OpenVDB  10.0.0
Tree.h
Go to the documentation of this file.
1 // Copyright Contributors to the OpenVDB Project
2 // SPDX-License-Identifier: MPL-2.0
3 
4 /// @file tree/Tree.h
5 
6 #ifndef OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
7 #define OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
8 
9 #include <openvdb/Types.h>
10 #include <openvdb/Metadata.h>
11 #include <openvdb/math/Math.h>
12 #include <openvdb/math/BBox.h>
13 #include <openvdb/tools/Count.h> // tools::countActiveVoxels(), tools::memUsage(), tools::minMax()
14 #include <openvdb/util/Formats.h>
15 #include <openvdb/util/logging.h>
16 #include <openvdb/Platform.h>
17 #include "RootNode.h"
18 #include "InternalNode.h"
19 #include "LeafNode.h"
20 #include "TreeIterator.h"
21 #include "ValueAccessor.h"
22 #include <tbb/concurrent_hash_map.h>
23 #include <cstdint>
24 #include <iostream>
25 #include <mutex>
26 #include <sstream>
27 #include <vector>
28 
29 
30 namespace openvdb {
32 namespace OPENVDB_VERSION_NAME {
33 namespace tree {
34 
35 /// @brief Base class for typed trees
37 {
38 public:
41 
42  TreeBase() = default;
43  TreeBase(const TreeBase&) = default;
44  TreeBase& operator=(const TreeBase&) = delete; // disallow assignment
45  virtual ~TreeBase() = default;
46 
47  /// Return the name of this tree's type.
48  virtual const Name& type() const = 0;
49 
50  /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
51  virtual Name valueType() const = 0;
52 
53  /// Return @c true if this tree is of the same type as the template parameter.
54  template<typename TreeType>
55  bool isType() const { return (this->type() == TreeType::treeType()); }
56 
57  /// Return a pointer to a deep copy of this tree
58  virtual TreeBase::Ptr copy() const = 0;
59 
60  //
61  // Tree methods
62  //
63  /// @brief Return this tree's background value wrapped as metadata.
64  /// @note Query the metadata object for the value's type.
65  virtual Metadata::Ptr getBackgroundValue() const { return Metadata::Ptr(); }
66 
67  /// @brief Return in @a bbox the axis-aligned bounding box of all
68  /// active tiles and leaf nodes with active values.
69  /// @details This is faster than calling evalActiveVoxelBoundingBox,
70  /// which visits the individual active voxels, and hence
71  /// evalLeafBoundingBox produces a less tight, i.e. approximate, bbox.
72  /// @return @c false if the bounding box is empty (in which case
73  /// the bbox is set to its default value).
74  virtual bool evalLeafBoundingBox(CoordBBox& bbox) const = 0;
75 
76  /// @brief Return in @a dim the dimensions of the axis-aligned bounding box
77  /// of all leaf nodes.
78  /// @return @c false if the bounding box is empty.
79  virtual bool evalLeafDim(Coord& dim) const = 0;
80 
81  /// @brief Return in @a bbox the axis-aligned bounding box of all
82  /// active voxels and tiles.
83  /// @details This method produces a more accurate, i.e. tighter,
84  /// bounding box than evalLeafBoundingBox which is approximate but
85  /// faster.
86  /// @return @c false if the bounding box is empty (in which case
87  /// the bbox is set to its default value).
88  virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const = 0;
89 
90  /// @brief Return in @a dim the dimensions of the axis-aligned bounding box of all
91  /// active voxels. This is a tighter bounding box than the leaf node bounding box.
92  /// @return @c false if the bounding box is empty.
93  virtual bool evalActiveVoxelDim(Coord& dim) const = 0;
94 
95  virtual void getIndexRange(CoordBBox& bbox) const = 0;
96 
97  /// @brief Replace with background tiles any nodes whose voxel buffers
98  /// have not yet been allocated.
99  /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
100  /// are not yet resident in memory because delayed loading is in effect.
101  /// @sa readNonresidentBuffers, io::File::open
102  virtual void clipUnallocatedNodes() = 0;
103  /// Return the total number of unallocated leaf nodes residing in this tree.
104  virtual Index32 unallocatedLeafCount() const = 0;
105 
106 
107  //
108  // Statistics
109  //
110  /// @brief Return the depth of this tree.
111  ///
112  /// A tree with only a root node and leaf nodes has depth 2, for example.
113  virtual Index treeDepth() const = 0;
114  /// Return the number of leaf nodes.
115  virtual Index32 leafCount() const = 0;
116  /// Return a vector with node counts. The number of nodes of type NodeType
117  /// is given as element NodeType::LEVEL in the return vector. Thus, the size
118  /// of this vector corresponds to the height (or depth) of this tree.
119  virtual std::vector<Index32> nodeCount() const = 0;
120  /// Return the number of non-leaf nodes.
121  virtual Index32 nonLeafCount() const = 0;
122  /// Return the number of active voxels stored in leaf nodes.
123  virtual Index64 activeLeafVoxelCount() const = 0;
124  /// Return the number of inactive voxels stored in leaf nodes.
125  virtual Index64 inactiveLeafVoxelCount() const = 0;
126  /// Return the total number of active voxels.
127  virtual Index64 activeVoxelCount() const = 0;
128  /// Return the number of inactive voxels within the bounding box of all active voxels.
129  virtual Index64 inactiveVoxelCount() const = 0;
130  /// Return the total number of active tiles.
131  virtual Index64 activeTileCount() const = 0;
132 
133  /// Return the total amount of memory in bytes occupied by this tree.
134  virtual Index64 memUsage() const { return 0; }
135 
136 
137  //
138  // I/O methods
139  //
140  /// @brief Read the tree topology from a stream.
141  ///
142  /// This will read the tree structure and tile values, but not voxel data.
143  virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
144  /// @brief Write the tree topology to a stream.
145  ///
146  /// This will write the tree structure and tile values, but not voxel data.
147  virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;
148 
149  /// Read all data buffers for this tree.
150  virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false) = 0;
151  /// Read all of this tree's data buffers that intersect the given bounding box.
152  virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) = 0;
153  /// @brief Read all of this tree's data buffers that are not yet resident in memory
154  /// (because delayed loading is in effect).
155  /// @details If this tree was read from a memory-mapped file, this operation
156  /// disconnects the tree from the file.
157  /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
158  virtual void readNonresidentBuffers() const = 0;
159  /// Write out all the data buffers for this tree.
160  virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const = 0;
161 
162  /// @brief Print statistics, memory usage and other information about this tree.
163  /// @param os a stream to which to write textual information
164  /// @param verboseLevel 1: print tree configuration only;
165  /// 2: include node and voxel statistics;
166  /// 3: include memory usage;
167  /// 4: include minimum and maximum voxel values
168  /// @warning @a verboseLevel 4 forces loading of any unallocated nodes.
169  virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;
170 };
171 
172 
173 ////////////////////////////////////////
174 
175 
176 template<typename _RootNodeType>
177 class Tree: public TreeBase
178 {
179 public:
182 
183  using RootNodeType = _RootNodeType;
184  using ValueType = typename RootNodeType::ValueType;
185  using BuildType = typename RootNodeType::BuildType;
186  using LeafNodeType = typename RootNodeType::LeafNodeType;
187 
188  static const Index DEPTH = RootNodeType::LEVEL + 1;
189 
190  /// @brief ValueConverter<T>::Type is the type of a tree having the same
191  /// hierarchy as this tree but a different value type, T.
192  ///
193  /// For example, FloatTree::ValueConverter<double>::Type is equivalent to DoubleTree.
194  /// @note If the source tree type is a template argument, it might be necessary
195  /// to write "typename SourceTree::template ValueConverter<T>::Type".
196  template<typename OtherValueType>
197  struct ValueConverter {
199  };
200 
201 
202  Tree() {}
203 
204  Tree& operator=(const Tree&) = delete; // disallow assignment
205 
206  /// Deep copy constructor
207  Tree(const Tree& other): TreeBase(other), mRoot(other.mRoot)
208  {
209  }
210 
211  /// @brief Value conversion deep copy constructor
212  ///
213  /// Deep copy a tree of the same configuration as this tree type but a different
214  /// ValueType, casting the other tree's values to this tree's ValueType.
215  /// @throw TypeError if the other tree's configuration doesn't match this tree's
216  /// or if this tree's ValueType is not constructible from the other tree's ValueType.
217  template<typename OtherRootType>
218  explicit Tree(const Tree<OtherRootType>& other): TreeBase(other), mRoot(other.root())
219  {
220  }
221 
222  /// @brief Topology copy constructor from a tree of a different type
223  ///
224  /// Copy the structure, i.e., the active states of tiles and voxels, of another
225  /// tree of a possibly different type, but don't copy any tile or voxel values.
226  /// Instead, initialize tiles and voxels with the given active and inactive values.
227  /// @param other a tree having (possibly) a different ValueType
228  /// @param inactiveValue background value for this tree, and the value to which
229  /// all inactive tiles and voxels are initialized
230  /// @param activeValue value to which active tiles and voxels are initialized
231  /// @throw TypeError if the other tree's configuration doesn't match this tree's.
232  template<typename OtherTreeType>
233  Tree(const OtherTreeType& other,
234  const ValueType& inactiveValue,
235  const ValueType& activeValue,
236  TopologyCopy):
237  TreeBase(other),
238  mRoot(other.root(), inactiveValue, activeValue, TopologyCopy())
239  {
240  }
241 
242  /// @brief Topology copy constructor from a tree of a different type
243  ///
244  /// @note This topology copy constructor is generally faster than
245  /// the one that takes both a foreground and a background value.
246  ///
247  /// Copy the structure, i.e., the active states of tiles and voxels, of another
248  /// tree of a possibly different type, but don't copy any tile or voxel values.
249  /// Instead, initialize tiles and voxels with the given background value.
250  /// @param other a tree having (possibly) a different ValueType
251  /// @param background the value to which tiles and voxels are initialized
252  /// @throw TypeError if the other tree's configuration doesn't match this tree's.
253  template<typename OtherTreeType>
254  Tree(const OtherTreeType& other, const ValueType& background, TopologyCopy):
255  TreeBase(other),
256  mRoot(other.root(), background, TopologyCopy())
257  {
258  }
259 
260  /// Empty tree constructor
261  Tree(const ValueType& background): mRoot(background) {}
262 
263  ~Tree() override { this->clear(); releaseAllAccessors(); }
264 
265  /// Return a pointer to a deep copy of this tree
266  TreeBase::Ptr copy() const override { return TreeBase::Ptr(new Tree(*this)); }
267 
268  /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
269  Name valueType() const override { return typeNameAsString<ValueType>(); }
270 
271  /// Return the name of this type of tree.
272  static const Name& treeType();
273  /// Return the name of this type of tree.
274  const Name& type() const override { return this->treeType(); }
275 
276  bool operator==(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
277  bool operator!=(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
278 
279  //@{
280  /// Return this tree's root node.
281  RootNodeType& root() { return mRoot; }
282  const RootNodeType& root() const { return mRoot; }
283  //@}
284 
285 
286  //
287  // Tree methods
288  //
289  /// @brief Return @c true if the given tree has the same node and active value
290  /// topology as this tree, whether or not it has the same @c ValueType.
291  template<typename OtherRootNodeType>
292  bool hasSameTopology(const Tree<OtherRootNodeType>& other) const;
293 
294  bool evalLeafBoundingBox(CoordBBox& bbox) const override;
295  bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const override;
296  bool evalActiveVoxelDim(Coord& dim) const override;
297  bool evalLeafDim(Coord& dim) const override;
298 
299  /// @brief Traverse the type hierarchy of nodes, and return, in @a dims, a list
300  /// of the Log2Dims of nodes in order from RootNode to LeafNode.
301  /// @note Because RootNodes are resizable, the RootNode Log2Dim is 0 for all trees.
302  static void getNodeLog2Dims(std::vector<Index>& dims);
303 
304 
305  //
306  // I/O methods
307  //
308  /// @brief Read the tree topology from a stream.
309  ///
310  /// This will read the tree structure and tile values, but not voxel data.
311  void readTopology(std::istream&, bool saveFloatAsHalf = false) override;
312  /// @brief Write the tree topology to a stream.
313  ///
314  /// This will write the tree structure and tile values, but not voxel data.
315  void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const override;
316  /// Read all data buffers for this tree.
317  void readBuffers(std::istream&, bool saveFloatAsHalf = false) override;
318  /// Read all of this tree's data buffers that intersect the given bounding box.
319  void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) override;
320  /// @brief Read all of this tree's data buffers that are not yet resident in memory
321  /// (because delayed loading is in effect).
322  /// @details If this tree was read from a memory-mapped file, this operation
323  /// disconnects the tree from the file.
324  /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
325  void readNonresidentBuffers() const override;
326  /// Write out all data buffers for this tree.
327  void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const override;
328 
329  void print(std::ostream& os = std::cout, int verboseLevel = 1) const override;
330 
331 
332  //
333  // Statistics
334  //
335  /// @brief Return the depth of this tree.
336  ///
337  /// A tree with only a root node and leaf nodes has depth 2, for example.
338  Index treeDepth() const override { return DEPTH; }
339  /// Return the number of leaf nodes.
340  Index32 leafCount() const override { return mRoot.leafCount(); }
341  /// Return a vector with node counts. The number of nodes of type NodeType
342  /// is given as element NodeType::LEVEL in the return vector. Thus, the size
343  /// of this vector corresponds to the height (or depth) of this tree.
344  std::vector<Index32> nodeCount() const override
345  {
346  std::vector<Index32> vec(DEPTH, 0);
347  mRoot.nodeCount( vec );
348  return vec;// Named Return Value Optimization
349  }
350  /// Return the number of non-leaf nodes.
351  Index32 nonLeafCount() const override { return mRoot.nonLeafCount(); }
352  /// Return the number of active voxels stored in leaf nodes.
353  Index64 activeLeafVoxelCount() const override { return tools::countActiveLeafVoxels(*this); }
354  /// Return the number of inactive voxels stored in leaf nodes.
356  /// Return the total number of active voxels.
357  Index64 activeVoxelCount() const override { return tools::countActiveVoxels(*this); }
358  /// Return the number of inactive voxels within the bounding box of all active voxels.
359  Index64 inactiveVoxelCount() const override { return tools::countInactiveVoxels(*this); }
360  /// Return the total number of active tiles.
361  Index64 activeTileCount() const override { return tools::countActiveTiles(*this); }
362 
363  /// Return the minimum and maximum active values in this tree.
364  OPENVDB_DEPRECATED_MESSAGE("Switch to tools::minMax. Use threaded = false for serial execution")
365  void evalMinMax(ValueType &min, ValueType &max) const;
366 
367  Index64 memUsage() const override { return tools::memUsage(*this); }
368 
369 
370  //
371  // Voxel access methods (using signed indexing)
372  //
373  /// Return the value of the voxel at the given coordinates.
374  const ValueType& getValue(const Coord& xyz) const;
375  /// @brief Return the value of the voxel at the given coordinates
376  /// and update the given accessor's node cache.
377  template<typename AccessT> const ValueType& getValue(const Coord& xyz, AccessT&) const;
378 
379  /// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
380  /// @details If (x, y, z) isn't explicitly represented in the tree (i.e., it is
381  /// implicitly a background voxel), return -1.
382  int getValueDepth(const Coord& xyz) const;
383 
384  /// Set the active state of the voxel at the given coordinates but don't change its value.
385  void setActiveState(const Coord& xyz, bool on);
386  /// Set the value of the voxel at the given coordinates but don't change its active state.
387  void setValueOnly(const Coord& xyz, const ValueType& value);
388  /// Mark the voxel at the given coordinates as active but don't change its value.
389  void setValueOn(const Coord& xyz);
390  /// Set the value of the voxel at the given coordinates and mark the voxel as active.
391  void setValueOn(const Coord& xyz, const ValueType& value);
392  /// Set the value of the voxel at the given coordinates and mark the voxel as active.
393  void setValue(const Coord& xyz, const ValueType& value);
394  /// @brief Set the value of the voxel at the given coordinates, mark the voxel as active,
395  /// and update the given accessor's node cache.
396  template<typename AccessT> void setValue(const Coord& xyz, const ValueType& value, AccessT&);
397  /// Mark the voxel at the given coordinates as inactive but don't change its value.
398  void setValueOff(const Coord& xyz);
399  /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
400  void setValueOff(const Coord& xyz, const ValueType& value);
401 
402  /// @brief Apply a functor to the value of the voxel at the given coordinates
403  /// and mark the voxel as active.
404  /// @details Provided that the functor can be inlined, this is typically
405  /// significantly faster than calling getValue() followed by setValueOn().
406  /// @param xyz the coordinates of a voxel whose value is to be modified
407  /// @param op a functor of the form <tt>void op(ValueType&) const</tt> that modifies
408  /// its argument in place
409  /// @par Example:
410  /// @code
411  /// Coord xyz(1, 0, -2);
412  /// // Multiply the value of a voxel by a constant and mark the voxel as active.
413  /// floatTree.modifyValue(xyz, [](float& f) { f *= 0.25; }); // C++11
414  /// // Set the value of a voxel to the maximum of its current value and 0.25,
415  /// // and mark the voxel as active.
416  /// floatTree.modifyValue(xyz, [](float& f) { f = std::max(f, 0.25f); }); // C++11
417  /// @endcode
418  /// @note The functor is not guaranteed to be called only once.
419  /// @see tools::foreach()
420  template<typename ModifyOp>
421  void modifyValue(const Coord& xyz, const ModifyOp& op);
422 
423  /// @brief Apply a functor to the voxel at the given coordinates.
424  /// @details Provided that the functor can be inlined, this is typically
425  /// significantly faster than calling getValue() followed by setValue().
426  /// @param xyz the coordinates of a voxel to be modified
427  /// @param op a functor of the form <tt>void op(ValueType&, bool&) const</tt> that
428  /// modifies its arguments, a voxel's value and active state, in place
429  /// @par Example:
430  /// @code
431  /// Coord xyz(1, 0, -2);
432  /// // Multiply the value of a voxel by a constant and mark the voxel as inactive.
433  /// floatTree.modifyValueAndActiveState(xyz,
434  /// [](float& f, bool& b) { f *= 0.25; b = false; }); // C++11
435  /// // Set the value of a voxel to the maximum of its current value and 0.25,
436  /// // but don't change the voxel's active state.
437  /// floatTree.modifyValueAndActiveState(xyz,
438  /// [](float& f, bool&) { f = std::max(f, 0.25f); }); // C++11
439  /// @endcode
440  /// @note The functor is not guaranteed to be called only once.
441  /// @see tools::foreach()
442  template<typename ModifyOp>
443  void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);
444 
445  /// @brief Get the value of the voxel at the given coordinates.
446  /// @return @c true if the value is active.
447  bool probeValue(const Coord& xyz, ValueType& value) const;
448 
449  /// Return @c true if the value at the given coordinates is active.
450  bool isValueOn(const Coord& xyz) const { return mRoot.isValueOn(xyz); }
451  /// Return @c true if the value at the given coordinates is inactive.
452  bool isValueOff(const Coord& xyz) const { return !this->isValueOn(xyz); }
453  /// Return @c true if this tree has any active tiles.
454  bool hasActiveTiles() const { return mRoot.hasActiveTiles(); }
455 
456  /// Set all voxels that lie outside the given axis-aligned box to the background.
457  void clip(const CoordBBox&);
458  /// @brief Replace with background tiles any nodes whose voxel buffers
459  /// have not yet been allocated.
460  /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
461  /// are not yet resident in memory because delayed loading is in effect.
462  /// @sa readNonresidentBuffers, io::File::open
463  void clipUnallocatedNodes() override;
464 
465  /// Return the total number of unallocated leaf nodes residing in this tree.
466  Index32 unallocatedLeafCount() const override;
467 
468  //@{
469  /// @brief Set all voxels within a given axis-aligned box to a constant value.
470  /// @param bbox inclusive coordinates of opposite corners of an axis-aligned box
471  /// @param value the value to which to set voxels within the box
472  /// @param active if true, mark voxels within the box as active,
473  /// otherwise mark them as inactive
474  /// @note This operation generates a sparse, but not always optimally sparse,
475  /// representation of the filled box. Follow fill operations with a prune()
476  /// operation for optimal sparseness.
477  void sparseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
478  void fill(const CoordBBox& bbox, const ValueType& value, bool active = true)
479  {
480  this->sparseFill(bbox, value, active);
481  }
482  //@}
483 
484  /// @brief Set all voxels within a given axis-aligned box to a constant value
485  /// and ensure that those voxels are all represented at the leaf level.
486  /// @param bbox inclusive coordinates of opposite corners of an axis-aligned box.
487  /// @param value the value to which to set voxels within the box.
488  /// @param active if true, mark voxels within the box as active,
489  /// otherwise mark them as inactive.
490  /// @sa voxelizeActiveTiles()
491  void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
492 
493  /// @brief Densify active tiles, i.e., replace them with leaf-level active voxels.
494  ///
495  /// @param threaded if true, this operation is multi-threaded (over the internal nodes).
496  ///
497  /// @warning This method can explode the tree's memory footprint, especially if it
498  /// contains active tiles at the upper levels (in particular the root level)!
499  ///
500  /// @sa denseFill()
501  void voxelizeActiveTiles(bool threaded = true);
502 
503  /// @brief Reduce the memory footprint of this tree by replacing with tiles
504  /// any nodes whose values are all the same (optionally to within a tolerance)
505  /// and have the same active state.
506  /// @warning Will soon be deprecated!
507  void prune(const ValueType& tolerance = zeroVal<ValueType>())
508  {
509  this->clearAllAccessors();
510  mRoot.prune(tolerance);
511  }
512 
513  /// @brief Add the given leaf node to this tree, creating a new branch if necessary.
514  /// If a leaf node with the same origin already exists, replace it.
515  ///
516  /// @warning Ownership of the leaf is transferred to the tree so
517  /// the client code should not attempt to delete the leaf pointer!
518  void addLeaf(LeafNodeType* leaf) { assert(leaf); mRoot.addLeaf(leaf); }
519 
520  /// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
521  /// creating a new branch if necessary. Delete any existing lower-level nodes
522  /// that contain (x, y, z).
523  /// @note @a level must be less than this tree's depth.
524  void addTile(Index level, const Coord& xyz, const ValueType& value, bool active);
525 
526  /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
527  /// and replace it with a tile of the specified value and state.
528  /// If no such node exists, leave the tree unchanged and return @c nullptr.
529  /// @note The caller takes ownership of the node and is responsible for deleting it.
530  template<typename NodeT>
531  NodeT* stealNode(const Coord& xyz, const ValueType& value, bool active);
532 
533  /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
534  /// If no such node exists, create one that preserves the values and
535  /// active states of all voxels.
536  /// @details Use this method to preallocate a static tree topology over which to
537  /// safely perform multithreaded processing.
538  LeafNodeType* touchLeaf(const Coord& xyz);
539 
540  //@{
541  /// @brief Return a pointer to the node of type @c NodeType that contains
542  /// voxel (x, y, z). If no such node exists, return @c nullptr.
543  template<typename NodeType> NodeType* probeNode(const Coord& xyz);
544  template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
545  template<typename NodeType> const NodeType* probeNode(const Coord& xyz) const;
546  //@}
547 
548  //@{
549  /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
550  /// If no such node exists, return @c nullptr.
551  LeafNodeType* probeLeaf(const Coord& xyz);
552  const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
553  const LeafNodeType* probeLeaf(const Coord& xyz) const { return this->probeConstLeaf(xyz); }
554  //@}
555 
556  //@{
557  /// @brief Adds all nodes of a certain type to a container with the following API:
558  /// @code
559  /// struct ArrayT {
560  /// using value_type = ...; // the type of node to be added to the array
561  /// void push_back(value_type nodePtr); // add a node to the array
562  /// };
563  /// @endcode
564  /// @details An example of a wrapper around a c-style array is:
565  /// @code
566  /// struct MyArray {
567  /// using value_type = LeafType*;
568  /// value_type* ptr;
569  /// MyArray(value_type* array) : ptr(array) {}
570  /// void push_back(value_type leaf) { *ptr++ = leaf; }
571  ///};
572  /// @endcode
573  /// @details An example that constructs a list of pointer to all leaf nodes is:
574  /// @code
575  /// std::vector<const LeafNodeType*> array;//most std contains have the required API
576  /// array.reserve(tree.leafCount());//this is a fast preallocation.
577  /// tree.getNodes(array);
578  /// @endcode
579  template<typename ArrayT> void getNodes(ArrayT& array) { mRoot.getNodes(array); }
580  template<typename ArrayT> void getNodes(ArrayT& array) const { mRoot.getNodes(array); }
581  //@}
582 
583  /// @brief Steals all nodes of a certain type from the tree and
584  /// adds them to a container with the following API:
585  /// @code
586  /// struct ArrayT {
587  /// using value_type = ...; // the type of node to be added to the array
588  /// void push_back(value_type nodePtr); // add a node to the array
589  /// };
590  /// @endcode
591  /// @details An example of a wrapper around a c-style array is:
592  /// @code
593  /// struct MyArray {
594  /// using value_type = LeafType*;
595  /// value_type* ptr;
596  /// MyArray(value_type* array) : ptr(array) {}
597  /// void push_back(value_type leaf) { *ptr++ = leaf; }
598  ///};
599  /// @endcode
600  /// @details An example that constructs a list of pointer to all leaf nodes is:
601  /// @code
602  /// std::vector<const LeafNodeType*> array;//most std contains have the required API
603  /// array.reserve(tree.leafCount());//this is a fast preallocation.
604  /// tree.stealNodes(array);
605  /// @endcode
606  template<typename ArrayT>
607  void stealNodes(ArrayT& array) { this->clearAllAccessors(); mRoot.stealNodes(array); }
608  template<typename ArrayT>
609  void stealNodes(ArrayT& array, const ValueType& value, bool state)
610  {
611  this->clearAllAccessors();
612  mRoot.stealNodes(array, value, state);
613  }
614 
615  //
616  // Aux methods
617  //
618  /// @brief Return @c true if this tree contains no nodes other than
619  /// the root node and no tiles other than background tiles.
620  bool empty() const { return mRoot.empty(); }
621 
622  /// Remove all tiles from this tree and all nodes other than the root node.
623  void clear();
624 
625  /// Clear all registered accessors.
626  void clearAllAccessors();
627 
628  //@{
629  /// @brief Register an accessor for this tree. Registered accessors are
630  /// automatically cleared whenever one of this tree's nodes is deleted.
631  void attachAccessor(ValueAccessorBase<Tree, true>&) const;
632  void attachAccessor(ValueAccessorBase<const Tree, true>&) const;
633  //@}
634 
635  //@{
636  /// Dummy implementations
639  //@}
640 
641  //@{
642  /// Deregister an accessor so that it is no longer automatically cleared.
643  void releaseAccessor(ValueAccessorBase<Tree, true>&) const;
644  void releaseAccessor(ValueAccessorBase<const Tree, true>&) const;
645  //@}
646 
647  //@{
648  /// Dummy implementations
651  //@}
652 
653  /// @brief Return this tree's background value wrapped as metadata.
654  /// @note Query the metadata object for the value's type.
655  Metadata::Ptr getBackgroundValue() const override;
656 
657  /// @brief Return this tree's background value.
658  ///
659  /// @note Use tools::changeBackground to efficiently modify the
660  /// background values. Else use tree.root().setBackground, which
661  /// is serial and hence slower.
662  const ValueType& background() const { return mRoot.background(); }
663 
664  /// Min and max are both inclusive.
665  void getIndexRange(CoordBBox& bbox) const override { mRoot.getIndexRange(bbox); }
666 
667  /// @brief Efficiently merge another tree into this tree using one of several schemes.
668  /// @details This operation is primarily intended to combine trees that are mostly
669  /// non-overlapping (for example, intermediate trees from computations that are
670  /// parallelized across disjoint regions of space).
671  /// @note This operation is not guaranteed to produce an optimally sparse tree.
672  /// Follow merge() with prune() for optimal sparseness.
673  /// @warning This operation always empties the other tree.
674  void merge(Tree& other, MergePolicy = MERGE_ACTIVE_STATES);
675 
676  /// @brief Union this tree's set of active values with the active values
677  /// of the other tree, whose @c ValueType may be different.
678  /// @details The resulting state of a value is active if the corresponding value
679  /// was already active OR if it is active in the other tree. Also, a resulting
680  /// value maps to a voxel if the corresponding value already mapped to a voxel
681  /// OR if it is a voxel in the other tree. Thus, a resulting value can only
682  /// map to a tile if the corresponding value already mapped to a tile
683  /// AND if it is a tile value in other tree.
684  ///
685  /// @note This operation modifies only active states, not values.
686  /// Specifically, active tiles and voxels in this tree are not changed, and
687  /// tiles or voxels that were inactive in this tree but active in the other tree
688  /// are marked as active in this tree but left with their original values.
689  ///
690  /// @note If preserveTiles is true, any active tile in this topology
691  /// will not be densified by overlapping child topology.
692  template<typename OtherRootNodeType>
693  void topologyUnion(const Tree<OtherRootNodeType>& other, const bool preserveTiles = false);
694 
695  /// @brief Intersects this tree's set of active values with the active values
696  /// of the other tree, whose @c ValueType may be different.
697  /// @details The resulting state of a value is active only if the corresponding
698  /// value was already active AND if it is active in the other tree. Also, a
699  /// resulting value maps to a voxel if the corresponding value
700  /// already mapped to an active voxel in either of the two grids
701  /// and it maps to an active tile or voxel in the other grid.
702  ///
703  /// @note This operation can delete branches in this grid if they
704  /// overlap with inactive tiles in the other grid. Likewise active
705  /// voxels can be turned into inactive voxels resulting in leaf
706  /// nodes with no active values. Thus, it is recommended to
707  /// subsequently call tools::pruneInactive.
708  template<typename OtherRootNodeType>
709  void topologyIntersection(const Tree<OtherRootNodeType>& other);
710 
711  /// @brief Difference this tree's set of active values with the active values
712  /// of the other tree, whose @c ValueType may be different. So a
713  /// resulting voxel will be active only if the original voxel is
714  /// active in this tree and inactive in the other tree.
715  ///
716  /// @note This operation can delete branches in this grid if they
717  /// overlap with active tiles in the other grid. Likewise active
718  /// voxels can be turned into inactive voxels resulting in leaf
719  /// nodes with no active values. Thus, it is recommended to
720  /// subsequently call tools::pruneInactive.
721  template<typename OtherRootNodeType>
722  void topologyDifference(const Tree<OtherRootNodeType>& other);
723 
724  /// For a given function @c f, use sparse traversal to compute <tt>f(this, other)</tt>
725  /// over all corresponding pairs of values (tile or voxel) of this tree and the other tree
726  /// and store the result in this tree.
727  /// This method is typically more space-efficient than the two-tree combine2(),
728  /// since it moves rather than copies nodes from the other tree into this tree.
729  /// @note This operation always empties the other tree.
730  /// @param other a tree of the same type as this tree
731  /// @param op a functor of the form <tt>void op(const T& a, const T& b, T& result)</tt>,
732  /// where @c T is this tree's @c ValueType, that computes
733  /// <tt>result = f(a, b)</tt>
734  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
735  /// more space-efficient than pruning the entire tree in one pass)
736  ///
737  /// @par Example:
738  /// Compute the per-voxel difference between two floating-point trees,
739  /// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
740  /// @code
741  /// {
742  /// struct Local {
743  /// static inline void diff(const float& a, const float& b, float& result) {
744  /// result = a - b;
745  /// }
746  /// };
747  /// aTree.combine(bTree, Local::diff);
748  /// }
749  /// @endcode
750  ///
751  /// @par Example:
752  /// Compute <tt>f * a + (1 - f) * b</tt> over all voxels of two floating-point trees,
753  /// @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
754  /// @code
755  /// namespace {
756  /// struct Blend {
757  /// Blend(float f): frac(f) {}
758  /// inline void operator()(const float& a, const float& b, float& result) const {
759  /// result = frac * a + (1.0 - frac) * b;
760  /// }
761  /// float frac;
762  /// };
763  /// }
764  /// {
765  /// aTree.combine(bTree, Blend(0.25)); // 0.25 * a + 0.75 * b
766  /// }
767  /// @endcode
768  template<typename CombineOp>
769  void combine(Tree& other, CombineOp& op, bool prune = false);
770  template<typename CombineOp>
771  void combine(Tree& other, const CombineOp& op, bool prune = false);
772 
773  /// Like combine(), but with
774  /// @param other a tree of the same type as this tree
775  /// @param op a functor of the form <tt>void op(CombineArgs<ValueType>& args)</tt> that
776  /// computes <tt>args.setResult(f(args.a(), args.b()))</tt> and, optionally,
777  /// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
778  /// for some functions @c f and @c g
779  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
780  /// more space-efficient than pruning the entire tree in one pass)
781  ///
782  /// This variant passes not only the @em a and @em b values but also the active states
783  /// of the @em a and @em b values to the functor, which may then return, by calling
784  /// @c args.setResultIsActive(), a computed active state for the result value.
785  /// By default, the result is active if either the @em a or the @em b value is active.
786  ///
787  /// @see openvdb/Types.h for the definition of the CombineArgs struct.
788  ///
789  /// @par Example:
790  /// Replace voxel values in floating-point @c aTree with corresponding values
791  /// from floating-point @c bTree (leaving @c bTree empty) wherever the @c bTree
792  /// values are larger. Also, preserve the active states of any transferred values.
793  /// @code
794  /// {
795  /// struct Local {
796  /// static inline void max(CombineArgs<float>& args) {
797  /// if (args.b() > args.a()) {
798  /// // Transfer the B value and its active state.
799  /// args.setResult(args.b());
800  /// args.setResultIsActive(args.bIsActive());
801  /// } else {
802  /// // Preserve the A value and its active state.
803  /// args.setResult(args.a());
804  /// args.setResultIsActive(args.aIsActive());
805  /// }
806  /// }
807  /// };
808  /// aTree.combineExtended(bTree, Local::max);
809  /// }
810  /// @endcode
811  template<typename ExtendedCombineOp>
812  void combineExtended(Tree& other, ExtendedCombineOp& op, bool prune = false);
813  template<typename ExtendedCombineOp>
814  void combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune = false);
815 
816  /// For a given function @c f, use sparse traversal to compute <tt>f(a, b)</tt> over all
817  /// corresponding pairs of values (tile or voxel) of trees A and B and store the result
818  /// in this tree.
819  /// @param a,b two trees with the same configuration (levels and node dimensions)
820  /// as this tree but with the B tree possibly having a different value type
821  /// @param op a functor of the form <tt>void op(const T1& a, const T2& b, T1& result)</tt>,
822  /// where @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the
823  /// B tree's @c ValueType, that computes <tt>result = f(a, b)</tt>
824  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
825  /// more space-efficient than pruning the entire tree in one pass)
826  ///
827  /// @throw TypeError if the B tree's configuration doesn't match this tree's
828  /// or if this tree's ValueType is not constructible from the B tree's ValueType.
829  ///
830  /// @par Example:
831  /// Compute the per-voxel difference between two floating-point trees,
832  /// @c aTree and @c bTree, and store the result in a third tree.
833  /// @code
834  /// {
835  /// struct Local {
836  /// static inline void diff(const float& a, const float& b, float& result) {
837  /// result = a - b;
838  /// }
839  /// };
840  /// FloatTree resultTree;
841  /// resultTree.combine2(aTree, bTree, Local::diff);
842  /// }
843  /// @endcode
844  template<typename CombineOp, typename OtherTreeType /*= Tree*/>
845  void combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune = false);
846  template<typename CombineOp, typename OtherTreeType /*= Tree*/>
847  void combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune = false);
848 
849  /// Like combine2(), but with
850  /// @param a,b two trees with the same configuration (levels and node dimensions)
851  /// as this tree but with the B tree possibly having a different value type
852  /// @param op a functor of the form <tt>void op(CombineArgs<T1, T2>& args)</tt>, where
853  /// @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the B tree's
854  /// @c ValueType, that computes <tt>args.setResult(f(args.a(), args.b()))</tt>
855  /// and, optionally,
856  /// <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
857  /// for some functions @c f and @c g
858  /// @param prune if true, prune the resulting tree one branch at a time (this is usually
859  /// more space-efficient than pruning the entire tree in one pass)
860  /// This variant passes not only the @em a and @em b values but also the active states
861  /// of the @em a and @em b values to the functor, which may then return, by calling
862  /// <tt>args.setResultIsActive()</tt>, a computed active state for the result value.
863  /// By default, the result is active if either the @em a or the @em b value is active.
864  ///
865  /// @throw TypeError if the B tree's configuration doesn't match this tree's
866  /// or if this tree's ValueType is not constructible from the B tree's ValueType.
867  ///
868  /// @see openvdb/Types.h for the definition of the CombineArgs struct.
869  ///
870  /// @par Example:
871  /// Compute the per-voxel maximum values of two single-precision floating-point trees,
872  /// @c aTree and @c bTree, and store the result in a third tree. Set the active state
873  /// of each output value to that of the larger of the two input values.
874  /// @code
875  /// {
876  /// struct Local {
877  /// static inline void max(CombineArgs<float>& args) {
878  /// if (args.b() > args.a()) {
879  /// // Transfer the B value and its active state.
880  /// args.setResult(args.b());
881  /// args.setResultIsActive(args.bIsActive());
882  /// } else {
883  /// // Preserve the A value and its active state.
884  /// args.setResult(args.a());
885  /// args.setResultIsActive(args.aIsActive());
886  /// }
887  /// }
888  /// };
889  /// FloatTree aTree = ...;
890  /// FloatTree bTree = ...;
891  /// FloatTree resultTree;
892  /// resultTree.combine2Extended(aTree, bTree, Local::max);
893  /// }
894  /// @endcode
895  ///
896  /// @par Example:
897  /// Compute the per-voxel maximum values of a double-precision and a single-precision
898  /// floating-point tree, @c aTree and @c bTree, and store the result in a third,
899  /// double-precision tree. Set the active state of each output value to that of
900  /// the larger of the two input values.
901  /// @code
902  /// {
903  /// struct Local {
904  /// static inline void max(CombineArgs<double, float>& args) {
905  /// if (args.b() > args.a()) {
906  /// // Transfer the B value and its active state.
907  /// args.setResult(args.b());
908  /// args.setResultIsActive(args.bIsActive());
909  /// } else {
910  /// // Preserve the A value and its active state.
911  /// args.setResult(args.a());
912  /// args.setResultIsActive(args.aIsActive());
913  /// }
914  /// }
915  /// };
916  /// DoubleTree aTree = ...;
917  /// FloatTree bTree = ...;
918  /// DoubleTree resultTree;
919  /// resultTree.combine2Extended(aTree, bTree, Local::max);
920  /// }
921  /// @endcode
922  template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
923  void combine2Extended(const Tree& a, const OtherTreeType& b, ExtendedCombineOp& op,
924  bool prune = false);
925  template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
926  void combine2Extended(const Tree& a, const OtherTreeType& b, const ExtendedCombineOp&,
927  bool prune = false);
928 
929  //
930  // Iteration
931  //
932  //@{
933  /// Return an iterator over children of the root node.
934  typename RootNodeType::ChildOnCIter beginRootChildren() const { return mRoot.cbeginChildOn(); }
935  typename RootNodeType::ChildOnCIter cbeginRootChildren() const { return mRoot.cbeginChildOn(); }
936  typename RootNodeType::ChildOnIter beginRootChildren() { return mRoot.beginChildOn(); }
937  //@}
938 
939  //@{
940  /// Return an iterator over non-child entries of the root node's table.
941  typename RootNodeType::ChildOffCIter beginRootTiles() const { return mRoot.cbeginChildOff(); }
942  typename RootNodeType::ChildOffCIter cbeginRootTiles() const { return mRoot.cbeginChildOff(); }
943  typename RootNodeType::ChildOffIter beginRootTiles() { return mRoot.beginChildOff(); }
944  //@}
945 
946  //@{
947  /// Return an iterator over all entries of the root node's table.
948  typename RootNodeType::ChildAllCIter beginRootDense() const { return mRoot.cbeginChildAll(); }
949  typename RootNodeType::ChildAllCIter cbeginRootDense() const { return mRoot.cbeginChildAll(); }
950  typename RootNodeType::ChildAllIter beginRootDense() { return mRoot.beginChildAll(); }
951  //@}
952 
953 
954  //@{
955  /// Iterator over all nodes in this tree
958  //@}
959 
960  //@{
961  /// Iterator over all leaf nodes in this tree
964  //@}
965 
966  //@{
967  /// Return an iterator over all nodes in this tree.
968  NodeIter beginNode() { return NodeIter(*this); }
969  NodeCIter beginNode() const { return NodeCIter(*this); }
970  NodeCIter cbeginNode() const { return NodeCIter(*this); }
971  //@}
972 
973  //@{
974  /// Return an iterator over all leaf nodes in this tree.
975  LeafIter beginLeaf() { return LeafIter(*this); }
976  LeafCIter beginLeaf() const { return LeafCIter(*this); }
977  LeafCIter cbeginLeaf() const { return LeafCIter(*this); }
978  //@}
979 
986 
987  //@{
988  /// Return an iterator over all values (tile and voxel) across all nodes.
990  ValueAllCIter beginValueAll() const { return ValueAllCIter(*this); }
991  ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this); }
992  //@}
993  //@{
994  /// Return an iterator over active values (tile and voxel) across all nodes.
995  ValueOnIter beginValueOn() { return ValueOnIter(*this); }
996  ValueOnCIter beginValueOn() const { return ValueOnCIter(*this); }
997  ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this); }
998  //@}
999  //@{
1000  /// Return an iterator over inactive values (tile and voxel) across all nodes.
1002  ValueOffCIter beginValueOff() const { return ValueOffCIter(*this); }
1003  ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this); }
1004  //@}
1005 
1006  /// @brief Return an iterator of type @c IterT (for example, begin<ValueOnIter>() is
1007  /// equivalent to beginValueOn()).
1008  template<typename IterT> IterT begin();
1009  /// @brief Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>()
1010  /// is equivalent to cbeginValueOn()).
1011  template<typename CIterT> CIterT cbegin() const;
1012 
1013 
1014 protected:
1015  using AccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<Tree, true>*, bool>;
1016  using ConstAccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<const Tree, true>*, bool>;
1017 
1018  /// @brief Notify all registered accessors, by calling ValueAccessor::release(),
1019  /// that this tree is about to be deleted.
1020  void releaseAllAccessors();
1021 
1022  // TBB body object used to deallocates nodes in parallel.
1023  template<typename NodeType>
1025  DeallocateNodes(std::vector<NodeType*>& nodes)
1026  : mNodes(nodes.empty() ? nullptr : &nodes.front()) { }
1027  void operator()(const tbb::blocked_range<size_t>& range) const {
1028  for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
1029  delete mNodes[n]; mNodes[n] = nullptr;
1030  }
1031  }
1032  NodeType ** const mNodes;
1033  };
1034 
1035  //
1036  // Data members
1037  //
1038  RootNodeType mRoot; // root node of the tree
1041 
1042  static std::unique_ptr<const Name> sTreeTypeName;
1043 }; // end of Tree class
1044 
1045 template<typename _RootNodeType>
1046 std::unique_ptr<const Name> Tree<_RootNodeType>::sTreeTypeName;
1047 
1048 
1049 /// @brief Tree3<T, N1, N2>::Type is the type of a three-level tree
1050 /// (Root, Internal, Leaf) with value type T and
1051 /// internal and leaf node log dimensions N1 and N2, respectively.
1052 /// @note This is NOT the standard tree configuration (Tree4 is).
1053 template<typename T, Index N1=4, Index N2=3>
1054 struct Tree3 {
1056 };
1057 
1058 
1059 /// @brief Tree4<T, N1, N2, N3>::Type is the type of a four-level tree
1060 /// (Root, Internal, Internal, Leaf) with value type T and
1061 /// internal and leaf node log dimensions N1, N2 and N3, respectively.
1062 /// @note This is the standard tree configuration.
1063 template<typename T, Index N1=5, Index N2=4, Index N3=3>
1064 struct Tree4 {
1066 };
1067 
1068 /// @brief Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree
1069 /// (Root, Internal, Internal, Internal, Leaf) with value type T and
1070 /// internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
1071 /// @note This is NOT the standard tree configuration (Tree4 is).
1072 template<typename T, Index N1=6, Index N2=5, Index N3=4, Index N4=3>
1073 struct Tree5 {
1074  using Type =
1076 };
1077 
1078 
1079 ////////////////////////////////////////
1080 
1081 
1082 inline void
1083 TreeBase::readTopology(std::istream& is, bool /*saveFloatAsHalf*/)
1084 {
1085  int32_t bufferCount;
1086  is.read(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
1087  if (bufferCount != 1) OPENVDB_LOG_WARN("multi-buffer trees are no longer supported");
1088 }
1089 
1090 
1091 inline void
1092 TreeBase::writeTopology(std::ostream& os, bool /*saveFloatAsHalf*/) const
1093 {
1094  int32_t bufferCount = 1;
1095  os.write(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
1096 }
1097 
1098 
1099 inline void
1100 TreeBase::print(std::ostream& os, int /*verboseLevel*/) const
1101 {
1102  os << " Tree Type: " << type()
1103  << " Active Voxel Count: " << activeVoxelCount() << std::endl
1104  << " Active tile Count: " << activeTileCount() << std::endl
1105  << " Inactive Voxel Count: " << inactiveVoxelCount() << std::endl
1106  << " Leaf Node Count: " << leafCount() << std::endl
1107  << " Non-leaf Node Count: " << nonLeafCount() << std::endl;
1108 }
1109 
1110 
1111 ////////////////////////////////////////
1112 
1113 
1114 //
1115 // Type traits for tree iterators
1116 //
1117 
1118 /// @brief TreeIterTraits provides, for all tree iterators, a begin(tree) function
1119 /// that returns an iterator over a tree of arbitrary type.
1120 template<typename TreeT, typename IterT> struct TreeIterTraits;
1121 
1122 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnIter> {
1123  static typename TreeT::RootNodeType::ChildOnIter begin(TreeT& tree) {
1124  return tree.beginRootChildren();
1125  }
1126 };
1127 
1128 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnCIter> {
1129  static typename TreeT::RootNodeType::ChildOnCIter begin(const TreeT& tree) {
1130  return tree.cbeginRootChildren();
1131  }
1132 };
1133 
1134 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffIter> {
1135  static typename TreeT::RootNodeType::ChildOffIter begin(TreeT& tree) {
1136  return tree.beginRootTiles();
1137  }
1138 };
1139 
1140 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffCIter> {
1141  static typename TreeT::RootNodeType::ChildOffCIter begin(const TreeT& tree) {
1142  return tree.cbeginRootTiles();
1143  }
1144 };
1145 
1146 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllIter> {
1147  static typename TreeT::RootNodeType::ChildAllIter begin(TreeT& tree) {
1148  return tree.beginRootDense();
1149  }
1150 };
1151 
1152 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllCIter> {
1153  static typename TreeT::RootNodeType::ChildAllCIter begin(const TreeT& tree) {
1154  return tree.cbeginRootDense();
1155  }
1156 };
1157 
1158 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeIter> {
1159  static typename TreeT::NodeIter begin(TreeT& tree) { return tree.beginNode(); }
1160 };
1161 
1162 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeCIter> {
1163  static typename TreeT::NodeCIter begin(const TreeT& tree) { return tree.cbeginNode(); }
1164 };
1165 
1166 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafIter> {
1167  static typename TreeT::LeafIter begin(TreeT& tree) { return tree.beginLeaf(); }
1168 };
1169 
1170 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafCIter> {
1171  static typename TreeT::LeafCIter begin(const TreeT& tree) { return tree.cbeginLeaf(); }
1172 };
1173 
1174 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnIter> {
1175  static typename TreeT::ValueOnIter begin(TreeT& tree) { return tree.beginValueOn(); }
1176 };
1177 
1178 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnCIter> {
1179  static typename TreeT::ValueOnCIter begin(const TreeT& tree) { return tree.cbeginValueOn(); }
1180 };
1181 
1182 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffIter> {
1183  static typename TreeT::ValueOffIter begin(TreeT& tree) { return tree.beginValueOff(); }
1184 };
1185 
1186 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffCIter> {
1187  static typename TreeT::ValueOffCIter begin(const TreeT& tree) { return tree.cbeginValueOff(); }
1188 };
1189 
1190 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllIter> {
1191  static typename TreeT::ValueAllIter begin(TreeT& tree) { return tree.beginValueAll(); }
1192 };
1193 
1194 template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllCIter> {
1195  static typename TreeT::ValueAllCIter begin(const TreeT& tree) { return tree.cbeginValueAll(); }
1196 };
1197 
1198 
1199 template<typename RootNodeType>
1200 template<typename IterT>
1201 inline IterT
1203 {
1204  return TreeIterTraits<Tree, IterT>::begin(*this);
1205 }
1206 
1207 
1208 template<typename RootNodeType>
1209 template<typename IterT>
1210 inline IterT
1212 {
1213  return TreeIterTraits<Tree, IterT>::begin(*this);
1214 }
1215 
1216 
1217 ////////////////////////////////////////
1218 
1219 
1220 template<typename RootNodeType>
1221 void
1222 Tree<RootNodeType>::readTopology(std::istream& is, bool saveFloatAsHalf)
1223 {
1224  this->clearAllAccessors();
1225  TreeBase::readTopology(is, saveFloatAsHalf);
1226  mRoot.readTopology(is, saveFloatAsHalf);
1227 }
1228 
1229 
1230 template<typename RootNodeType>
1231 void
1232 Tree<RootNodeType>::writeTopology(std::ostream& os, bool saveFloatAsHalf) const
1233 {
1234  TreeBase::writeTopology(os, saveFloatAsHalf);
1235  mRoot.writeTopology(os, saveFloatAsHalf);
1236 }
1237 
1238 
1239 template<typename RootNodeType>
1240 inline void
1241 Tree<RootNodeType>::readBuffers(std::istream &is, bool saveFloatAsHalf)
1242 {
1243  this->clearAllAccessors();
1244  mRoot.readBuffers(is, saveFloatAsHalf);
1245 }
1246 
1247 
1248 template<typename RootNodeType>
1249 inline void
1250 Tree<RootNodeType>::readBuffers(std::istream &is, const CoordBBox& bbox, bool saveFloatAsHalf)
1251 {
1252  this->clearAllAccessors();
1253  mRoot.readBuffers(is, bbox, saveFloatAsHalf);
1254 }
1255 
1256 
1257 template<typename RootNodeType>
1258 inline void
1260 {
1261  for (LeafCIter it = this->cbeginLeaf(); it; ++it) {
1262  // Retrieving the value of a leaf voxel forces loading of the leaf node's voxel buffer.
1263  it->getValue(Index(0));
1264  }
1265 }
1266 
1267 
1268 template<typename RootNodeType>
1269 inline void
1270 Tree<RootNodeType>::writeBuffers(std::ostream &os, bool saveFloatAsHalf) const
1271 {
1272  mRoot.writeBuffers(os, saveFloatAsHalf);
1273 }
1274 
1275 
1276 template<typename RootNodeType>
1277 inline void
1279 {
1280  std::vector<LeafNodeType*> leafnodes;
1281  this->stealNodes(leafnodes);
1282 
1283  tbb::parallel_for(tbb::blocked_range<size_t>(0, leafnodes.size()),
1284  DeallocateNodes<LeafNodeType>(leafnodes));
1285 
1286  std::vector<typename RootNodeType::ChildNodeType*> internalNodes;
1287  this->stealNodes(internalNodes);
1288 
1289  tbb::parallel_for(tbb::blocked_range<size_t>(0, internalNodes.size()),
1291 
1292  mRoot.clear();
1293 
1294  this->clearAllAccessors();
1295 }
1296 
1297 
1298 ////////////////////////////////////////
1299 
1300 
1301 template<typename RootNodeType>
1302 inline void
1304 {
1305  typename AccessorRegistry::accessor a;
1306  mAccessorRegistry.insert(a, &accessor);
1307 }
1308 
1309 
1310 template<typename RootNodeType>
1311 inline void
1313 {
1314  typename ConstAccessorRegistry::accessor a;
1315  mConstAccessorRegistry.insert(a, &accessor);
1316 }
1317 
1318 
1319 template<typename RootNodeType>
1320 inline void
1322 {
1323  mAccessorRegistry.erase(&accessor);
1324 }
1325 
1326 
1327 template<typename RootNodeType>
1328 inline void
1330 {
1331  mConstAccessorRegistry.erase(&accessor);
1332 }
1333 
1334 
1335 template<typename RootNodeType>
1336 inline void
1338 {
1339  for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
1340  it != mAccessorRegistry.end(); ++it)
1341  {
1342  if (it->first) it->first->clear();
1343  }
1344 
1345  for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
1346  it != mConstAccessorRegistry.end(); ++it)
1347  {
1348  if (it->first) it->first->clear();
1349  }
1350 }
1351 
1352 
1353 template<typename RootNodeType>
1354 inline void
1356 {
1357  mAccessorRegistry.erase(nullptr);
1358  for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
1359  it != mAccessorRegistry.end(); ++it)
1360  {
1361  it->first->release();
1362  }
1363  mAccessorRegistry.clear();
1364 
1365  mAccessorRegistry.erase(nullptr);
1366  for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
1367  it != mConstAccessorRegistry.end(); ++it)
1368  {
1369  it->first->release();
1370  }
1371  mConstAccessorRegistry.clear();
1372 }
1373 
1374 
1375 ////////////////////////////////////////
1376 
1377 
1378 template<typename RootNodeType>
1379 inline const typename RootNodeType::ValueType&
1381 {
1382  return mRoot.getValue(xyz);
1383 }
1384 
1385 
1386 template<typename RootNodeType>
1387 template<typename AccessT>
1388 inline const typename RootNodeType::ValueType&
1389 Tree<RootNodeType>::getValue(const Coord& xyz, AccessT& accessor) const
1390 {
1391  return accessor.getValue(xyz);
1392 }
1393 
1394 
1395 template<typename RootNodeType>
1396 inline int
1398 {
1399  return mRoot.getValueDepth(xyz);
1400 }
1401 
1402 
1403 template<typename RootNodeType>
1404 inline void
1406 {
1407  mRoot.setValueOff(xyz);
1408 }
1409 
1410 
1411 template<typename RootNodeType>
1412 inline void
1414 {
1415  mRoot.setValueOff(xyz, value);
1416 }
1417 
1418 
1419 template<typename RootNodeType>
1420 inline void
1422 {
1423  mRoot.setActiveState(xyz, on);
1424 }
1425 
1426 
1427 template<typename RootNodeType>
1428 inline void
1430 {
1431  mRoot.setValueOn(xyz, value);
1432 }
1433 
1434 template<typename RootNodeType>
1435 inline void
1437 {
1438  mRoot.setValueOnly(xyz, value);
1439 }
1440 
1441 template<typename RootNodeType>
1442 template<typename AccessT>
1443 inline void
1444 Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value, AccessT& accessor)
1445 {
1446  accessor.setValue(xyz, value);
1447 }
1448 
1449 
1450 template<typename RootNodeType>
1451 inline void
1453 {
1454  mRoot.setActiveState(xyz, true);
1455 }
1456 
1457 
1458 template<typename RootNodeType>
1459 inline void
1461 {
1462  mRoot.setValueOn(xyz, value);
1463 }
1464 
1465 
1466 template<typename RootNodeType>
1467 template<typename ModifyOp>
1468 inline void
1469 Tree<RootNodeType>::modifyValue(const Coord& xyz, const ModifyOp& op)
1470 {
1471  mRoot.modifyValue(xyz, op);
1472 }
1473 
1474 
1475 template<typename RootNodeType>
1476 template<typename ModifyOp>
1477 inline void
1479 {
1480  mRoot.modifyValueAndActiveState(xyz, op);
1481 }
1482 
1483 
1484 template<typename RootNodeType>
1485 inline bool
1487 {
1488  return mRoot.probeValue(xyz, value);
1489 }
1490 
1491 
1492 ////////////////////////////////////////
1493 
1494 
1495 template<typename RootNodeType>
1496 inline void
1498  const ValueType& value, bool active)
1499 {
1500  mRoot.addTile(level, xyz, value, active);
1501 }
1502 
1503 
1504 template<typename RootNodeType>
1505 template<typename NodeT>
1506 inline NodeT*
1507 Tree<RootNodeType>::stealNode(const Coord& xyz, const ValueType& value, bool active)
1508 {
1509  this->clearAllAccessors();
1510  return mRoot.template stealNode<NodeT>(xyz, value, active);
1511 }
1512 
1513 
1514 template<typename RootNodeType>
1515 inline typename RootNodeType::LeafNodeType*
1517 {
1518  return mRoot.touchLeaf(xyz);
1519 }
1520 
1521 
1522 template<typename RootNodeType>
1523 inline typename RootNodeType::LeafNodeType*
1525 {
1526  return mRoot.probeLeaf(xyz);
1527 }
1528 
1529 
1530 template<typename RootNodeType>
1531 inline const typename RootNodeType::LeafNodeType*
1533 {
1534  return mRoot.probeConstLeaf(xyz);
1535 }
1536 
1537 
1538 template<typename RootNodeType>
1539 template<typename NodeType>
1540 inline NodeType*
1542 {
1543  return mRoot.template probeNode<NodeType>(xyz);
1544 }
1545 
1546 
1547 template<typename RootNodeType>
1548 template<typename NodeType>
1549 inline const NodeType*
1551 {
1552  return this->template probeConstNode<NodeType>(xyz);
1553 }
1554 
1555 
1556 template<typename RootNodeType>
1557 template<typename NodeType>
1558 inline const NodeType*
1560 {
1561  return mRoot.template probeConstNode<NodeType>(xyz);
1562 }
1563 
1564 
1565 ////////////////////////////////////////
1566 
1567 
1568 template<typename RootNodeType>
1569 inline void
1571 {
1572  this->clearAllAccessors();
1573  return mRoot.clip(bbox);
1574 }
1575 
1576 
1577 template<typename RootNodeType>
1578 inline void
1580 {
1581  this->clearAllAccessors();
1582  for (LeafIter it = this->beginLeaf(); it; ) {
1583  const LeafNodeType* leaf = it.getLeaf();
1584  ++it; // advance the iterator before deleting the leaf node
1585  if (!leaf->isAllocated()) {
1586  this->addTile(/*level=*/0, leaf->origin(), this->background(), /*active=*/false);
1587  }
1588  }
1589 }
1590 
1591 template<typename RootNodeType>
1592 inline Index32
1594 {
1595  Index32 sum = 0;
1596  for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
1597  return sum;
1598 }
1599 
1600 
1601 template<typename RootNodeType>
1602 inline void
1603 Tree<RootNodeType>::sparseFill(const CoordBBox& bbox, const ValueType& value, bool active)
1604 {
1605  this->clearAllAccessors();
1606  return mRoot.sparseFill(bbox, value, active);
1607 }
1608 
1609 
1610 template<typename RootNodeType>
1611 inline void
1612 Tree<RootNodeType>::denseFill(const CoordBBox& bbox, const ValueType& value, bool active)
1613 {
1614  this->clearAllAccessors();
1615  return mRoot.denseFill(bbox, value, active);
1616 }
1617 
1618 
1619 template<typename RootNodeType>
1620 inline void
1622 {
1623  this->clearAllAccessors();
1624  mRoot.voxelizeActiveTiles(threaded);
1625 }
1626 
1627 
1628 template<typename RootNodeType>
1631 {
1632  Metadata::Ptr result;
1633  if (Metadata::isRegisteredType(valueType())) {
1634  using MetadataT = TypedMetadata<ValueType>;
1635  result = Metadata::createMetadata(valueType());
1636  if (result->typeName() == MetadataT::staticTypeName()) {
1637  MetadataT* m = static_cast<MetadataT*>(result.get());
1638  m->value() = mRoot.background();
1639  }
1640  }
1641  return result;
1642 }
1643 
1644 
1645 ////////////////////////////////////////
1646 
1647 
1648 template<typename RootNodeType>
1649 inline void
1651 {
1652  this->clearAllAccessors();
1653  other.clearAllAccessors();
1654  switch (policy) {
1655  case MERGE_ACTIVE_STATES:
1656  mRoot.template merge<MERGE_ACTIVE_STATES>(other.mRoot); break;
1657  case MERGE_NODES:
1658  mRoot.template merge<MERGE_NODES>(other.mRoot); break;
1660  mRoot.template merge<MERGE_ACTIVE_STATES_AND_NODES>(other.mRoot); break;
1661  }
1662 }
1663 
1664 
1665 template<typename RootNodeType>
1666 template<typename OtherRootNodeType>
1667 inline void
1668 Tree<RootNodeType>::topologyUnion(const Tree<OtherRootNodeType>& other, const bool preserveTiles)
1669 {
1670  this->clearAllAccessors();
1671  mRoot.topologyUnion(other.root(), preserveTiles);
1672 }
1673 
1674 template<typename RootNodeType>
1675 template<typename OtherRootNodeType>
1676 inline void
1678 {
1679  this->clearAllAccessors();
1680  mRoot.topologyIntersection(other.root());
1681 }
1682 
1683 template<typename RootNodeType>
1684 template<typename OtherRootNodeType>
1685 inline void
1687 {
1688  this->clearAllAccessors();
1689  mRoot.topologyDifference(other.root());
1690 }
1691 
1692 ////////////////////////////////////////
1693 
1694 
1695 /// @brief Helper class to adapt a three-argument (a, b, result) CombineOp functor
1696 /// into a single-argument functor that accepts a CombineArgs struct
1697 template<typename AValueT, typename CombineOp, typename BValueT = AValueT>
1699 {
1700  CombineOpAdapter(CombineOp& _op): op(_op) {}
1701 
1703  op(args.a(), args.b(), args.result());
1704  }
1705 
1706  CombineOp& op;
1707 };
1708 
1709 
1710 template<typename RootNodeType>
1711 template<typename CombineOp>
1712 inline void
1713 Tree<RootNodeType>::combine(Tree& other, CombineOp& op, bool prune)
1714 {
1716  this->combineExtended(other, extendedOp, prune);
1717 }
1718 
1719 
1720 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1721 /// code like this: <tt>aTree.combine(bTree, MyCombineOp(...))</tt>.
1722 template<typename RootNodeType>
1723 template<typename CombineOp>
1724 inline void
1725 Tree<RootNodeType>::combine(Tree& other, const CombineOp& op, bool prune)
1726 {
1728  this->combineExtended(other, extendedOp, prune);
1729 }
1730 
1731 
1732 template<typename RootNodeType>
1733 template<typename ExtendedCombineOp>
1734 inline void
1735 Tree<RootNodeType>::combineExtended(Tree& other, ExtendedCombineOp& op, bool prune)
1736 {
1737  this->clearAllAccessors();
1738  mRoot.combine(other.root(), op, prune);
1739 }
1740 
1741 
1742 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1743 /// code like this: <tt>aTree.combineExtended(bTree, MyCombineOp(...))</tt>.
1744 template<typename RootNodeType>
1745 template<typename ExtendedCombineOp>
1746 inline void
1747 Tree<RootNodeType>::combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune)
1748 {
1749  this->clearAllAccessors();
1750  mRoot.template combine<const ExtendedCombineOp>(other.mRoot, op, prune);
1751 }
1752 
1753 
1754 template<typename RootNodeType>
1755 template<typename CombineOp, typename OtherTreeType>
1756 inline void
1757 Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune)
1758 {
1760  this->combine2Extended(a, b, extendedOp, prune);
1761 }
1762 
1763 
1764 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1765 /// code like this: <tt>tree.combine2(aTree, bTree, MyCombineOp(...))</tt>.
1766 template<typename RootNodeType>
1767 template<typename CombineOp, typename OtherTreeType>
1768 inline void
1769 Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune)
1770 {
1772  this->combine2Extended(a, b, extendedOp, prune);
1773 }
1774 
1775 
1776 template<typename RootNodeType>
1777 template<typename ExtendedCombineOp, typename OtherTreeType>
1778 inline void
1779 Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
1780  ExtendedCombineOp& op, bool prune)
1781 {
1782  this->clearAllAccessors();
1783  mRoot.combine2(a.root(), b.root(), op, prune);
1784 }
1785 
1786 
1787 /// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
1788 /// code like the following, where the functor argument is a temporary:
1789 /// <tt>tree.combine2Extended(aTree, bTree, MyCombineOp(...))</tt>.
1790 template<typename RootNodeType>
1791 template<typename ExtendedCombineOp, typename OtherTreeType>
1792 inline void
1793 Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
1794  const ExtendedCombineOp& op, bool prune)
1795 {
1796  this->clearAllAccessors();
1797  mRoot.template combine2<const ExtendedCombineOp>(a.root(), b.root(), op, prune);
1798 }
1799 
1800 
1801 ////////////////////////////////////////
1802 
1803 
1804 template<typename RootNodeType>
1805 inline const Name&
1807 {
1808  static std::once_flag once;
1809  std::call_once(once, []()
1810  {
1811  std::vector<Index> dims;
1812  Tree::getNodeLog2Dims(dims);
1813  std::ostringstream ostr;
1814  ostr << "Tree_" << typeNameAsString<BuildType>();
1815  for (size_t i = 1, N = dims.size(); i < N; ++i) { // start from 1 to skip the RootNode
1816  ostr << "_" << dims[i];
1817  }
1818  sTreeTypeName.reset(new Name(ostr.str()));
1819  });
1820  return *sTreeTypeName;
1821 }
1822 
1823 
1824 template<typename RootNodeType>
1825 template<typename OtherRootNodeType>
1826 inline bool
1828 {
1829  return mRoot.hasSameTopology(other.root());
1830 }
1831 
1832 
1833 template<typename RootNodeType>
1834 inline bool
1836 {
1837  bbox.reset(); // default invalid bbox
1838 
1839  if (this->empty()) return false; // empty
1840 
1841  mRoot.evalActiveBoundingBox(bbox, false);
1842 
1843  return !bbox.empty();
1844 }
1845 
1846 template<typename RootNodeType>
1847 inline bool
1849 {
1850  bbox.reset(); // default invalid bbox
1851 
1852  if (this->empty()) return false; // empty
1853 
1854  mRoot.evalActiveBoundingBox(bbox, true);
1855 
1856  return !bbox.empty();
1857 }
1858 
1859 
1860 template<typename RootNodeType>
1861 inline bool
1863 {
1864  CoordBBox bbox;
1865  bool notEmpty = this->evalActiveVoxelBoundingBox(bbox);
1866  dim = bbox.extents();
1867  return notEmpty;
1868 }
1869 
1870 
1871 template<typename RootNodeType>
1872 inline bool
1874 {
1875  CoordBBox bbox;
1876  bool notEmpty = this->evalLeafBoundingBox(bbox);
1877  dim = bbox.extents();
1878  return notEmpty;
1879 }
1880 
1881 
1882 template<typename RootNodeType>
1883 inline void
1885 {
1886  minVal = maxVal = zeroVal<ValueType>();
1887  if (ValueOnCIter iter = this->cbeginValueOn()) {
1888  minVal = maxVal = *iter;
1889  for (++iter; iter; ++iter) {
1890  const ValueType& val = *iter;
1891  if (math::cwiseLessThan(val, minVal)) minVal = val;
1892  if (math::cwiseGreaterThan(val, maxVal)) maxVal = val;
1893  }
1894  }
1895 }
1896 
1897 
1898 template<typename RootNodeType>
1899 inline void
1900 Tree<RootNodeType>::getNodeLog2Dims(std::vector<Index>& dims)
1901 {
1902  dims.clear();
1903  RootNodeType::getNodeLog2Dims(dims);
1904 }
1905 
1906 
1907 template<typename RootNodeType>
1908 inline void
1909 Tree<RootNodeType>::print(std::ostream& os, int verboseLevel) const
1910 {
1911  if (verboseLevel <= 0) return;
1912 
1913  /// @todo Consider using boost::io::ios_precision_saver instead.
1914  struct OnExit {
1915  std::ostream& os;
1916  std::streamsize savedPrecision;
1917  OnExit(std::ostream& _os): os(_os), savedPrecision(os.precision()) {}
1918  ~OnExit() { os.precision(savedPrecision); }
1919  };
1920  OnExit restorePrecision(os);
1921 
1922  std::vector<Index> dims;
1923  Tree::getNodeLog2Dims(dims);// leaf is the last element
1924 
1925  os << "Information about Tree:\n"
1926  << " Type: " << this->type() << "\n";
1927 
1928  os << " Configuration:\n";
1929 
1930  if (verboseLevel <= 1) {
1931  // Print node types and sizes.
1932  os << " Root(" << mRoot.getTableSize() << ")";
1933  if (dims.size() > 1) {
1934  for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
1935  os << ", Internal(" << (1 << dims[i]) << "^3)";
1936  }
1937  os << ", Leaf(" << (1 << dims.back()) << "^3)\n";
1938  }
1939  os << " Background value: " << mRoot.background() << "\n";
1940  return;
1941  }
1942 
1943  // The following is tree information that is expensive to extract.
1944 
1945  ValueType minVal = zeroVal<ValueType>(), maxVal = zeroVal<ValueType>();
1946  if (verboseLevel > 3) {
1947  // This forces loading of all non-resident nodes.
1949  minVal = extrema.min();
1950  maxVal = extrema.max();
1951  }
1952 
1953  const auto nodeCount = this->nodeCount();//fast
1954  const Index32 leafCount = nodeCount.front();// leaf is the first element
1955  assert(dims.size() == nodeCount.size());
1956 
1957  Index64 totalNodeCount = 0;
1958  for (size_t i = 0; i < nodeCount.size(); ++i) totalNodeCount += nodeCount[i];
1959 
1960  // Print node types, counts and sizes.
1961  os << " Root(1 x " << mRoot.getTableSize() << ")";
1962  if (dims.size() >= 2) {
1963  for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
1964  os << ", Internal(" << util::formattedInt(nodeCount[N - i]);
1965  os << " x " << (1 << dims[i]) << "^3)";
1966  }
1967  os << ", Leaf(" << util::formattedInt(leafCount);
1968  os << " x " << (1 << dims.back()) << "^3)\n";
1969  }
1970  os << " Background value: " << mRoot.background() << "\n";
1971 
1972  // Statistics of topology and values
1973 
1974  if (verboseLevel > 3) {
1975  os << " Min value: " << minVal << "\n";
1976  os << " Max value: " << maxVal << "\n";
1977  }
1978 
1979  const Index64
1980  numActiveVoxels = this->activeVoxelCount(),
1981  numActiveLeafVoxels = this->activeLeafVoxelCount(),
1982  numActiveTiles = this->activeTileCount();
1983 
1984  os << " Number of active voxels: " << util::formattedInt(numActiveVoxels) << "\n";
1985  os << " Number of active tiles: " << util::formattedInt(numActiveTiles) << "\n";
1986 
1987  Coord dim(0, 0, 0);
1988  Index64 totalVoxels = 0;
1989  if (numActiveVoxels) { // nonempty
1990  CoordBBox bbox;
1991  this->evalActiveVoxelBoundingBox(bbox);
1992  dim = bbox.extents();
1993  totalVoxels = dim.x() * uint64_t(dim.y()) * dim.z();
1994 
1995  os << " Bounding box of active voxels: " << bbox << "\n";
1996  os << " Dimensions of active voxels: "
1997  << dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";
1998 
1999  const double activeRatio = (100.0 * double(numActiveVoxels)) / double(totalVoxels);
2000  os << " Percentage of active voxels: " << std::setprecision(3) << activeRatio << "%\n";
2001 
2002  if (leafCount > 0) {
2003  const double fillRatio = (100.0 * double(numActiveLeafVoxels))
2004  / (double(leafCount) * double(LeafNodeType::NUM_VOXELS));
2005  os << " Average leaf node fill ratio: " << fillRatio << "%\n";
2006  }
2007 
2008  if (verboseLevel > 2) {
2009  Index64 sum = 0;// count the number of unallocated leaf nodes
2010  for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
2011  os << " Number of unallocated nodes: "
2012  << util::formattedInt(sum) << " ("
2013  << (100.0 * double(sum) / double(totalNodeCount)) << "%)\n";
2014  }
2015  } else {
2016  os << " Tree is empty!\n";
2017  }
2018  os << std::flush;
2019 
2020  if (verboseLevel == 2) return;
2021 
2022  // Memory footprint in bytes
2023  const Index64
2024  actualMem = this->memUsage(),
2025  denseMem = sizeof(ValueType) * totalVoxels,
2026  voxelsMem = sizeof(ValueType) * numActiveLeafVoxels;
2027  ///< @todo not accurate for BoolTree (and probably should count tile values)
2028 
2029  os << "Memory footprint:\n";
2030  util::printBytes(os, actualMem, " Actual: ");
2031  util::printBytes(os, voxelsMem, " Active leaf voxels: ");
2032 
2033  if (numActiveVoxels) {
2034  util::printBytes(os, denseMem, " Dense equivalent: ");
2035  os << " Actual footprint is " << (100.0 * double(actualMem) / double(denseMem))
2036  << "% of an equivalent dense volume\n";
2037  os << " Leaf voxel footprint is " << (100.0 * double(voxelsMem) / double(actualMem))
2038  << "% of actual footprint\n";
2039  }
2040 }
2041 
2042 } // namespace tree
2043 } // namespace OPENVDB_VERSION_NAME
2044 } // namespace openvdb
2045 
2046 #endif // OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
Functions to count tiles, nodes or voxels in a grid.
Utility routines to output nicely-formatted numeric values.
ValueT value
Definition: GridBuilder.h:1290
Internal table nodes for OpenVDB trees.
General-purpose arithmetic and comparison routines, most of which accept arbitrary value types (or at...
#define OPENVDB_API
Definition: Platform.h:251
#define OPENVDB_DEPRECATED_MESSAGE(msg)
Definition: Platform.h:125
The root node of an OpenVDB tree.
This struct collects both input and output arguments to "grid combiner" functors used with the tree::...
Definition: Types.h:530
const AValueType & a() const
Get the A input value.
Definition: Types.h:569
const BValueType & b() const
Get the B input value.
Definition: Types.h:571
const AValueType & result() const
Get the output value.
Definition: Types.h:574
static Metadata::Ptr createMetadata(const Name &typeName)
Create new metadata of the given type.
static bool isRegisteredType(const Name &typeName)
Return true if the given type is known by the metadata type registry.
SharedPtr< Metadata > Ptr
Definition: Metadata.h:26
Definition: Exceptions.h:61
Tag dispatch class that distinguishes topology copy constructors from deep copy constructors.
Definition: Types.h:644
Templated metadata class to hold specific types.
Definition: Metadata.h:122
Axis-aligned bounding box of signed integer coordinates.
Definition: Coord.h:249
Coord extents() const
Definition: Coord.h:382
bool empty() const
Return true if this bounding box is empty (i.e., encloses no coordinates).
Definition: Coord.h:356
void reset()
Definition: Coord.h:327
Signed (x, y, z) 32-bit integer coordinates.
Definition: Coord.h:25
Int32 y() const
Definition: Coord.h:131
Int32 x() const
Definition: Coord.h:130
Int32 z() const
Definition: Coord.h:132
double min() const
Return the minimum value.
Definition: Stats.h:125
double max() const
Return the maximum value.
Definition: Stats.h:128
Templated class to compute the minimum and maximum values.
Definition: Stats.h:31
Base class for tree-traversal iterators over all leaf nodes (but not leaf voxels)
Definition: TreeIterator.h:1187
Base class for tree-traversal iterators over all nodes.
Definition: TreeIterator.h:936
Base class for typed trees.
Definition: Tree.h:37
virtual Name valueType() const =0
Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
virtual Index32 nonLeafCount() const =0
Return the number of non-leaf nodes.
virtual void writeTopology(std::ostream &, bool saveFloatAsHalf=false) const
Write the tree topology to a stream.
Definition: Tree.h:1092
virtual Index64 activeLeafVoxelCount() const =0
Return the number of active voxels stored in leaf nodes.
virtual std::vector< Index32 > nodeCount() const =0
virtual void readBuffers(std::istream &, bool saveFloatAsHalf=false)=0
Read all data buffers for this tree.
bool isType() const
Return true if this tree is of the same type as the template parameter.
Definition: Tree.h:55
virtual void writeBuffers(std::ostream &, bool saveFloatAsHalf=false) const =0
Write out all the data buffers for this tree.
virtual Metadata::Ptr getBackgroundValue() const
Return this tree's background value wrapped as metadata.
Definition: Tree.h:65
virtual const Name & type() const =0
Return the name of this tree's type.
TreeBase & operator=(const TreeBase &)=delete
virtual void print(std::ostream &os=std::cout, int verboseLevel=1) const
Print statistics, memory usage and other information about this tree.
Definition: Tree.h:1100
virtual void readBuffers(std::istream &, const CoordBBox &, bool saveFloatAsHalf=false)=0
Read all of this tree's data buffers that intersect the given bounding box.
virtual void getIndexRange(CoordBBox &bbox) const =0
virtual Index32 leafCount() const =0
Return the number of leaf nodes.
virtual Index32 unallocatedLeafCount() const =0
Return the total number of unallocated leaf nodes residing in this tree.
virtual Index64 activeVoxelCount() const =0
Return the total number of active voxels.
virtual Index64 inactiveVoxelCount() const =0
Return the number of inactive voxels within the bounding box of all active voxels.
virtual void clipUnallocatedNodes()=0
Replace with background tiles any nodes whose voxel buffers have not yet been allocated.
virtual void readNonresidentBuffers() const =0
Read all of this tree's data buffers that are not yet resident in memory (because delayed loading is ...
virtual Index64 inactiveLeafVoxelCount() const =0
Return the number of inactive voxels stored in leaf nodes.
virtual Index64 memUsage() const
Return the total amount of memory in bytes occupied by this tree.
Definition: Tree.h:134
virtual TreeBase::Ptr copy() const =0
Return a pointer to a deep copy of this tree.
SharedPtr< TreeBase > Ptr
Definition: Tree.h:39
virtual bool evalLeafDim(Coord &dim) const =0
Return in dim the dimensions of the axis-aligned bounding box of all leaf nodes.
virtual bool evalActiveVoxelBoundingBox(CoordBBox &bbox) const =0
Return in bbox the axis-aligned bounding box of all active voxels and tiles.
virtual Index treeDepth() const =0
Return the depth of this tree.
virtual Index64 activeTileCount() const =0
Return the total number of active tiles.
SharedPtr< const TreeBase > ConstPtr
Definition: Tree.h:40
virtual bool evalActiveVoxelDim(Coord &dim) const =0
Return in dim the dimensions of the axis-aligned bounding box of all active voxels....
virtual bool evalLeafBoundingBox(CoordBBox &bbox) const =0
Return in bbox the axis-aligned bounding box of all active tiles and leaf nodes with active values.
TreeBase(const TreeBase &)=default
virtual void readTopology(std::istream &, bool saveFloatAsHalf=false)
Read the tree topology from a stream.
Definition: Tree.h:1083
Base class for tree-traversal iterators over tile and voxel values.
Definition: TreeIterator.h:617
Definition: Tree.h:178
RootNodeType::ChildAllCIter beginRootDense() const
Return an iterator over all entries of the root node's table.
Definition: Tree.h:948
int getValueDepth(const Coord &xyz) const
Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
Definition: Tree.h:1397
bool hasSameTopology(const Tree< OtherRootNodeType > &other) const
Return true if the given tree has the same node and active value topology as this tree,...
Definition: Tree.h:1827
CIterT cbegin() const
Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>() is equivalent to cbeginVa...
void releaseAccessor(ValueAccessorBase< Tree, false > &) const
Dummy implementations.
Definition: Tree.h:649
void releaseAccessor(ValueAccessorBase< const Tree, false > &) const
Definition: Tree.h:650
ConstAccessorRegistry mConstAccessorRegistry
Definition: Tree.h:1040
bool isValueOn(const Coord &xyz) const
Return true if the value at the given coordinates is active.
Definition: Tree.h:450
Tree(const Tree &other)
Deep copy constructor.
Definition: Tree.h:207
RootNodeType::ChildOffCIter cbeginRootTiles() const
Definition: Tree.h:942
LeafCIter beginLeaf() const
Definition: Tree.h:976
RootNodeType & root()
Return this tree's root node.
Definition: Tree.h:281
const ValueType & background() const
Return this tree's background value.
Definition: Tree.h:662
void writeBuffers(std::ostream &, bool saveFloatAsHalf=false) const override
Write out all data buffers for this tree.
Definition: Tree.h:1270
ValueOffCIter cbeginValueOff() const
Definition: Tree.h:1003
Tree(const Tree< OtherRootType > &other)
Value conversion deep copy constructor.
Definition: Tree.h:218
const LeafNodeType * probeConstLeaf(const Coord &xyz) const
Definition: Tree.h:1532
void clearAllAccessors()
Clear all registered accessors.
Definition: Tree.h:1337
_RootNodeType RootNodeType
Definition: Tree.h:183
RootNodeType::ChildAllIter beginRootDense()
Definition: Tree.h:950
LeafCIter cbeginLeaf() const
Definition: Tree.h:977
RootNodeType::ChildOffIter beginRootTiles()
Definition: Tree.h:943
void getNodes(ArrayT &array)
Adds all nodes of a certain type to a container with the following API:
Definition: Tree.h:579
RootNodeType::ChildOnCIter beginRootChildren() const
Return an iterator over children of the root node.
Definition: Tree.h:934
bool operator!=(const Tree &) const
Definition: Tree.h:277
Tree()
Definition: Tree.h:202
AccessorRegistry mAccessorRegistry
Definition: Tree.h:1039
RootNodeType mRoot
Definition: Tree.h:1038
ValueAllCIter cbeginValueAll() const
Definition: Tree.h:991
void prune(const ValueType &tolerance=zeroVal< ValueType >())
Reduce the memory footprint of this tree by replacing with tiles any nodes whose values are all the s...
Definition: Tree.h:507
static std::unique_ptr< const Name > sTreeTypeName
Definition: Tree.h:1042
LeafNodeType * probeLeaf(const Coord &xyz)
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists,...
Definition: Tree.h:1524
LeafNodeType * touchLeaf(const Coord &xyz)
Return a pointer to the leaf node that contains voxel (x, y, z). If no such node exists,...
Definition: Tree.h:1516
RootNodeType::ChildOnIter beginRootChildren()
Definition: Tree.h:936
Tree & operator=(const Tree &)=delete
ValueOnCIter beginValueOn() const
Definition: Tree.h:996
bool operator==(const Tree &) const
Definition: Tree.h:276
Index64 activeLeafVoxelCount() const override
Return the number of active voxels stored in leaf nodes.
Definition: Tree.h:353
void modifyValueAndActiveState(const Coord &xyz, const ModifyOp &op)
Apply a functor to the voxel at the given coordinates.
Definition: Tree.h:1478
Index32 leafCount() const override
Return the number of leaf nodes.
Definition: Tree.h:340
Index64 inactiveVoxelCount() const override
Return the number of inactive voxels within the bounding box of all active voxels.
Definition: Tree.h:359
void setValueOnly(const Coord &xyz, const ValueType &value)
Set the value of the voxel at the given coordinates but don't change its active state.
Definition: Tree.h:1436
bool empty() const
Return true if this tree contains no nodes other than the root node and no tiles other than backgroun...
Definition: Tree.h:620
Index64 activeVoxelCount() const override
Return the total number of active voxels.
Definition: Tree.h:357
Index64 inactiveLeafVoxelCount() const override
Return the number of inactive voxels stored in leaf nodes.
Definition: Tree.h:355
void fill(const CoordBBox &bbox, const ValueType &value, bool active=true)
Definition: Tree.h:478
ValueOffCIter beginValueOff() const
Definition: Tree.h:1002
void addLeaf(LeafNodeType *leaf)
Add the given leaf node to this tree, creating a new branch if necessary. If a leaf node with the sam...
Definition: Tree.h:518
RootNodeType::ChildOffCIter beginRootTiles() const
Return an iterator over non-child entries of the root node's table.
Definition: Tree.h:941
void addTile(Index level, const Coord &xyz, const ValueType &value, bool active)
Add a tile containing voxel (x, y, z) at the specified tree level, creating a new branch if necessary...
Definition: Tree.h:1497
bool probeValue(const Coord &xyz, ValueType &value) const
Get the value of the voxel at the given coordinates.
Definition: Tree.h:1486
void setActiveState(const Coord &xyz, bool on)
Set the active state of the voxel at the given coordinates but don't change its value.
Definition: Tree.h:1421
ValueOnIter beginValueOn()
Return an iterator over active values (tile and voxel) across all nodes.
Definition: Tree.h:995
std::vector< Index32 > nodeCount() const override
Definition: Tree.h:344
typename RootNodeType::BuildType BuildType
Definition: Tree.h:185
void setValue(const Coord &xyz, const ValueType &value)
Set the value of the voxel at the given coordinates and mark the voxel as active.
Definition: Tree.h:1429
const ValueType & getValue(const Coord &xyz, AccessT &) const
Return the value of the voxel at the given coordinates and update the given accessor's node cache.
Index64 activeTileCount() const override
Return the total number of active tiles.
Definition: Tree.h:361
const Name & type() const override
Return the name of this type of tree.
Definition: Tree.h:274
void setValueOff(const Coord &xyz)
Mark the voxel at the given coordinates as inactive but don't change its value.
Definition: Tree.h:1405
tbb::concurrent_hash_map< ValueAccessorBase< const Tree, true > *, bool > ConstAccessorRegistry
Definition: Tree.h:1016
ValueOnCIter cbeginValueOn() const
Definition: Tree.h:997
TreeBase::Ptr copy() const override
Return a pointer to a deep copy of this tree.
Definition: Tree.h:266
typename RootNodeType::ValueType ValueType
Definition: Tree.h:184
void attachAccessor(ValueAccessorBase< Tree, false > &) const
Dummy implementations.
Definition: Tree.h:637
const ValueType & getValue(const Coord &xyz) const
Return the value of the voxel at the given coordinates.
Definition: Tree.h:1380
void attachAccessor(ValueAccessorBase< const Tree, false > &) const
Definition: Tree.h:638
NodeCIter beginNode() const
Definition: Tree.h:969
void modifyValue(const Coord &xyz, const ModifyOp &op)
Apply a functor to the value of the voxel at the given coordinates and mark the voxel as active.
Definition: Tree.h:1469
Tree(const OtherTreeType &other, const ValueType &background, TopologyCopy)
Topology copy constructor from a tree of a different type.
Definition: Tree.h:254
RootNodeType::ChildAllCIter cbeginRootDense() const
Definition: Tree.h:949
void getNodes(ArrayT &array) const
Definition: Tree.h:580
const LeafNodeType * probeLeaf(const Coord &xyz) const
Definition: Tree.h:553
void stealNodes(ArrayT &array, const ValueType &value, bool state)
Definition: Tree.h:609
void clear()
Remove all tiles from this tree and all nodes other than the root node.
Definition: Tree.h:1278
RootNodeType::ChildOnCIter cbeginRootChildren() const
Definition: Tree.h:935
NodeCIter cbeginNode() const
Definition: Tree.h:970
ValueOffIter beginValueOff()
Return an iterator over inactive values (tile and voxel) across all nodes.
Definition: Tree.h:1001
void getIndexRange(CoordBBox &bbox) const override
Min and max are both inclusive.
Definition: Tree.h:665
typename RootNodeType::LeafNodeType LeafNodeType
Definition: Tree.h:186
void setValueOn(const Coord &xyz)
Mark the voxel at the given coordinates as active but don't change its value.
Definition: Tree.h:1452
LeafIter beginLeaf()
Return an iterator over all leaf nodes in this tree.
Definition: Tree.h:975
Tree(const OtherTreeType &other, const ValueType &inactiveValue, const ValueType &activeValue, TopologyCopy)
Topology copy constructor from a tree of a different type.
Definition: Tree.h:233
~Tree() override
Definition: Tree.h:263
bool hasActiveTiles() const
Return true if this tree has any active tiles.
Definition: Tree.h:454
Tree(const ValueType &background)
Empty tree constructor.
Definition: Tree.h:261
bool isValueOff(const Coord &xyz) const
Return true if the value at the given coordinates is inactive.
Definition: Tree.h:452
void stealNodes(ArrayT &array)
Steals all nodes of a certain type from the tree and adds them to a container with the following API:
Definition: Tree.h:607
Index32 nonLeafCount() const override
Return the number of non-leaf nodes.
Definition: Tree.h:351
Name valueType() const override
Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
Definition: Tree.h:269
const RootNodeType & root() const
Definition: Tree.h:282
Index treeDepth() const override
Return the depth of this tree.
Definition: Tree.h:338
ValueAllCIter beginValueAll() const
Definition: Tree.h:990
NodeIter beginNode()
Return an iterator over all nodes in this tree.
Definition: Tree.h:968
tbb::concurrent_hash_map< ValueAccessorBase< Tree, true > *, bool > AccessorRegistry
Definition: Tree.h:1015
ValueAllIter beginValueAll()
Return an iterator over all values (tile and voxel) across all nodes.
Definition: Tree.h:989
This base class for ValueAccessors manages registration of an accessor with a tree so that the tree c...
Definition: ValueAccessor.h:93
#define OPENVDB_LOG_WARN(message)
Log a warning message of the form 'someVar << "some text" << ...'.
Definition: logging.h:256
OPENVDB_AX_API void print(const ast::Node &node, const bool numberStatements=true, std::ostream &os=std::cout, const char *indent=" ")
Writes a descriptive printout of a Node hierarchy into a target stream.
bool cwiseLessThan(const Mat< SIZE, T > &m0, const Mat< SIZE, T > &m1)
Definition: Mat.h:1015
bool cwiseGreaterThan(const Mat< SIZE, T > &m0, const Mat< SIZE, T > &m1)
Definition: Mat.h:1029
std::pair< ValueT, ValueT > evalMinMax(const PointDataTreeT &points, const std::string &attribute, const FilterT &filter=NullFilter())
Evaluates the minimum and maximum values of a point attribute.
Definition: PointStatistics.h:697
const std::enable_if<!VecTraits< T >::IsVec, T >::type & min(const T &a, const T &b)
Definition: Composite.h:106
const std::enable_if<!VecTraits< T >::IsVec, T >::type & max(const T &a, const T &b)
Definition: Composite.h:110
Index64 countActiveLeafVoxels(const TreeT &tree, bool threaded=true)
Return the total number of active voxels stored in leaf nodes.
Definition: Count.h:436
math::MinMax< typename TreeT::ValueType > minMax(const TreeT &tree, bool threaded=true)
Return the minimum and maximum active values in this tree.
Definition: Count.h:516
Index64 countInactiveVoxels(const TreeT &tree, bool threaded=true)
Return the total number of inactive voxels in the tree.
Definition: Count.h:461
void prune(TreeT &tree, typename TreeT::ValueType tolerance=zeroVal< typename TreeT::ValueType >(), bool threaded=true, size_t grainSize=1)
Reduce the memory footprint of a tree by replacing with tiles any nodes whose values are all the same...
Definition: Prune.h:335
GridType::Ptr clip(const GridType &grid, const BBoxd &bbox, bool keepInterior=true)
Clip the given grid against a world-space bounding box and return a new grid containing the result.
Definition: Clip.h:352
Index64 countActiveVoxels(const TreeT &tree, bool threaded=true)
Return the total number of active voxels in the tree.
Definition: Count.h:413
math::Extrema extrema(const IterT &iter, bool threaded=true)
Iterate over a scalar grid and compute extrema (min/max) of the values of the voxels that are visited...
Definition: Statistics.h:354
Index64 memUsage(const TreeT &tree, bool threaded=true)
Return the total amount of memory in bytes occupied by this tree.
Definition: Count.h:493
Index64 countInactiveLeafVoxels(const TreeT &tree, bool threaded=true)
Return the total number of inactive voxels stored in leaf nodes.
Definition: Count.h:471
Index64 countActiveTiles(const TreeT &tree, bool threaded=true)
Return the total number of active tiles in the tree.
Definition: Count.h:482
FormattedInt< IntT > formattedInt(IntT n)
Definition: Formats.h:118
OPENVDB_API int printBytes(std::ostream &os, uint64_t bytes, const std::string &head="", const std::string &tail="\n", bool exact=false, int width=8, int precision=3)
std::string Name
Definition: Name.h:17
Index32 Index
Definition: Types.h:54
uint32_t Index32
Definition: Types.h:52
uint64_t Index64
Definition: Types.h:53
std::shared_ptr< T > SharedPtr
Definition: Types.h:114
MergePolicy
Definition: Types.h:467
@ MERGE_ACTIVE_STATES
Definition: Types.h:468
@ MERGE_NODES
Definition: Types.h:469
@ MERGE_ACTIVE_STATES_AND_NODES
Definition: Types.h:470
ValueType combine(const ValueType &v0, const ValueType &v1, const ValueType &v2, const openvdb::Vec3d &w)
Combine different value types.
Definition: AttributeTransferUtil.h:141
Definition: Exceptions.h:13
#define OPENVDB_THROW(exception, message)
Definition: Exceptions.h:74
Helper class to adapt a three-argument (a, b, result) CombineOp functor into a single-argument functo...
Definition: Tree.h:1699
void operator()(CombineArgs< AValueT, BValueT > &args) const
Definition: Tree.h:1702
CombineOpAdapter(CombineOp &_op)
Definition: Tree.h:1700
CombineOp & op
Definition: Tree.h:1706
Tree3<T, N1, N2>::Type is the type of a three-level tree (Root, Internal, Leaf) with value type T and...
Definition: Tree.h:1054
Tree4<T, N1, N2, N3>::Type is the type of a four-level tree (Root, Internal, Internal,...
Definition: Tree.h:1064
Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree (Root, Internal, Internal,...
Definition: Tree.h:1073
static TreeT::LeafCIter begin(const TreeT &tree)
Definition: Tree.h:1171
static TreeT::LeafIter begin(TreeT &tree)
Definition: Tree.h:1167
static TreeT::NodeCIter begin(const TreeT &tree)
Definition: Tree.h:1163
static TreeT::NodeIter begin(TreeT &tree)
Definition: Tree.h:1159
static TreeT::RootNodeType::ChildAllCIter begin(const TreeT &tree)
Definition: Tree.h:1153
static TreeT::RootNodeType::ChildAllIter begin(TreeT &tree)
Definition: Tree.h:1147
static TreeT::RootNodeType::ChildOffCIter begin(const TreeT &tree)
Definition: Tree.h:1141
static TreeT::RootNodeType::ChildOffIter begin(TreeT &tree)
Definition: Tree.h:1135
static TreeT::RootNodeType::ChildOnCIter begin(const TreeT &tree)
Definition: Tree.h:1129
static TreeT::RootNodeType::ChildOnIter begin(TreeT &tree)
Definition: Tree.h:1123
static TreeT::ValueAllCIter begin(const TreeT &tree)
Definition: Tree.h:1195
static TreeT::ValueAllIter begin(TreeT &tree)
Definition: Tree.h:1191
static TreeT::ValueOffCIter begin(const TreeT &tree)
Definition: Tree.h:1187
static TreeT::ValueOffIter begin(TreeT &tree)
Definition: Tree.h:1183
static TreeT::ValueOnCIter begin(const TreeT &tree)
Definition: Tree.h:1179
static TreeT::ValueOnIter begin(TreeT &tree)
Definition: Tree.h:1175
TreeIterTraits provides, for all tree iterators, a begin(tree) function that returns an iterator over...
Definition: Tree.h:1120
DeallocateNodes(std::vector< NodeType * > &nodes)
Definition: Tree.h:1025
NodeType **const mNodes
Definition: Tree.h:1032
void operator()(const tbb::blocked_range< size_t > &range) const
Definition: Tree.h:1027
ValueConverter<T>::Type is the type of a tree having the same hierarchy as this tree but a different ...
Definition: Tree.h:197
#define OPENVDB_VERSION_NAME
The version namespace name for this library version.
Definition: version.h.in:121
#define OPENVDB_USE_VERSION_NAMESPACE
Definition: version.h.in:212