else break;
4714  pp = a;
4715  }
4716  a=pp;
4717  }
4718  return a;
4719 }
int l
Definition: cfEzgcd.cc:100
ListNode * next
Definition: janet.h:31
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:724
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:721

◆ p_Lcm() [1/2]

poly p_Lcm ( const poly  a,
const poly  b,
const ring  r 
)

Definition at line 1660 of file p_polys.cc.

1661 {
1662  poly m=p_Init(r);
1663  p_Lcm(a, b, m, r);
1664  p_Setm(m,r);
1665  return(m);
1666 }
void p_Lcm(const poly a, const poly b, poly m, const ring r)
Definition: p_polys.cc:1651

◆ p_Lcm() [2/2]

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1651 of file p_polys.cc.

1652 {
1653  for (int i=r->N; i; --i)
1654  p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1655 
1656  p_SetComp(m, si_max(p_GetComp(a,r), p_GetComp(b,r)),r);
1657  /* Don't do a pSetm here, otherwise hres/lres chockes */
1658 }
static int si_max(const int a, const int b)
Definition: auxiliary.h:124
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:247

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1673 of file p_polys.cc.

1674 {
1675  poly m = // p_One( r);
1676  p_Init(r);
1677 
1678 // const int (currRing->N) = r->N;
1679 
1680  // for (int i = (currRing->N); i>=r->real_var_start; i--)
1681  for (int i = r->real_var_end; i>=r->real_var_start; i--)
1682  {
1683  const int lExpA = p_GetExp (a, i, r);
1684  const int lExpB = p_GetExp (b, i, r);
1685 
1686  p_SetExp (m, i, si_max(lExpA, lExpB), r);
1687  }
1688 
1689  p_SetComp (m, lCompM, r);
1690  p_Setm(m,r);
1691  n_New(&(p_GetCoeff(m, r)), r);
1692 
1693  return(m);
1694 };
#define n_New(n, r)
Definition: coeffs.h:440

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly *  p,
int  ishift,
ring  r 
)

Definition at line 1696 of file p_polys.cc.

1697 {
1698  /* modifies p*/
1699  // Print("start: "); Print(" "); p_wrp(*p,r);
1700  p_LmCheckPolyRing2(*p, r);
1701  poly q = p_Head(*p,r);
1702  const long cmp = p_GetComp(*p, r);
1703  while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1704  {
1705  p_LmDelete(p,r);
1706  // Print("while: ");p_wrp(*p,r);Print(" ");
1707  }
1708  // p_wrp(*p,r);Print(" ");
1709  // PrintS("end\n");
1710  p_LmDelete(&q,r);
1711 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:199

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4745 of file p_polys.cc.

4746 {
4747  int k,l,lex;
4748 
4749  if (p == NULL) return -1;
4750 
4751  k = 32000;/*a very large dummy value*/
4752  while (p != NULL)
4753  {
4754  l = 1;
4755  lex = p_GetExp(p,l,r);
4756  while ((l < (rVar(r))) && (lex == 0))
4757  {
4758  l++;
4759  lex = p_GetExp(p,l,r);
4760  }
4761  l--;
4762  if (l < k) k = l;
4763  pIter(p);
4764  }
4765  return k;
4766 }

◆ p_MaxExpPerVar()

int p_MaxExpPerVar ( poly  p,
int  i,
const ring  r 
)

max exponent of variable x_i in p

Definition at line 5068 of file p_polys.cc.

5069 {
5070  int m=0;
5071  while(p!=NULL)
5072  {
5073  int mm=p_GetExp(p,i,r);
5074  if (mm>m) m=mm;
5075  pIter(p);
5076  }
5077  return m;
5078 }

◆ p_MDivide()

poly p_MDivide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1488 of file p_polys.cc.

1489 {
1490  assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1491  int i;
1492  poly result = p_Init(r);
1493 
1494  for(i=(int)r->N; i; i--)
1495  p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1496  p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1497  p_Setm(result,r);
1498  return result;
1499 }

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4513 of file p_polys.cc.

4514 {
4515  if(p==NULL)
4516  return -1;
4517  int d=-1;
4518  while(p!=NULL)
4519  {
4520  int d0=0;
4521  for(int j=0;j<rVar(R);j++)
4522  if(w==NULL||j>=w->length())
4523  d0+=p_GetExp(p,j+1,R);
4524  else
4525  d0+=(*w)[j]*p_GetExp(p,j+1,R);
4526  if(d0<d||d==-1)
4527  d=d0;
4528  pIter(p);
4529  }
4530  return d;
4531 }

◆ p_mInit()

poly p_mInit ( const char *  st,
BOOLEAN ok,
const ring  r 
)

Definition at line 1442 of file p_polys.cc.

1443 {
1444  poly p;
1445  const char *s=p_Read(st,p,r);
1446  if (*s!='\0')
1447  {
1448  if ((s!=st)&&isdigit(st[0]))
1449  {
1451  }
1452  ok=FALSE;
1453  if (p!=NULL)
1454  {
1455  if (pGetCoeff(p)==NULL) p_LmFree(p,r);
1456  else p_LmDelete(p,r);
1457  }
1458  return NULL;
1459  }
1460  p_Test(p,r);
1461  ok=!errorreported;
1462  return p;
1463 }
VAR short errorreported
Definition: feFopen.cc:23
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1370
static void p_LmFree(poly p, ring)
Definition: p_polys.h:683

◆ p_MonMult()

static void p_MonMult ( poly  p,
poly  q,
const ring  r 
)
static

Definition at line 2020 of file p_polys.cc.

2021 {
2022  number x, y;
2023 
2024  y = pGetCoeff(p);
2025  x = n_Mult(y,pGetCoeff(q),r->cf);
2026  n_Delete(&y,r->cf);
2027  pSetCoeff0(p,x);
2028  //for (int i=pVariables; i!=0; i--)
2029  //{
2030  // pAddExp(p,i, pGetExp(q,i));
2031  //}
2032  //p->Order += q->Order;
2033  p_ExpVectorAdd(p,q,r);
2034 }
const CanonicalForm int const CFList const Variable & y
Definition: facAbsFact.cc:53
static void p_ExpVectorAdd(poly p1, poly p2, const ring r)
Definition: p_polys.h:1411

◆ p_MonMultC()

static poly p_MonMultC ( poly  p,
poly  q,
const ring  rr 
)
static

Definition at line 2040 of file p_polys.cc.

2041 {
2042  number x;
2043  poly r = p_Init(rr);
2044 
2045  x = n_Mult(pGetCoeff(p),pGetCoeff(q),rr->cf);
2046  pSetCoeff0(r,x);
2047  p_ExpVectorSum(r,p, q, rr);
2048  return r;
2049 }
static void p_ExpVectorSum(poly pr, poly p1, poly p2, const ring r)
Definition: p_polys.h:1425

◆ p_MonPower()

static poly p_MonPower ( poly  p,
int  exp,
const ring  r 
)
static

Definition at line 1996 of file p_polys.cc.

1997 {
1998  int i;
1999 
2000  if(!n_IsOne(pGetCoeff(p),r->cf))
2001  {
2002  number x, y;
2003  y = pGetCoeff(p);
2004  n_Power(y,exp,&x,r->cf);
2005  n_Delete(&y,r->cf);
2006  pSetCoeff0(p,x);
2007  }
2008  for (i=rVar(r); i!=0; i--)
2009  {
2010  p_MultExp(p,i, exp,r);
2011  }
2012  p_Setm(p,r);
2013  return p;
2014 }
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:632
gmp_float exp(const gmp_float &a)
Definition: mpr_complex.cc:357
static long p_MultExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:621

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3797 of file p_polys.cc.

3798 {
3799  if (rField_is_Ring(r))
3800  {
3801  if(!n_GreaterZero(pGetCoeff(p1),r->cf)) p1 = p_Neg(p1,r);
3802  if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3803  // Werror("p_Norm not possible in the case of coefficient rings.");
3804  }
3805  else if (p1!=NULL)
3806  {
3807  if (pNext(p1)==NULL)
3808  {
3809  p_SetCoeff(p1,n_Init(1,r->cf),r);
3810  return;
3811  }
3812  if (!n_IsOne(pGetCoeff(p1),r->cf))
3813  {
3814  number k, c;
3815  n_Normalize(pGetCoeff(p1),r->cf);
3816  k = pGetCoeff(p1);
3817  c = n_Init(1,r->cf);
3818  pSetCoeff0(p1,c);
3819  poly h = pNext(p1);
3820  if (rField_is_Zp(r))
3821  {
3822  if (r->cf->ch>32003)
3823  {
3824  number inv=n_Invers(k,r->cf);
3825  while (h!=NULL)
3826  {
3827  c=n_Mult(pGetCoeff(h),inv,r->cf);
3828  // no need to normalize
3829  p_SetCoeff(h,c,r);
3830  pIter(h);
3831  }
3832  n_Delete(&inv,r->cf);
3833  }
3834  else
3835  {
3836  while (h!=NULL)
3837  {
3838  c=n_Div(pGetCoeff(h),k,r->cf);
3839  // no need to normalize
3840  p_SetCoeff(h,c,r);
3841  pIter(h);
3842  }
3843  }
3844  }
3845  else
3846  {
3847  while (h!=NULL)
3848  {
3849  c=n_Div(pGetCoeff(h),k,r->cf);
3850  // no need to normalize: Z/p, R
3851  // normalize already in nDiv: Q_a, Z/p_a
3852  // remains: Q
3853  if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf);
3854  p_SetCoeff(h,c,r);
3855  pIter(h);
3856  }
3857  }
3858  n_Delete(&k,r->cf);
3859  }
3860  else
3861  {
3862  //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3863  if (rField_is_Q(r))
3864  {
3865  poly h = pNext(p1);
3866  while (h!=NULL)
3867  {
3868  n_Normalize(pGetCoeff(h),r->cf);
3869  pIter(h);
3870  }
3871  }
3872  }
3873  }
3874 }
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:515

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3879 of file p_polys.cc.

3880 {
3881  if ((rField_has_simple_inverse(r)) /* Z/p, GF(p,n), R, long R/C */
3882  || (r->cf->cfNormalize==ndNormalize)) /* Nemo rings, ...*/
3883  return;
3884  while (p!=NULL)
3885  {
3886  // no test befor n_Normalize: n_Normalize should fix problems
3887  n_Normalize(pGetCoeff(p),r->cf);
3888  pIter(p);
3889  }
3890 }
void ndNormalize(number &, const coeffs)
Definition: numbers.cc:163
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:549

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1469 of file p_polys.cc.

1470 {
1471  if (n_IsZero(n,r->cf))
1472  {
1473  n_Delete(&n, r->cf);
1474  return NULL;
1475  }
1476  else
1477  {
1478  poly rc = p_Init(r);
1479  pSetCoeff0(rc,n);
1480  return rc;
1481  }
1482 }

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1313 of file p_polys.cc.

1314 {
1315  poly rc = p_Init(r);
1316  pSetCoeff0(rc,n_Init(1,r->cf));
1317  return rc;
1318 }

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1208 of file p_polys.cc.

1209 {
1210  if(p!=NULL)
1211  {
1212  long i = p_GetComp(p, r);
1213  while (pNext(p)!=NULL)
1214  {
1215  pIter(p);
1216  if(i != p_GetComp(p, r)) return FALSE;
1217  }
1218  }
1219  return TRUE;
1220 }

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int *  perm,
const ring  oldRing,
const ring  dst,
nMapFunc  nMap,
const int *  par_perm,
int  OldPar,
BOOLEAN  use_mult 
)

Definition at line 4195 of file p_polys.cc.

4197 {
4198 #if 0
4199  p_Test(p, oldRing);
4200  PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
4201 #endif
4202  const int OldpVariables = rVar(oldRing);
4203  poly result = NULL;
4204  poly result_last = NULL;
4205  poly aq = NULL; /* the map coefficient */
4206  poly qq; /* the mapped monomial */
4207  assume(dst != NULL);
4208  assume(dst->cf != NULL);
4209  #ifdef HAVE_PLURAL
4210  poly tmp_mm=p_One(dst);
4211  #endif
4212  while (p != NULL)
4213  {
4214  // map the coefficient
4215  if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
4216  && (nMap != NULL) )
4217  {
4218  qq = p_Init(dst);
4219  assume( nMap != NULL );
4220  number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4221  n_Test (n,dst->cf);
4222  if ( nCoeff_is_algExt(dst->cf) )
4223  n_Normalize(n, dst->cf);
4224  p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4225  }
4226  else
4227  {
4228  qq = p_One(dst);
4229 // aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4230 // poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4231  aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4232  p_Test(aq, dst);
4233  if ( nCoeff_is_algExt(dst->cf) )
4234  p_Normalize(aq,dst);
4235  if (aq == NULL)
4236  p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4237  p_Test(aq, dst);
4238  }
4239  if (rRing_has_Comp(dst))
4240  p_SetComp(qq, p_GetComp(p, oldRing), dst);
4241  if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4242  {
4243  p_LmDelete(&qq,dst);
4244  qq = NULL;
4245  }
4246  else
4247  {
4248  // map pars:
4249  int mapped_to_par = 0;
4250  for(int i = 1; i <= OldpVariables; i++)
4251  {
4252  int e = p_GetExp(p, i, oldRing);
4253  if (e != 0)
4254  {
4255  if (perm==NULL)
4256  p_SetExp(qq, i, e, dst);
4257  else if (perm[i]>0)
4258  {
4259  #ifdef HAVE_PLURAL
4260  if(use_mult)
4261  {
4262  p_SetExp(tmp_mm,perm[i],e,dst);
4263  p_Setm(tmp_mm,dst);
4264  qq=p_Mult_mm(qq,tmp_mm,dst);
4265  p_SetExp(tmp_mm,perm[i],0,dst);
4266 
4267  }
4268  else
4269  #endif
4270  p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4271  }
4272  else if (perm[i]<0)
4273  {
4274  number c = p_GetCoeff(qq, dst);
4275  if (rField_is_GF(dst))
4276  {
4277  assume( dst->cf->extRing == NULL );
4278  number ee = n_Param(1, dst);
4279  number eee;
4280  n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4281  ee = n_Mult(c, eee, dst->cf);
4282  //nfDelete(c,dst);nfDelete(eee,dst);
4283  pSetCoeff0(qq,ee);
4284  }
4285  else if (nCoeff_is_Extension(dst->cf))
4286  {
4287  const int par = -perm[i];
4288  assume( par > 0 );
4289 // WarnS("longalg missing 3");
4290 #if 1
4291  const coeffs C = dst->cf;
4292  assume( C != NULL );
4293  const ring R = C->extRing;
4294  assume( R != NULL );
4295  assume( par <= rVar(R) );
4296  poly pcn; // = (number)c
4297  assume( !n_IsZero(c, C) );
4298  if( nCoeff_is_algExt(C) )
4299  pcn = (poly) c;
4300  else // nCoeff_is_transExt(C)
4301  pcn = NUM((fraction)c);
4302  if (pNext(pcn) == NULL) // c->z
4303  p_AddExp(pcn, -perm[i], e, R);
4304  else /* more difficult: we have really to multiply: */
4305  {
4306  poly mmc = p_ISet(1, R);
4307  p_SetExp(mmc, -perm[i], e, R);
4308  p_Setm(mmc, R);
4309  number nnc;
4310  // convert back to a number: number nnc = mmc;
4311  if( nCoeff_is_algExt(C) )
4312  nnc = (number) mmc;
4313  else // nCoeff_is_transExt(C)
4314  nnc = ntInit(mmc, C);
4315  p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4316  n_Delete((number *)&c, C);
4317  n_Delete((number *)&nnc, C);
4318  }
4319  mapped_to_par=1;
4320 #endif
4321  }
4322  }
4323  else
4324  {
4325  /* this variable maps to 0 !*/
4326  p_LmDelete(&qq, dst);
4327  break;
4328  }
4329  }
4330  }
4331  if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4332  {
4333  number n = p_GetCoeff(qq, dst);
4334  n_Normalize(n, dst->cf);
4335  p_GetCoeff(qq, dst) = n;
4336  }
4337  }
4338  pIter(p);
4339 
4340 #if 0
4341  p_Test(aq,dst);
4342  PrintS("aq: "); p_Write(aq, dst, dst);
4343 #endif
4344 
4345 
4346 #if 1
4347  if (qq!=NULL)
4348  {
4349  p_Setm(qq,dst);
4350 
4351  p_Test(aq,dst);
4352  p_Test(qq,dst);
4353 
4354 #if 0
4355  PrintS("qq: "); p_Write(qq, dst, dst);
4356 #endif
4357 
4358  if (aq!=NULL)
4359  qq=p_Mult_q(aq,qq,dst);
4360  aq = qq;
4361  while (pNext(aq) != NULL) pIter(aq);
4362  if (result_last==NULL)
4363  {
4364  result=qq;
4365  }
4366  else
4367  {
4368  pNext(result_last)=qq;
4369  }
4370  result_last=aq;
4371  aq = NULL;
4372  }
4373  else if (aq!=NULL)
4374  {
4375  p_Delete(&aq,dst);
4376  }
4377  }
4378  result=p_SortAdd(result,dst);
4379 #else
4380  // if (qq!=NULL)
4381  // {
4382  // pSetm(qq);
4383  // pTest(qq);
4384  // pTest(aq);
4385  // if (aq!=NULL) qq=pMult(aq,qq);
4386  // aq = qq;
4387  // while (pNext(aq) != NULL) pIter(aq);
4388  // pNext(aq) = result;
4389  // aq = NULL;
4390  // result = qq;
4391  // }
4392  // else if (aq!=NULL)
4393  // {
4394  // pDelete(&aq);
4395  // }
4396  //}
4397  //p = result;
4398  //result = NULL;
4399  //while (p != NULL)
4400  //{
4401  // qq = p;
4402  // pIter(p);
4403  // qq->next = NULL;
4404  // result = pAdd(result, qq);
4405  //}
4406 #endif
4407  p_Test(result,dst);
4408 #if 0
4409  p_Test(result,dst);
4410  PrintS("result: "); p_Write(result,dst,dst);
4411 #endif
4412  #ifdef HAVE_PLURAL
4413  p_LmDelete(&tmp_mm,dst);
4414  #endif
4415  return result;
4416 }
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1....
Definition: coeffs.h:783
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:846
number ndCopyMap(number a, const coeffs src, const coeffs dst)
Definition: numbers.cc:255
#define rRing_has_Comp(r)
Definition: monomials.h:266
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:4092
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1297
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:342
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:1051
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1219
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:522
number ntInit(long i, const coeffs cf)
Definition: transext.cc:704

◆ p_PolyDiv()

poly p_PolyDiv ( poly &  p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1866 of file p_polys.cc.

1867 {
1868  assume(divisor != NULL);
1869  if (p == NULL) return NULL;
1870 
1871  poly result = NULL;
1872  number divisorLC = p_GetCoeff(divisor, r);
1873  int divisorLE = p_GetExp(divisor, 1, r);
1874  while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1875  {
1876  /* determine t = LT(p) / LT(divisor) */
1877  poly t = p_ISet(1, r);
1878  number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1879  n_Normalize(c,r->cf);
1880  p_SetCoeff(t, c, r);
1881  int e = p_GetExp(p, 1, r) - divisorLE;
1882  p_SetExp(t, 1, e, r);
1883  p_Setm(t, r);
1884  if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1885  p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1886  }
1887  return result;
1888 }
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:587

◆ p_Pow()

static poly p_Pow ( poly  p,
int  i,
const ring  r 
)
static

Definition at line 2167 of file p_polys.cc.

2168 {
2169  poly rc = p_Copy(p,r);
2170  i -= 2;
2171  do
2172  {
2173  rc = p_Mult_q(rc,p_Copy(p,r),r);
2174  p_Normalize(rc,r);
2175  i--;
2176  }
2177  while (i != 0);
2178  return p_Mult_q(rc,p,r);
2179 }

◆ p_Pow_charp()

static poly p_Pow_charp ( poly  p,
int  i,
const ring  r 
)
static

Definition at line 2181 of file p_polys.cc.

2182 {
2183  //assume char_p == i
2184  poly h=p;
2185  while(h!=NULL) { p_MonPower(h,i,r);pIter(h);}
2186  return p;
2187 }
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:1996

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2193 of file p_polys.cc.

2194 {
2195  poly rc=NULL;
2196 
2197  if (i==0)
2198  {
2199  p_Delete(&p,r);
2200  return p_One(r);
2201  }
2202 
2203  if(p!=NULL)
2204  {
2205  if ( (i > 0) && ((unsigned long ) i > (r->bitmask))
2206  #ifdef HAVE_SHIFTBBA
2207  && (!rIsLPRing(r))
2208  #endif
2209  )
2210  {
2211  Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2212  return NULL;
2213  }
2214  switch (i)
2215  {
2216 // cannot happen, see above
2217 // case 0:
2218 // {
2219 // rc=pOne();
2220 // pDelete(&p);
2221 // break;
2222 // }
2223  case 1:
2224  rc=p;
2225  break;
2226  case 2:
2227  rc=p_Mult_q(p_Copy(p,r),p,r);
2228  break;
2229  default:
2230  if (i < 0)
2231  {
2232  p_Delete(&p,r);
2233  return NULL;
2234  }
2235  else
2236  {
2237 #ifdef HAVE_PLURAL
2238  if (rIsNCRing(r)) /* in the NC case nothing helps :-( */
2239  {
2240  int j=i;
2241  rc = p_Copy(p,r);
2242  while (j>1)
2243  {
2244  rc = p_Mult_q(p_Copy(p,r),rc,r);
2245  j--;
2246  }
2247  p_Delete(&p,r);
2248  return rc;
2249  }
2250 #endif
2251  rc = pNext(p);
2252  if (rc == NULL)
2253  return p_MonPower(p,i,r);
2254  /* else: binom ?*/
2255  int char_p=rInternalChar(r);
2256  if ((char_p>0) && (i>char_p)
2257  && ((rField_is_Zp(r,char_p)
2258  || (rField_is_Zp_a(r,char_p)))))
2259  {
2260  poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2261  int rest=i-char_p;
2262  while (rest>=char_p)
2263  {
2264  rest-=char_p;
2265  h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2266  }
2267  poly res=h;
2268  if (rest>0)
2269  res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2270  p_Delete(&p,r);
2271  return res;
2272  }
2273  if ((pNext(rc) != NULL)
2274  || rField_is_Ring(r)
2275  )
2276  return p_Pow(p,i,r);
2277  if ((char_p==0) || (i<=char_p))
2278  return p_TwoMonPower(p,i,r);
2279  return p_Pow(p,i,r);
2280  }
2281  /*end default:*/
2282  }
2283  }
2284  return rc;
2285 }
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2193
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2102
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2181
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2167
void Werror(const char *fmt,...)
Definition: reporter.cc:189
static int rInternalChar(const ring r)
Definition: ring.h:690
static BOOLEAN rIsLPRing(const ring r)
Definition: ring.h:411

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  ph,
const ring  r 
)

Definition at line 3208 of file p_polys.cc.

3209 {
3210  if( ph == NULL )
3211  return;
3212 
3213  const coeffs C = r->cf;
3214 
3215  number h;
3216  poly p;
3217 
3218  if (nCoeff_is_Ring(C))
3219  {
3220  p_ContentForGB(ph,r);
3221  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3222  assume( n_GreaterZero(pGetCoeff(ph),C) );
3223  return;
3224  }
3225 
3227  {
3228  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3229  return;
3230  }
3231  p = ph;
3232 
3233  assume(p != NULL);
3234 
3235  if(pNext(p)==NULL) // a monomial
3236  {
3237  p_SetCoeff(p, n_Init(1, C), r);
3238  return;
3239  }
3240 
3241  assume(pNext(p)!=NULL);
3242 
3243  if(!nCoeff_is_Q(C) && !nCoeff_is_transExt(C))
3244  {
3245  h = p_GetCoeff(p, C);
3246  number hInv = n_Invers(h, C);
3247  pIter(p);
3248  while (p!=NULL)
3249  {
3250  p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3251  pIter(p);
3252  }
3253  n_Delete(&hInv, C);
3254  p = ph;
3255  p_SetCoeff(p, n_Init(1, C), r);
3256  }
3257 
3258  p_Cleardenom(ph, r); //removes also Content
3259 
3260 
3261  /* normalize ph over a transcendental extension s.t.
3262  lead (ph) is > 0 if extRing->cf == Q
3263  or lead (ph) is monic if extRing->cf == Zp*/
3264  if (nCoeff_is_transExt(C))
3265  {
3266  p= ph;
3267  h= p_GetCoeff (p, C);
3268  fraction f = (fraction) h;
3269  number n=p_GetCoeff (NUM (f),C->extRing->cf);
3270  if (rField_is_Q (C->extRing))
3271  {
3272  if (!n_GreaterZero(n,C->extRing->cf))
3273  {
3274  p=p_Neg (p,r);
3275  }
3276  }
3277  else if (rField_is_Zp(C->extRing))
3278  {
3279  if (!n_IsOne (n, C->extRing->cf))
3280  {
3281  n=n_Invers (n,C->extRing->cf);
3282  nMapFunc nMap;
3283  nMap= n_SetMap (C->extRing->cf, C);
3284  number ninv= nMap (n,C->extRing->cf, C);
3285  p=__p_Mult_nn (p, ninv, r);
3286  n_Delete (&ninv, C);
3287  n_Delete (&n, C->extRing->cf);
3288  }
3289  }
3290  p= ph;
3291  }
3292 
3293  return;
3294 }
static FORCE_INLINE BOOLEAN nCoeff_is_Ring(const coeffs r)
Definition: coeffs.h:730
static FORCE_INLINE BOOLEAN nCoeff_is_Zp(const coeffs r)
Definition: coeffs.h:800
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2910

◆ p_Read()

const char* p_Read ( const char *  st,
poly &  rc,
const ring  r 
)

Definition at line 1370 of file p_polys.cc.

1371 {
1372  if (r==NULL) { rc=NULL;return st;}
1373  int i,j;
1374  rc = p_Init(r);
1375  const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1376  if (s==st)
1377  /* i.e. it does not start with a coeff: test if it is a ringvar*/
1378  {
1379  j = r_IsRingVar(s,r->names,r->N);
1380  if (j >= 0)
1381  {
1382  p_IncrExp(rc,1+j,r);
1383  while (*s!='\0') s++;
1384  goto done;
1385  }
1386  }
1387  while (*s!='\0')
1388  {
1389  char ss[2];
1390  ss[0] = *s++;
1391  ss[1] = '\0';
1392  j = r_IsRingVar(ss,r->names,r->N);
1393  if (j >= 0)
1394  {
1395  const char *s_save=s;
1396  s = eati(s,&i);
1397  if (((unsigned long)i) > r->bitmask/2)
1398  {
1399  // exponent to large: it is not a monomial
1400  p_LmDelete(&rc,r);
1401  return s_save;
1402  }
1403  p_AddExp(rc,1+j, (long)i, r);
1404  }
1405  else
1406  {
1407  // 1st char of is not a varname
1408  // We return the parsed polynomial nevertheless. This is needed when
1409  // we are parsing coefficients in a rational function field.
1410  s--;
1411  break;
1412  }
1413  }
1414 done:
1415  if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1416  else
1417  {
1418 #ifdef HAVE_PLURAL
1419  // in super-commutative ring
1420  // squares of anti-commutative variables are zeroes!
1421  if(rIsSCA(r))
1422  {
1423  const unsigned int iFirstAltVar = scaFirstAltVar(r);
1424  const unsigned int iLastAltVar = scaLastAltVar(r);
1425 
1426  assume(rc != NULL);
1427 
1428  for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1429  if( p_GetExp(rc, k, r) > 1 )
1430  {
1431  p_LmDelete(&rc, r);
1432  goto finish;
1433  }
1434  }
1435 #endif
1436 
1437  p_Setm(rc,r);
1438  }
1439 finish:
1440  return s;
1441 }
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface....
Definition: coeffs.h:598
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
static bool rIsSCA(const ring r)
Definition: nc.h:190
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:591
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:212
static short scaLastAltVar(ring r)
Definition: sca.h:25
static short scaFirstAltVar(ring r)
Definition: sca.h:18

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4563 of file p_polys.cc.

4564 {
4565  int *ww=iv2array(w,R);
4566  if(p!=NULL)
4567  {
4568  if(u==NULL)
4569  p=p_JetW(p,n,ww,R);
4570  else
4571  p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4572  }
4573  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(int));
4574  return p;
4575 }
static poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4534

◆ p_Setm_Dummy()

void p_Setm_Dummy ( poly  p,
const ring  r 
)

Definition at line 541 of file p_polys.cc.

542 {
543  p_LmCheckPolyRing(p, r);
544 }

◆ p_Setm_General()

void p_Setm_General ( poly  p,
const ring  r 
)

!!!????? where?????

Definition at line 158 of file p_polys.cc.

159 {
160  p_LmCheckPolyRing(p, r);
161  int pos=0;
162  if (r->typ!=NULL)
163  {
164  loop
165  {
166  unsigned long ord=0;
167  sro_ord* o=&(r->typ[pos]);
168  switch(o->ord_typ)
169  {
170  case ro_dp:
171  {
172  int a,e;
173  a=o->data.dp.start;
174  e=o->data.dp.end;
175  for(int i=a;i<=e;i++) ord+=p_GetExp(p,i,r);
176  p->exp[o->data.dp.place]=ord;
177  break;
178  }
179  case ro_wp_neg:
181  // no break;
182  case ro_wp:
183  {
184  int a,e;
185  a=o->data.wp.start;
186  e=o->data.wp.end;
187  int *w=o->data.wp.weights;
188 #if 1
189  for(int i=a;i<=e;i++) ord+=((unsigned long)p_GetExp(p,i,r))*((unsigned long)w[i-a]);
190 #else
191  long ai;
192  int ei,wi;
193  for(int i=a;i<=e;i++)
194  {
195  ei=p_GetExp(p,i,r);
196  wi=w[i-a];
197  ai=ei*wi;
198  if (ai/ei!=wi) pSetm_error=TRUE;
199  ord+=ai;
200  if (ord<ai) pSetm_error=TRUE;
201  }
202 #endif
203  p->exp[o->data.wp.place]=ord;
204  break;
205  }
206  case ro_am:
207  {
208  ord = POLY_NEGWEIGHT_OFFSET;
209  const short a=o->data.am.start;
210  const short e=o->data.am.end;
211  const int * w=o->data.am.weights;
212 #if 1
213  for(short i=a; i<=e; i++, w++)
214  ord += ((*w) * p_GetExp(p,i,r));
215 #else
216  long ai;
217  int ei,wi;
218  for(short i=a;i<=e;i++)
219  {
220  ei=p_GetExp(p,i,r);
221  wi=w[i-a];
222  ai=ei*wi;
223  if (ai/ei!=wi) pSetm_error=TRUE;
224  ord += ai;
225  if (ord<ai) pSetm_error=TRUE;
226  }
227 #endif
228  const int c = p_GetComp(p,r);
229 
230  const short len_gen= o->data.am.len_gen;
231 
232  if ((c > 0) && (c <= len_gen))
233  {
234  assume( w == o->data.am.weights_m );
235  assume( w[0] == len_gen );
236  ord += w[c];
237  }
238 
239  p->exp[o->data.am.place] = ord;
240  break;
241  }
242  case ro_wp64:
243  {
244  int64 ord=0;
245  int a,e;
246  a=o->data.wp64.start;
247  e=o->data.wp64.end;
248  int64 *w=o->data.wp64.weights64;
249  int64 ei,wi,ai;
250  for(int i=a;i<=e;i++)
251  {
252  //Print("exp %d w %d \n",p_GetExp(p,i,r),(int)w[i-a]);
253  //ord+=((int64)p_GetExp(p,i,r))*w[i-a];
254  ei=(int64)p_GetExp(p,i,r);
255  wi=w[i-a];
256  ai=ei*wi;
257  if(ei!=0 && ai/ei!=wi)
258  {
260  #if SIZEOF_LONG == 4
261  Print("ai %lld, wi %lld\n",ai,wi);
262  #else
263  Print("ai %ld, wi %ld\n",ai,wi);
264  #endif
265  }
266  ord+=ai;
267  if (ord<ai)
268  {
270  #if SIZEOF_LONG == 4
271  Print("ai %lld, ord %lld\n",ai,ord);
272  #else
273  Print("ai %ld, ord %ld\n",ai,ord);
274  #endif
275  }
276  }
277  #if SIZEOF_LONG == 4
278  int64 mask=(int64)0x7fffffff;
279  long a_0=(long)(ord&mask); //2^31
280  long a_1=(long)(ord >>31 ); /*(ord/(mask+1));*/
281 
282  //Print("mask: %x, ord: %d, a_0: %d, a_1: %d\n"
283  //,(int)mask,(int)ord,(int)a_0,(int)a_1);
284  //Print("mask: %d",mask);
285 
286  p->exp[o->data.wp64.place]=a_1;
287  p->exp[o->data.wp64.place+1]=a_0;
288  #elif SIZEOF_LONG == 8
289  p->exp[o->data.wp64.place]=ord;
290  #endif
291 // if(p_Setm_error) PrintS("***************************\n"
292 // "***************************\n"
293 // "**WARNING: overflow error**\n"
294 // "***************************\n"
295 // "***************************\n");
296  break;
297  }
298  case ro_cp:
299  {
300  int a,e;
301  a=o->data.cp.start;
302  e=o->data.cp.end;
303  int pl=o->data.cp.place;
304  for(int i=a;i<=e;i++) { p->exp[pl]=p_GetExp(p,i,r); pl++; }
305  break;
306  }
307  case ro_syzcomp:
308  {
309  long c=__p_GetComp(p,r);
310  long sc = c;
311  int* Components = (_componentsExternal ? _components :
312  o->data.syzcomp.Components);
313  long* ShiftedComponents = (_componentsExternal ? _componentsShifted:
314  o->data.syzcomp.ShiftedComponents);
315  if (ShiftedComponents != NULL)
316  {
317  assume(Components != NULL);
318  assume(c == 0 || Components[c] != 0);
319  sc = ShiftedComponents[Components[c]];
320  assume(c == 0 || sc != 0);
321  }
322  p->exp[o->data.syzcomp.place]=sc;
323  break;
324  }
325  case ro_syz:
326  {
327  const unsigned long c = __p_GetComp(p, r);
328  const short place = o->data.syz.place;
329  const int limit = o->data.syz.limit;
330 
331  if (c > (unsigned long)limit)
332  p->exp[place] = o->data.syz.curr_index;
333  else if (c > 0)
334  {
335  assume( (1 <= c) && (c <= (unsigned long)limit) );
336  p->exp[place]= o->data.syz.syz_index[c];
337  }
338  else
339  {
340  assume(c == 0);
341  p->exp[place]= 0;
342  }
343  break;
344  }
345  // Prefix for Induced Schreyer ordering
346  case ro_isTemp: // Do nothing?? (to be removed into suffix later on...?)
347  {
348  assume(p != NULL);
349 
350 #ifndef SING_NDEBUG
351 #if MYTEST
352  Print("p_Setm_General: ro_isTemp ord: pos: %d, p: ", pos); p_wrp(p, r);
353 #endif
354 #endif
355  int c = p_GetComp(p, r);
356 
357  assume( c >= 0 );
358 
359  // Let's simulate case ro_syz above....
360  // Should accumulate (by Suffix) and be a level indicator
361  const int* const pVarOffset = o->data.isTemp.pVarOffset;
362 
363  assume( pVarOffset != NULL );
364 
365  // TODO: Can this be done in the suffix???
366  for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
367  {
368  const int vo = pVarOffset[i];
369  if( vo != -1) // TODO: optimize: can be done once!
370  {
371  // Hans! Please don't break it again! p_SetExp(p, ..., r, vo) is correct:
372  p_SetExp(p, p_GetExp(p, i, r), r, vo); // copy put them verbatim
373  // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
374  assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
375  }
376  }
377 #ifndef SING_NDEBUG
378  for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
379  {
380  const int vo = pVarOffset[i];
381  if( vo != -1) // TODO: optimize: can be done once!
382  {
383  // Hans! Please don't break it again! p_GetExp(p, r, vo) is correct:
384  assume( p_GetExp(p, r, vo) == p_GetExp(p, i, r) ); // copy put them verbatim
385  }
386  }
387 #if MYTEST
388 // if( p->exp[o->data.isTemp.start] > 0 )
389  PrintS("after Values: "); p_wrp(p, r);
390 #endif
391 #endif
392  break;
393  }
394 
395  // Suffix for Induced Schreyer ordering
396  case ro_is:
397  {
398 #ifndef SING_NDEBUG
399 #if MYTEST
400  Print("p_Setm_General: ro_is ord: pos: %d, p: ", pos); p_wrp(p, r);
401 #endif
402 #endif
403 
404  assume(p != NULL);
405 
406  int c = p_GetComp(p, r);
407 
408  assume( c >= 0 );
409  const ideal F = o->data.is.F;
410  const int limit = o->data.is.limit;
411  assume( limit >= 0 );
412  const int start = o->data.is.start;
413 
414  if( F != NULL && c > limit )
415  {
416 #ifndef SING_NDEBUG
417 #if MYTEST
418  Print("p_Setm_General: ro_is : in rSetm: pos: %d, c: %d > limit: %d\n", c, pos, limit);
419  PrintS("preComputed Values: ");
420  p_wrp(p, r);
421 #endif
422 #endif
423 // if( c > limit ) // BUG???
424  p->exp[start] = 1;
425 // else
426 // p->exp[start] = 0;
427 
428 
429  c -= limit;
430  assume( c > 0 );
431  c--;
432 
433  if( c >= IDELEMS(F) )
434  break;
435 
436  assume( c < IDELEMS(F) ); // What about others???
437 
438  const poly pp = F->m[c]; // get reference monomial!!!
439 
440  if(pp == NULL)
441  break;
442 
443  assume(pp != NULL);
444 
445 #ifndef SING_NDEBUG
446 #if MYTEST
447  Print("Respective F[c - %d: %d] pp: ", limit, c);
448  p_wrp(pp, r);
449 #endif
450 #endif
451 
452  const int end = o->data.is.end;
453  assume(start <= end);
454 
455 
456 // const int st = o->data.isTemp.start;
457 
458 #ifndef SING_NDEBUG
459 #if MYTEST
460  Print("p_Setm_General: is(-Temp-) :: c: %d, limit: %d, [st:%d] ===>>> %ld\n", c, limit, start, p->exp[start]);
461 #endif
462 #endif
463 
464  // p_ExpVectorAdd(p, pp, r);
465 
466  for( int i = start; i <= end; i++) // v[0] may be here...
467  p->exp[i] += pp->exp[i]; // !!!!!!!! ADD corresponding LT(F)
468 
469  // p_MemAddAdjust(p, ri);
470  if (r->NegWeightL_Offset != NULL)
471  {
472  for (int i=r->NegWeightL_Size-1; i>=0; i--)
473  {
474  const int _i = r->NegWeightL_Offset[i];
475  if( start <= _i && _i <= end )
476  p->exp[_i] -= POLY_NEGWEIGHT_OFFSET;
477  }
478  }
479 
480 
481 #ifndef SING_NDEBUG
482  const int* const pVarOffset = o->data.is.pVarOffset;
483 
484  assume( pVarOffset != NULL );
485 
486  for( int i = 1; i <= r->N; i++ ) // No v[0] here!!!
487  {
488  const int vo = pVarOffset[i];
489  if( vo != -1) // TODO: optimize: can be done once!
490  // Hans! Please don't break it again! p_GetExp(p/pp, r, vo) is correct:
491  assume( p_GetExp(p, r, vo) == (p_GetExp(p, i, r) + p_GetExp(pp, r, vo)) );
492  }
493  // TODO: how to check this for computed values???
494 #if MYTEST
495  PrintS("Computed Values: "); p_wrp(p, r);
496 #endif
497 #endif
498  } else
499  {
500  p->exp[start] = 0; //!!!!????? where?????
501 
502  const int* const pVarOffset = o->data.is.pVarOffset;
503 
504  // What about v[0] - component: it will be added later by
505  // suffix!!!
506  // TODO: Test it!
507  const int vo = pVarOffset[0];
508  if( vo != -1 )
509  p->exp[vo] = c; // initial component v[0]!
510 
511 #ifndef SING_NDEBUG
512 #if MYTEST
513  Print("ELSE p_Setm_General: ro_is :: c: %d <= limit: %d, vo: %d, exp: %d\n", c, limit, vo, p->exp[vo]);
514  p_wrp(p, r);
515 #endif
516 #endif
517  }
518 
519  break;
520  }
521  default:
522  dReportError("wrong ord in rSetm:%d\n",o->ord_typ);
523  return;
524  }
525  pos++;
526  if (pos == r->OrdSize) return;
527  }
528  }
529 }
long int64
Definition: auxiliary.h:68
#define Print
Definition: emacs.cc:80
if(yy_init)
Definition: libparse.cc:1420
int dReportError(const char *fmt,...)
Definition: dError.cc:43
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:236
STATIC_VAR int _componentsExternal
Definition: p_polys.cc:148
STATIC_VAR long * _componentsShifted
Definition: p_polys.cc:147
VAR BOOLEAN pSetm_error
Definition: p_polys.cc:150
STATIC_VAR int * _components
Definition: p_polys.cc:146
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:373
ro_typ ord_typ
Definition: ring.h:220
@ ro_wp64
Definition: ring.h:55
@ ro_syz
Definition: ring.h:60
@ ro_cp
Definition: ring.h:58
@ ro_is
Definition: ring.h:61
@ ro_wp_neg
Definition: ring.h:56
@ ro_isTemp
Definition: ring.h:61
@ ro_am
Definition: ring.h:54
@ ro_syzcomp
Definition: ring.h:59
union sro_ord::@1 data
Definition: ring.h:219
#define IDELEMS(i)
Definition: simpleideals.h:23

◆ p_Setm_Syz()

void p_Setm_Syz ( poly  p,
ring  r,
int *  Components,
long *  ShiftedComponents 
)

Definition at line 531 of file p_polys.cc.

532 {
533  _components = Components;
534  _componentsShifted = ShiftedComponents;
536  p_Setm_General(p, r);
538 }

◆ p_Setm_TotalDegree()

void p_Setm_TotalDegree ( poly  p,
const ring  r 
)

Definition at line 547 of file p_polys.cc.

548 {
549  p_LmCheckPolyRing(p, r);
550  p->exp[r->pOrdIndex] = p_Totaldegree(p, r);
551 }

◆ p_Setm_WFirstTotalDegree()

void p_Setm_WFirstTotalDegree ( poly  p,
const ring  r 
)

Definition at line 554 of file p_polys.cc.

555 {
556  p_LmCheckPolyRing(p, r);
557  p->exp[r->pOrdIndex] = p_WFirstTotalDegree(p, r);
558 }
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:596

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3751 of file p_polys.cc.

3752 {
3753  if (w!=NULL)
3754  {
3755  r->pModW = w;
3756  pOldFDeg = r->pFDeg;
3757  pOldLDeg = r->pLDeg;
3758  pOldLexOrder = r->pLexOrder;
3759  pSetDegProcs(r,pModDeg);
3760  r->pLexOrder = TRUE;
3761  }
3762  else
3763  {
3764  r->pModW = NULL;
3766  r->pLexOrder = pOldLexOrder;
3767  }
3768 }
STATIC_VAR pLDegProc pOldLDeg
Definition: p_polys.cc:3739
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3727
STATIC_VAR BOOLEAN pOldLexOrder
Definition: p_polys.cc:3740
STATIC_VAR pFDegProc pOldFDeg
Definition: p_polys.cc:3738
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3715
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3742

◆ p_Shift()

void p_Shift ( poly *  p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4771 of file p_polys.cc.

4772 {
4773  poly qp1 = *p,qp2 = *p;/*working pointers*/
4774  int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4775 
4776  if (j+i < 0) return ;
4777  BOOLEAN toPoly= ((j == -i) && (j == k));
4778  while (qp1 != NULL)
4779  {
4780  if (toPoly || (__p_GetComp(qp1,r)+i > 0))
4781  {
4782  p_AddComp(qp1,i,r);
4783  p_SetmComp(qp1,r);
4784  qp2 = qp1;
4785  pIter(qp1);
4786  }
4787  else
4788  {
4789  if (qp2 == *p)
4790  {
4791  pIter(*p);
4792  p_LmDelete(&qp2,r);
4793  qp2 = *p;
4794  qp1 = *p;
4795  }
4796  else
4797  {
4798  qp2->next = qp1->next;
4799  if (qp1!=NULL) p_LmDelete(&qp1,r);
4800  qp1 = qp2->next;
4801  }
4802  }
4803  }
4804 }
return
Definition: cfGcdAlgExt.cc:218
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:313
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:447
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:292

◆ p_SimpleContent()

void p_SimpleContent ( poly  ph,
int  smax,
const ring  r 
)

Definition at line 2629 of file p_polys.cc.

2630 {
2631  if(TEST_OPT_CONTENTSB) return;
2632  if (ph==NULL) return;
2633  if (pNext(ph)==NULL)
2634  {
2635  p_SetCoeff(ph,n_Init(1,r->cf),r);
2636  return;
2637  }
2638  if (pNext(pNext(ph))==NULL)
2639  {
2640  return;
2641  }
2642  if (!(rField_is_Q(r))
2643  && (!rField_is_Q_a(r))
2644  && (!rField_is_Zp_a(r))
2645  && (!rField_is_Z(r))
2646  )
2647  {
2648  return;
2649  }
2650  number d=p_InitContent(ph,r);
2651  number h=d;
2652  if (n_Size(d,r->cf)<=smax)
2653  {
2654  n_Delete(&h,r->cf);
2655  //if (TEST_OPT_PROT) PrintS("G");
2656  return;
2657  }
2658 
2659  poly p=ph;
2660  if (smax==1) smax=2;
2661  while (p!=NULL)
2662  {
2663 #if 1
2664  d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2665  n_Delete(&h,r->cf);
2666  h = d;
2667 #else
2668  n_InpGcd(h,pGetCoeff(p),r->cf);
2669 #endif
2670  if(n_Size(h,r->cf)<smax)
2671  {
2672  //if (TEST_OPT_PROT) PrintS("g");
2673  n_Delete(&h,r->cf);
2674  return;
2675  }
2676  pIter(p);
2677  }
2678  p = ph;
2679  if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2680  if(n_IsOne(h,r->cf))
2681  {
2682  n_Delete(&h,r->cf);
2683  return;
2684  }
2685  if (TEST_OPT_PROT) PrintS("c");
2686  while (p!=NULL)
2687  {
2688 #if 1
2689  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2690  p_SetCoeff(p,d,r);
2691 #else
2692  STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2693 #endif
2694  pIter(p);
2695  }
2696  n_Delete(&h,r->cf);
2697 }
#define TEST_OPT_PROT
Definition: options.h:103

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3318 of file p_polys.cc.

3319 {
3320  int count = 0;
3321  if (r->cf->has_simple_Alloc)
3322  return pLength(p);
3323  while ( p != NULL )
3324  {
3325  count+= n_Size( pGetCoeff( p ), r->cf );
3326  pIter( p );
3327  }
3328  return count;
3329 }
int status int void size_t count
Definition: si_signals.h:59

◆ p_Split()

void p_Split ( poly  p,
poly *  h 
)

Definition at line 1320 of file p_polys.cc.

1321 {
1322  *h=pNext(p);
1323  pNext(p)=NULL;
1324 }

◆ p_SplitAndReversePoly()

static void p_SplitAndReversePoly ( poly  p,
int  n,
poly *  non_zero,
poly *  zero,
const ring  r 
)
static

Definition at line 3894 of file p_polys.cc.

3895 {
3896  if (p == NULL)
3897  {
3898  *non_zero = NULL;
3899  *zero = NULL;
3900  return;
3901  }
3902  spolyrec sz;
3903  poly z, n_z, next;
3904  z = &sz;
3905  n_z = NULL;
3906 
3907  while(p != NULL)
3908  {
3909  next = pNext(p);
3910  if (p_GetExp(p, n,r) == 0)
3911  {
3912  pNext(z) = p;
3913  pIter(z);
3914  }
3915  else
3916  {
3917  pNext(p) = n_z;
3918  n_z = p;
3919  }
3920  p = next;
3921  }
3922  pNext(z) = NULL;
3923  *zero = pNext(&sz);
3924  *non_zero = n_z;
3925 }

◆ p_Sub()

poly p_Sub ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1986 of file p_polys.cc.

1987 {
1988  return p_Add_q(p1, p_Neg(p2,r),r);
1989 }

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 4023 of file p_polys.cc.

4024 {
4025 #ifdef HAVE_SHIFTBBA
4026  // also don't even use p_Subst0 for Letterplace
4027  if (rIsLPRing(r))
4028  {
4029  poly subst = p_LPSubst(p, n, e, r);
4030  p_Delete(&p, r);
4031  return subst;
4032  }
4033 #endif
4034 
4035  if (e == NULL) return p_Subst0(p, n,r);
4036 
4037  if (p_IsConstant(e,r))
4038  {
4039  if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
4040  else return p_Subst2(p, n, pGetCoeff(e),r);
4041  }
4042 
4043 #ifdef HAVE_PLURAL
4044  if (rIsPluralRing(r))
4045  {
4046  return nc_pSubst(p,n,e,r);
4047  }
4048 #endif
4049 
4050  int exponent,i;
4051  poly h, res, m;
4052  int *me,*ee;
4053  number nu,nu1;
4054 
4055  me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4056  ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
4057  if (e!=NULL) p_GetExpV(e,ee,r);
4058  res=NULL;
4059  h=p;
4060  while (h!=NULL)
4061  {
4062  if ((e!=NULL) || (p_GetExp(h,n,r)==0))
4063  {
4064  m=p_Head(h,r);
4065  p_GetExpV(m,me,r);
4066  exponent=me[n];
4067  me[n]=0;
4068  for(i=rVar(r);i>0;i--)
4069  me[i]+=exponent*ee[i];
4070  p_SetExpV(m,me,r);
4071  if (e!=NULL)
4072  {
4073  n_Power(pGetCoeff(e),exponent,&nu,r->cf);
4074  nu1=n_Mult(pGetCoeff(m),nu,r->cf);
4075  n_Delete(&nu,r->cf);
4076  p_SetCoeff(m,nu1,r);
4077  }
4078  res=p_Add_q(res,m,r);
4079  }
4080  p_LmDelete(&h,r);
4081  }
4082  omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
4083  omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
4084  return res;
4085 }
CanonicalForm subst(const CanonicalForm &f, const CFList &a, const CFList &b, const CanonicalForm &Rstar, bool isFunctionField)
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3203
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3998
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3930
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3957
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:400
poly p_LPSubst(poly p, int n, poly e, const ring r)
Definition: shiftop.cc:912

◆ p_Subst0()

static poly p_Subst0 ( poly  p,
int  n,
const ring  r 
)
static

Definition at line 3998 of file p_polys.cc.

3999 {
4000  spolyrec res;
4001  poly h = &res;
4002  pNext(h) = p;
4003 
4004  while (pNext(h)!=NULL)
4005  {
4006  if (p_GetExp(pNext(h),n,r)!=0)
4007  {
4008  p_LmDelete(&pNext(h),r);
4009  }
4010  else
4011  {
4012  pIter(h);
4013  }
4014  }
4015  p_Test(pNext(&res),r);
4016  return pNext(&res);
4017 }

◆ p_Subst1()

static poly p_Subst1 ( poly  p,
int  n,
const ring  r 
)
static

Definition at line 3930 of file p_polys.cc.

3931 {
3932  poly qq=NULL, result = NULL;
3933  poly zero=NULL, non_zero=NULL;
3934 
3935  // reverse, so that add is likely to be linear
3936  p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3937 
3938  while (non_zero != NULL)
3939  {
3940  assume(p_GetExp(non_zero, n,r) != 0);
3941  qq = non_zero;
3942  pIter(non_zero);
3943  qq->next = NULL;
3944  p_SetExp(qq,n,0,r);
3945  p_Setm(qq,r);
3946  result = p_Add_q(result,qq,r);
3947  }
3948  p = p_Add_q(result, zero,r);
3949  p_Test(p,r);
3950  return p;
3951 }
static void p_SplitAndReversePoly(poly p, int n, poly *non_zero, poly *zero, const ring r)
Definition: p_polys.cc:3894

◆ p_Subst2()

static poly p_Subst2 ( poly  p,
int  n,
number  e,
const ring  r 
)
static

Definition at line 3957 of file p_polys.cc.

3958 {
3959  assume( ! n_IsZero(e,r->cf) );
3960  poly qq,result = NULL;
3961  number nn, nm;
3962  poly zero, non_zero;
3963 
3964  // reverse, so that add is likely to be linear
3965  p_SplitAndReversePoly(p, n, &non_zero, &zero,r);
3966 
3967  while (non_zero != NULL)
3968  {
3969  assume(p_GetExp(non_zero, n, r) != 0);
3970  qq = non_zero;
3971  pIter(non_zero);
3972  qq->next = NULL;
3973  n_Power(e, p_GetExp(qq, n, r), &nn,r->cf);
3974  nm = n_Mult(nn, pGetCoeff(qq),r->cf);
3975 #ifdef HAVE_RINGS
3976  if (n_IsZero(nm,r->cf))
3977  {
3978  p_LmFree(&qq,r);
3979  n_Delete(&nm,r->cf);
3980  }
3981  else
3982 #endif
3983  {
3984  p_SetCoeff(qq, nm,r);
3985  p_SetExp(qq, n, 0,r);
3986  p_Setm(qq,r);
3987  result = p_Add_q(result,qq,r);
3988  }
3989  n_Delete(&nn,r->cf);
3990  }
3991  p = p_Add_q(result, zero,r);
3992  p_Test(p,r);
3993  return p;
3994 }

◆ p_TakeOutComp() [1/2]

poly p_TakeOutComp ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3513 of file p_polys.cc.

3514 {
3515  poly q = *p,qq=NULL,result = NULL;
3516 
3517  if (q==NULL) return NULL;
3518  BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3519  if (__p_GetComp(q,r)==k)
3520  {
3521  result = q;
3522  do
3523  {
3524  p_SetComp(q,0,r);
3525  if (use_setmcomp) p_SetmComp(q,r);
3526  qq = q;
3527  pIter(q);
3528  }
3529  while ((q!=NULL) && (__p_GetComp(q,r)==k));
3530  *p = q;
3531  pNext(qq) = NULL;
3532  }
3533  if (q==NULL) return result;
3534  if (__p_GetComp(q,r) > k)
3535  {
3536  p_SubComp(q,1,r);
3537  if (use_setmcomp) p_SetmComp(q,r);
3538  }
3539  poly pNext_q;
3540  while ((pNext_q=pNext(q))!=NULL)
3541  {
3542  if (__p_GetComp(pNext_q,r)==k)
3543  {
3544  if (result==NULL)
3545  {
3546  result = pNext_q;
3547  qq = result;
3548  }
3549  else
3550  {
3551  pNext(qq) = pNext_q;
3552  pIter(qq);
3553  }
3554  pNext(q) = pNext(pNext_q);
3555  pNext(qq) =NULL;
3556  p_SetComp(qq,0,r);
3557  if (use_setmcomp) p_SetmComp(qq,r);
3558  }
3559  else
3560  {
3561  /*pIter(q);*/ q=pNext_q;
3562  if (__p_GetComp(q,r) > k)
3563  {
3564  p_SubComp(q,1,r);
3565  if (use_setmcomp) p_SetmComp(q,r);
3566  }
3567  }
3568  }
3569  return result;
3570 }
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1993

◆ p_TakeOutComp() [2/2]

void p_TakeOutComp ( poly *  r_p,
long  comp,
poly *  r_q,
int *  lq,
const ring  r 
)

Definition at line 3574 of file p_polys.cc.

3575 {
3576  spolyrec pp, qq;
3577  poly p, q, p_prev;
3578  int l = 0;
3579 
3580 #ifndef SING_NDEBUG
3581  int lp = pLength(*r_p);
3582 #endif
3583 
3584  pNext(&pp) = *r_p;
3585  p = *r_p;
3586  p_prev = &pp;
3587  q = &qq;
3588 
3589  while(p != NULL)
3590  {
3591  while (__p_GetComp(p,r) == comp)
3592  {
3593  pNext(q) = p;
3594  pIter(q);
3595  p_SetComp(p, 0,r);
3596  p_SetmComp(p,r);
3597  pIter(p);
3598  l++;
3599  if (p == NULL)
3600  {
3601  pNext(p_prev) = NULL;
3602  goto Finish;
3603  }
3604  }
3605  pNext(p_prev) = p;
3606  p_prev = p;
3607  pIter(p);
3608  }
3609 
3610  Finish:
3611  pNext(q) = NULL;
3612  *r_p = pNext(&pp);
3613  *r_q = pNext(&qq);
3614  *lq = l;
3615 #ifndef SING_NDEBUG
3616  assume(pLength(*r_p) + pLength(*r_q) == (unsigned)lp);
3617 #endif
3618  p_Test(*r_p,r);
3619  p_Test(*r_q,r);
3620 }
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
Definition: lq.h:40

◆ p_TakeOutComp1()

poly p_TakeOutComp1 ( poly *  p,
int  k,
const ring  r 
)

Definition at line 3462 of file p_polys.cc.

3463 {
3464  poly q = *p;
3465 
3466  if (q==NULL) return NULL;
3467 
3468  poly qq=NULL,result = NULL;
3469  long unsigned kk=k;
3470  if (__p_GetComp(q,r)==kk)
3471  {
3472  result = q; /* *p */
3473  while ((q!=NULL) && (__p_GetComp(q,r)==kk))
3474  {
3475  p_SetComp(q,0,r);
3476  p_SetmComp(q,r);
3477  qq = q;
3478  pIter(q);
3479  }
3480  *p = q;
3481  pNext(qq) = NULL;
3482  }
3483  if (q==NULL) return result;
3484 // if (pGetComp(q) > k) pGetComp(q)--;
3485  while (pNext(q)!=NULL)
3486  {
3487  if (__p_GetComp(pNext(q),r)==kk)
3488  {
3489  if (result==NULL)
3490  {
3491  result = pNext(q);
3492  qq = result;
3493  }
3494  else
3495  {
3496  pNext(qq) = pNext(q);
3497  pIter(qq);
3498  }
3499  pNext(q) = pNext(pNext(q));
3500  pNext(qq) =NULL;
3501  p_SetComp(qq,0,r);
3502  p_SetmComp(qq,r);
3503  }
3504  else
3505  {
3506  pIter(q);
3507 // if (pGetComp(q) > k) pGetComp(q)--;
3508  }
3509  }
3510  return result;
3511 }

◆ p_TwoMonPower()

static poly p_TwoMonPower ( poly  p,
int  exp,
const ring  r 
)
static

Definition at line 2102 of file p_polys.cc.

2103 {
2104  int eh, e;
2105  long al;
2106  poly *a;
2107  poly tail, b, res, h;
2108  number x;
2109  number *bin = pnBin(exp,r);
2110 
2111  tail = pNext(p);
2112  if (bin == NULL)
2113  {
2114  p_MonPower(p,exp,r);
2115  p_MonPower(tail,exp,r);
2116  p_Test(p,r);
2117  return p;
2118  }
2119  eh = exp >> 1;
2120  al = (exp + 1) * sizeof(poly);
2121  a = (poly *)omAlloc(al);
2122  a[1] = p;
2123  for (e=1; e<exp; e++)
2124  {
2125  a[e+1] = p_MonMultC(a[e],p,r);
2126  }
2127  res = a[exp];
2128  b = p_Head(tail,r);
2129  for (e=exp-1; e>eh; e--)
2130  {
2131  h = a[e];
2132  x = n_Mult(bin[exp-e],pGetCoeff(h),r->cf);
2133  p_SetCoeff(h,x,r);
2134  p_MonMult(h,b,r);
2135  res = pNext(res) = h;
2136  p_MonMult(b,tail,r);
2137  }
2138  for (e=eh; e!=0; e--)
2139  {
2140  h = a[e];
2141  x = n_Mult(bin[e],pGetCoeff(h),r->cf);
2142  p_SetCoeff(h,x,r);
2143  p_MonMult(h,b,r);
2144  res = pNext(res) = h;
2145  p_MonMult(b,tail,r);
2146  }
2147  p_LmDelete(&tail,r);
2148  pNext(res) = b;
2149  pNext(b) = NULL;
2150  res = a[exp];
2151  omFreeSize((ADDRESS)a, al);
2152  pnFreeBin(bin, exp, r->cf);
2153 // tail=res;
2154 // while((tail!=NULL)&&(pNext(tail)!=NULL))
2155 // {
2156 // if(nIsZero(pGetCoeff(pNext(tail))))
2157 // {
2158 // pLmDelete(&pNext(tail));
2159 // }
2160 // else
2161 // pIter(tail);
2162 // }
2163  p_Test(res,r);
2164  return res;
2165 }
static void pnFreeBin(number *bin, int exp, const coeffs r)
Definition: p_polys.cc:2085
static poly p_MonMultC(poly p, poly q, const ring rr)
Definition: p_polys.cc:2040
static void p_MonMult(poly p, poly q, const ring r)
Definition: p_polys.cc:2020
static number * pnBin(int exp, const ring r)
Definition: p_polys.cc:2054

◆ p_Var()

int p_Var ( poly  m,
const ring  r 
)

Definition at line 4721 of file p_polys.cc.

4722 {
4723  if (m==NULL) return 0;
4724  if (pNext(m)!=NULL) return 0;
4725  int i,e=0;
4726  for (i=rVar(r); i>0; i--)
4727  {
4728  int exp=p_GetExp(m,i,r);
4729  if (exp==1)
4730  {
4731  if (e==0) e=i;
4732  else return 0;
4733  }
4734  else if (exp!=0)
4735  {
4736  return 0;
4737  }
4738  }
4739  return e;
4740 }

◆ p_Vec2Array()

void p_Vec2Array ( poly  v,
poly *  p,
int  len,
const ring  r 
)

vector to already allocated array (len>=p_MaxComp(v,r))

julia: vector to already allocated array (len=p_MaxComp(v,r))

Definition at line 3673 of file p_polys.cc.

3674 {
3675  poly h;
3676  int k;
3677 
3678  for(int i=len-1;i>=0;i--) p[i]=NULL;
3679  while (v!=NULL)
3680  {
3681  h=p_Head(v,r);
3682  k=__p_GetComp(h,r);
3683  if (k>len) { Werror("wrong rank:%d, should be %d",len,k); }
3684  else
3685  {
3686  p_SetComp(h,0,r);
3687  p_Setm(h,r);
3688  pNext(h)=p[k-1];p[k-1]=h;
3689  }
3690  pIter(v);
3691  }
3692  for(int i=len-1;i>=0;i--)
3693  {
3694  if (p[i]!=NULL) p[i]=pReverse(p[i]);
3695  }
3696 }

◆ p_Vec2Poly()

poly p_Vec2Poly ( poly  v,
int  k,
const ring  r 
)

Definition at line 3651 of file p_polys.cc.

3652 {
3653  poly h;
3654  poly res=NULL;
3655  long unsigned kk=k;
3656 
3657  while (v!=NULL)
3658  {
3659  if (__p_GetComp(v,r)==kk)
3660  {
3661  h=p_Head(v,r);
3662  p_SetComp(h,0,r);
3663  pNext(h)=res;res=h;
3664  }
3665  pIter(v);
3666  }
3667  if (res!=NULL) res=pReverse(res);
3668  return res;
3669 }

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int *  len,
const ring  r 
)

Definition at line 3703 of file p_polys.cc.

3704 {
3705  *len=p_MaxComp(v,r);
3706  if (*len==0) *len=1;
3707  *p=(poly*)omAlloc((*len)*sizeof(poly));
3708  p_Vec2Array(v,*p,*len,r);
3709 }
void p_Vec2Array(poly v, poly *p, int len, const ring r)
vector to already allocated array (len>=p_MaxComp(v,r))
Definition: p_polys.cc:3673

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int *  k,
int *  len,
const ring  r 
)

Definition at line 3429 of file p_polys.cc.

3430 {
3431  poly q=p,qq;
3432  int j=0;
3433  long unsigned i;
3434 
3435  *len = 0;
3436  while (q!=NULL)
3437  {
3438  if (p_LmIsConstantComp(q,r))
3439  {
3440  i = __p_GetComp(q,r);
3441  qq = p;
3442  while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3443  if (qq == q)
3444  {
3445  j = 0;
3446  while (qq!=NULL)
3447  {
3448  if (__p_GetComp(qq,r)==i) j++;
3449  pIter(qq);
3450  }
3451  if ((*len == 0) || (j<*len))
3452  {
3453  *len = j;
3454  *k = i;
3455  }
3456  }
3457  }
3458  pIter(q);
3459  }
3460 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:1006

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int *  k,
const ring  r 
)

Definition at line 3406 of file p_polys.cc.

3407 {
3408  poly q=p,qq;
3409  long unsigned i;
3410 
3411  while (q!=NULL)
3412  {
3413  if (p_LmIsConstantComp(q,r))
3414  {
3415  i = __p_GetComp(q,r);
3416  qq = p;
3417  while ((qq != q) && (__p_GetComp(qq,r) != i)) pIter(qq);
3418  if (qq == q)
3419  {
3420  *k = i;
3421  return TRUE;
3422  }
3423  }
3424  pIter(q);
3425  }
3426  return FALSE;
3427 }

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 714 of file p_polys.cc.

715 {
716  if (r->firstwv==NULL) return p_Totaldegree(p, r);
717  p_LmCheckPolyRing(p, r);
718  int i;
719  long j =0;
720 
721  for(i=1;i<=r->firstBlockEnds;i++)
722  j+=p_GetExp(p, i, r)*r->firstwv[i-1];
723 
724  for (;i<=rVar(r);i++)
725  j+=p_GetExp(p,i, r)*p_Weight(i, r);
726 
727  return j;
728 }
int p_Weight(int i, const ring r)
Definition: p_polys.cc:705

◆ p_Weight()

int p_Weight ( int  i,
const ring  r 
)

Definition at line 705 of file p_polys.cc.

706 {
707  if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
708  {
709  return 1;
710  }
711  return r->firstwv[i-1];
712 }

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
const ring  r 
)

Definition at line 596 of file p_polys.cc.

597 {
598  int i;
599  long sum = 0;
600 
601  for (i=1; i<= r->firstBlockEnds; i++)
602  {
603  sum += p_GetExp(p, i, r)*r->firstwv[i-1];
604  }
605  return sum;
606 }

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 613 of file p_polys.cc.

614 {
615  p_LmCheckPolyRing(p, r);
616  int i, k;
617  long j =0;
618 
619  // iterate through each block:
620  for (i=0;r->order[i]!=0;i++)
621  {
622  int b0=r->block0[i];
623  int b1=r->block1[i];
624  switch(r->order[i])
625  {
626  case ringorder_M:
627  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
628  { // in jedem block:
629  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
630  }
631  break;
632  case ringorder_am:
633  b1=si_min(b1,r->N);
634  /* no break, continue as ringorder_a*/
635  case ringorder_a:
636  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
637  { // only one line
638  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
639  }
640  return j*r->OrdSgn;
641  case ringorder_wp:
642  case ringorder_ws:
643  case ringorder_Wp:
644  case ringorder_Ws:
645  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
646  { // in jedem block:
647  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
648  }
649  break;
650  case ringorder_lp:
651  case ringorder_ls:
652  case ringorder_rs:
653  case ringorder_dp:
654  case ringorder_ds:
655  case ringorder_Dp:
656  case ringorder_Ds:
657  case ringorder_rp:
658  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
659  {
660  j+= p_GetExp(p,k,r);
661  }
662  break;
663  case ringorder_a64:
664  {
665  int64* w=(int64*)r->wvhdl[i];
666  for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
667  {
668  //there should be added a line which checks if w[k]>2^31
669  j+= p_GetExp(p,k+1, r)*(long)w[k];
670  }
671  //break;
672  return j;
673  }
674  case ringorder_c: /* nothing to do*/
675  case ringorder_C: /* nothing to do*/
676  case ringorder_S: /* nothing to do*/
677  case ringorder_s: /* nothing to do*/
678  case ringorder_IS: /* nothing to do */
679  case ringorder_unspec: /* to make clang happy, does not occur*/
680  case ringorder_no: /* to make clang happy, does not occur*/
681  case ringorder_L: /* to make clang happy, does not occur*/
682  case ringorder_aa: /* ignored by p_WTotaldegree*/
683  break;
684  /* no default: all orderings covered */
685  }
686  }
687  return j;
688 }
for(int i=0;i<=n;i++) degsf[i]
Definition: cfEzgcd.cc:72
@ ringorder_a
Definition: ring.h:70
@ ringorder_am
Definition: ring.h:88
@ ringorder_a64
for int64 weights
Definition: ring.h:71
@ ringorder_rs
opposite of ls
Definition: ring.h:92
@ ringorder_C
Definition: ring.h:73
@ ringorder_S
S?
Definition: ring.h:75
@ ringorder_ds
Definition: ring.h:84
@ ringorder_Dp
Definition: ring.h:80
@ ringorder_unspec
Definition: ring.h:94
@ ringorder_L
Definition: ring.h:89
@ ringorder_Ds
Definition: ring.h:85
@ ringorder_dp
Definition: ring.h:78
@ ringorder_c
Definition: ring.h:72
@ ringorder_rp
Definition: ring.h:79
@ ringorder_aa
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:91
@ ringorder_no
Definition: ring.h:69
@ ringorder_Wp
Definition: ring.h:82
@ ringorder_ws
Definition: ring.h:86
@ ringorder_Ws
Definition: ring.h:87
@ ringorder_IS
Induced (Schreyer) ordering.
Definition: ring.h:93
@ ringorder_ls
Definition: ring.h:83
@ ringorder_s
s?
Definition: ring.h:76
@ ringorder_wp
Definition: ring.h:81
@ ringorder_M
Definition: ring.h:74

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  l,
int  increment 
)

Definition at line 3774 of file p_polys.cc.

3775 {
3776  poly* h;
3777 
3778  if (*p==NULL)
3779  {
3780  if (increment==0) return;
3781  h=(poly*)omAlloc0(increment*sizeof(poly));
3782  }
3783  else
3784  {
3785  h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3786  if (increment>0)
3787  {
3788  memset(&(h[l]),0,increment*sizeof(poly));
3789  }
3790  }
3791  *p=h;
3792 }
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220

◆ pLDeg0()

long pLDeg0 ( poly  p,
int *  l,
const ring  r 
)

Definition at line 739 of file p_polys.cc.

740 {
741  p_CheckPolyRing(p, r);
742  long unsigned k= p_GetComp(p, r);
743  int ll=1;
744 
745  if (k > 0)
746  {
747  while ((pNext(p)!=NULL) && (__p_GetComp(pNext(p), r)==k))
748  {
749  pIter(p);
750  ll++;
751  }
752  }
753  else
754  {
755  while (pNext(p)!=NULL)
756  {
757  pIter(p);
758  ll++;
759  }
760  }
761  *l=ll;
762  return r->pFDeg(p, r);
763 }

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int *  l,
const ring  r 
)

Definition at line 770 of file p_polys.cc.

771 {
772  assume(p!=NULL);
773  p_Test(p,r);
774  p_CheckPolyRing(p, r);
775  long o;
776  int ll=1;
777 
778  if (! rIsSyzIndexRing(r))
779  {
780  while (pNext(p) != NULL)
781  {
782  pIter(p);
783  ll++;
784  }
785  o = r->pFDeg(p, r);
786  }
787  else
788  {
789  long unsigned curr_limit = rGetCurrSyzLimit(r);
790  poly pp = p;
791  while ((p=pNext(p))!=NULL)
792  {
793  if (__p_GetComp(p, r)<=curr_limit/*syzComp*/)
794  ll++;
795  else break;
796  pp = p;
797  }
798  p_Test(pp,r);
799  o = r->pFDeg(pp, r);
800  }
801  *l=ll;
802  return o;
803 }

◆ pLDeg1()

long pLDeg1 ( poly  p,
int *  l,
const ring  r 
)

Definition at line 841 of file p_polys.cc.

842 {
843  p_CheckPolyRing(p, r);
844  long unsigned k= p_GetComp(p, r);
845  int ll=1;
846  long t,max;
847 
848  max=r->pFDeg(p, r);
849  if (k > 0)
850  {
851  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
852  {
853  t=r->pFDeg(p, r);
854  if (t>max) max=t;
855  ll++;
856  }
857  }
858  else
859  {
860  while ((p=pNext(p))!=NULL)
861  {
862  t=r->pFDeg(p, r);
863  if (t>max) max=t;
864  ll++;
865  }
866  }
867  *l=ll;
868  return max;
869 }

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int *  l,
const ring  r 
)

Definition at line 910 of file p_polys.cc.

911 {
912  assume(r->pFDeg == p_Deg);
913  p_CheckPolyRing(p, r);
914  long unsigned k= p_GetComp(p, r);
915  int ll=1;
916  long t,max;
917 
918  max=p_GetOrder(p, r);
919  if (k > 0)
920  {
921  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
922  {
923  t=p_GetOrder(p, r);
924  if (t>max) max=t;
925  ll++;
926  }
927  }
928  else
929  {
930  while ((p=pNext(p))!=NULL)
931  {
932  t=p_GetOrder(p, r);
933  if (t>max) max=t;
934  ll++;
935  }
936  }
937  *l=ll;
938  return max;
939 }

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int *  l,
const ring  r 
)

Definition at line 975 of file p_polys.cc.

976 {
977  p_CheckPolyRing(p, r);
978  long unsigned k= p_GetComp(p, r);
979  int ll=1;
980  long t,max;
981 
982  max=p_Totaldegree(p, r);
983  if (k > 0)
984  {
985  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
986  {
987  t=p_Totaldegree(p, r);
988  if (t>max) max=t;
989  ll++;
990  }
991  }
992  else
993  {
994  while ((p=pNext(p))!=NULL)
995  {
996  t=p_Totaldegree(p, r);
997  if (t>max) max=t;
998  ll++;
999  }
1000  }
1001  *l=ll;
1002  return max;
1003 }

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int *  l,
const ring  r 
)

Definition at line 1038 of file p_polys.cc.

1039 {
1040  p_CheckPolyRing(p, r);
1041  long unsigned k= p_GetComp(p, r);
1042  int ll=1;
1043  long t,max;
1044 
1046  if (k > 0)
1047  {
1048  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
1049  {
1050  t=p_WFirstTotalDegree(p, r);
1051  if (t>max) max=t;
1052  ll++;
1053  }
1054  }
1055  else
1056  {
1057  while ((p=pNext(p))!=NULL)
1058  {
1059  t=p_WFirstTotalDegree(p, r);
1060  if (t>max) max=t;
1061  ll++;
1062  }
1063  }
1064  *l=ll;
1065  return max;
1066 }

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int *  l,
const ring  r 
)

Definition at line 877 of file p_polys.cc.

878 {
879  p_CheckPolyRing(p, r);
880  int ll=1;
881  long t,max;
882 
883  max=r->pFDeg(p, r);
884  if (rIsSyzIndexRing(r))
885  {
886  long unsigned limit = rGetCurrSyzLimit(r);
887  while ((p=pNext(p))!=NULL)
888  {
889  if (__p_GetComp(p, r)<=limit)
890  {
891  if ((t=r->pFDeg(p, r))>max) max=t;
892  ll++;
893  }
894  else break;
895  }
896  }
897  else
898  {
899  while ((p=pNext(p))!=NULL)
900  {
901  if ((t=r->pFDeg(p, r))>max) max=t;
902  ll++;
903  }
904  }
905  *l=ll;
906  return max;
907 }

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int *  l,
const ring  r 
)

Definition at line 941 of file p_polys.cc.

942 {
943  assume(r->pFDeg == p_Deg);
944  p_CheckPolyRing(p, r);
945  int ll=1;
946  long t,max;
947 
948  max=p_GetOrder(p, r);
949  if (rIsSyzIndexRing(r))
950  {
951  long unsigned limit = rGetCurrSyzLimit(r);
952  while ((p=pNext(p))!=NULL)
953  {
954  if (__p_GetComp(p, r)<=limit)
955  {
956  if ((t=p_GetOrder(p, r))>max) max=t;
957  ll++;
958  }
959  else break;
960  }
961  }
962  else
963  {
964  while ((p=pNext(p))!=NULL)
965  {
966  if ((t=p_GetOrder(p, r))>max) max=t;
967  ll++;
968  }
969  }
970  *l=ll;
971  return max;
972 }

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int *  l,
const ring  r 
)

Definition at line 1005 of file p_polys.cc.

1006 {
1007  p_CheckPolyRing(p, r);
1008  int ll=1;
1009  long t,max;
1010 
1011  max=p_Totaldegree(p, r);
1012  if (rIsSyzIndexRing(r))
1013  {
1014  long unsigned limit = rGetCurrSyzLimit(r);
1015  while ((p=pNext(p))!=NULL)
1016  {
1017  if (__p_GetComp(p, r)<=limit)
1018  {
1019  if ((t=p_Totaldegree(p, r))>max) max=t;
1020  ll++;
1021  }
1022  else break;
1023  }
1024  }
1025  else
1026  {
1027  while ((p=pNext(p))!=NULL)
1028  {
1029  if ((t=p_Totaldegree(p, r))>max) max=t;
1030  ll++;
1031  }
1032  }
1033  *l=ll;
1034  return max;
1035 }

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int *  l,
const ring  r 
)

Definition at line 1068 of file p_polys.cc.

1069 {
1070  p_CheckPolyRing(p, r);
1071  int ll=1;
1072  long t,max;
1073 
1075  if (rIsSyzIndexRing(r))
1076  {
1077  long unsigned limit = rGetCurrSyzLimit(r);
1078  while ((p=pNext(p))!=NULL)
1079  {
1080  if (__p_GetComp(p, r)<=limit)
1081  {
1082  if ((t=p_Totaldegree(p, r))>max) max=t;
1083  ll++;
1084  }
1085  else break;
1086  }
1087  }
1088  else
1089  {
1090  while ((p=pNext(p))!=NULL)
1091  {
1092  if ((t=p_Totaldegree(p, r))>max) max=t;
1093  ll++;
1094  }
1095  }
1096  *l=ll;
1097  return max;
1098 }

◆ pLDegb()

long pLDegb ( poly  p,
int *  l,
const ring  r 
)

Definition at line 811 of file p_polys.cc.

812 {
813  p_CheckPolyRing(p, r);
814  long unsigned k= p_GetComp(p, r);
815  long o = r->pFDeg(p, r);
816  int ll=1;
817 
818  if (k != 0)
819  {
820  while (((p=pNext(p))!=NULL) && (__p_GetComp(p, r)==k))
821  {
822  ll++;
823  }
824  }
825  else
826  {
827  while ((p=pNext(p)) !=NULL)
828  {
829  ll++;
830  }
831  }
832  *l=ll;
833  return o;
834 }

◆ pModDeg()

static long pModDeg ( poly  p,
ring  r 
)
static

Definition at line 3742 of file p_polys.cc.

3743 {
3744  long d=pOldFDeg(p, r);
3745  int c=__p_GetComp(p, r);
3746  if ((c>0) && ((r->pModW)->range(c-1))) d+= (*(r->pModW))[c-1];
3747  return d;
3748  //return pOldFDeg(p, r)+(*pModW)[p_GetComp(p, r)-1];
3749 }

◆ pnBin()

static number* pnBin ( int  exp,
const ring  r 
)
static

Definition at line 2054 of file p_polys.cc.

2055 {
2056  int e, i, h;
2057  number x, y, *bin=NULL;
2058 
2059  x = n_Init(exp,r->cf);
2060  if (n_IsZero(x,r->cf))
2061  {
2062  n_Delete(&x,r->cf);
2063  return bin;
2064  }
2065  h = (exp >> 1) + 1;
2066  bin = (number *)omAlloc0(h*sizeof(number));
2067  bin[1] = x;
2068  if (exp < 4)
2069  return bin;
2070  i = exp - 1;
2071  for (e=2; e<h; e++)
2072  {
2073  x = n_Init(i,r->cf);
2074  i--;
2075  y = n_Mult(x,bin[e-1],r->cf);
2076  n_Delete(&x,r->cf);
2077  x = n_Init(e,r->cf);
2078  bin[e] = n_ExactDiv(y,x,r->cf);
2079  n_Delete(&x,r->cf);
2080  n_Delete(&y,r->cf);
2081  }
2082  return bin;
2083 }

◆ pnFreeBin()

static void pnFreeBin ( number *  bin,
int  exp,
const coeffs  r 
)
static

Definition at line 2085 of file p_polys.cc.

2086 {
2087  int e, h = (exp >> 1) + 1;
2088 
2089  if (bin[1] != NULL)
2090  {
2091  for (e=1; e<h; e++)
2092  n_Delete(&(bin[e]),r);
2093  }
2094  omFreeSize((ADDRESS)bin, h*sizeof(number));
2095 }

◆ pp_DivideM()

poly pp_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1629 of file p_polys.cc.

1630 {
1631  if (a==NULL) { return NULL; }
1632  // TODO: better implementation without copying a,b
1633  return p_DivideM(p_Copy(a,r),p_Head(b,r),r);
1634 }
poly p_DivideM(poly a, poly b, const ring r)
Definition: p_polys.cc:1574

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4423 of file p_polys.cc.

4424 {
4425  poly r=NULL;
4426  poly t=NULL;
4427 
4428  while (p!=NULL)
4429  {
4430  if (p_Totaldegree(p,R)<=m)
4431  {
4432  if (r==NULL)
4433  r=p_Head(p,R);
4434  else
4435  if (t==NULL)
4436  {
4437  pNext(r)=p_Head(p,R);
4438  t=pNext(r);
4439  }
4440  else
4441  {
4442  pNext(t)=p_Head(p,R);
4443  pIter(t);
4444  }
4445  }
4446  pIter(p);
4447  }
4448  return r;
4449 }

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
int *  w,
const ring  R 
)

Definition at line 4468 of file p_polys.cc.

4469 {
4470  poly r=NULL;
4471  poly t=NULL;
4472  while (p!=NULL)
4473  {
4474  if (totaldegreeWecart_IV(p,R,w)<=m)
4475  {
4476  if (r==NULL)
4477  r=p_Head(p,R);
4478  else
4479  if (t==NULL)
4480  {
4481  pNext(r)=p_Head(p,R);
4482  t=pNext(r);
4483  }
4484  else
4485  {
4486  pNext(t)=p_Head(p,R);
4487  pIter(t);
4488  }
4489  }
4490  pIter(p);
4491  }
4492  return r;
4493 }

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3727 of file p_polys.cc.

3728 {
3729  assume(old_FDeg != NULL && old_lDeg != NULL);
3730  r->pFDeg = old_FDeg;
3731  r->pLDeg = old_lDeg;
3732 }

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg 
)

Definition at line 3715 of file p_polys.cc.

3716 {
3717  assume(new_FDeg != NULL);
3718  r->pFDeg = new_FDeg;
3719 
3720  if (new_lDeg == NULL)
3721  new_lDeg = r->pLDegOrig;
3722 
3723  r->pLDeg = new_lDeg;
3724 }

Variable Documentation

◆ _components

STATIC_VAR int* _components = NULL

Definition at line 146 of file p_polys.cc.

◆ _componentsExternal

STATIC_VAR int _componentsExternal = 0

Definition at line 148 of file p_polys.cc.

◆ _componentsShifted

STATIC_VAR long* _componentsShifted = NULL

Definition at line 147 of file p_polys.cc.

◆ pOldFDeg

Definition at line 3738 of file p_polys.cc.

◆ pOldLDeg

Definition at line 3739 of file p_polys.cc.

◆ pOldLexOrder

STATIC_VAR BOOLEAN pOldLexOrder

Definition at line 3740 of file p_polys.cc.

◆ pSetm_error

VAR BOOLEAN pSetm_error =0

Definition at line 150 of file p_polys.cc.