BoijSoederberg : Index
-
BettiEliminationTally -- Betti elimination table
-
BoijSoederberg -- Betti diagram routines
-
bott -- cohomology of Schur functors of tautological bundle on P^n
-
bott(List,ZZ) -- cohomology of Schur functor of tautological bundle on P^n
-
bott(List,ZZ,ZZ) -- cohomology table of Schur functor of tautolgical bundle on P^n
-
CohomologyTally -- cohomology table
-
decompose(BettiTally) -- write a Betti diagram as a positive combination of pure integral diagrams
-
decomposeBetti -- write a Betti diagram as a positive combination of pure integral diagrams
-
decomposeBetti(...,TableEntries=>...) -- write a Betti diagram as a positive combination of pure integral diagrams
-
decomposeDegrees -- Find the degree sequences of pure diagrams occurring in a Boij-Soederberg decomposition of B
-
dotProduct -- entry by entry dot product of two Betti diagrams
-
dotProduct(BettiTally,BettiTally) -- entry by entry dot product of two Betti diagrams
-
dotProduct(Matrix,BettiTally) -- entry by entry dot product of two Betti diagrams
-
dotProduct(Matrix,Matrix) -- entry by entry dot product of two Betti diagrams
-
dotProduct(Matrix,ZZ,BettiTally) -- entry by entry dot product of two Betti diagrams
-
eliminateBetti -- elimination table for a Betti diagram
-
eliminateBetti(BettiTally) -- elimination table for a Betti diagram
-
eliminateBetti(Ideal) -- elimination table for a Betti diagram
-
EliminationSequence -- option for eliminateBetti
-
facetEquation -- The upper facet equation corresponding to (L,i)
-
facetEquation(List,ZZ,ZZ,ZZ) -- The upper facet equation corresponding to (L,i)
-
HerzogKuhl -- An argument for the option TableEntries
-
highestDegrees -- list of highest degree shifts
-
highestDegrees(BettiTally) -- list of highest degree shifts
-
isMassEliminate -- determines whether the Boij-Soederberg decomposition algorithm eliminates multiple Betti numbers at the same time
-
isMassEliminate(BettiTally) -- determines whether the Boij-Soederberg decomposition algorithm eliminates multiple Betti numbers at the same time
-
isPure -- is a Betti diagram pure?
-
isPure(BettiTally) -- is a Betti diagram pure?
-
LeastIntegerEntries -- An argument for the option TableEntries
-
lowestDegrees -- list of lowest degree shifts
-
lowestDegrees(BettiTally) -- list of lowest degree shifts
-
makeCI -- Make the Betti diagram of a complete intersection ideal
-
makePureBetti -- list of Betti numbers corresponding to a degree sequence
-
makePureBetti(...,TableEntries=>...) -- list of Betti numbers corresponding to a degree sequence
-
makePureBetti(List) -- list of Betti numbers corresponding to a degree sequence
-
makePureBettiDiagram -- makes a pure Betti diagram given a list of degrees
-
makePureBettiDiagram(...,TableEntries=>...) -- makes a pure Betti diagram given a list of degrees
-
makePureBettiDiagram(List) -- makes a pure Betti diagram given a list of degrees
-
mat2betti -- matrix to Betti diagram
-
mat2betti(Matrix) -- matrix to Betti diagram
-
mat2betti(Matrix,ZZ) -- matrix to Betti diagram
-
mat2cohom (missing documentation)
-
matrix(BettiTally) -- Betti diagram to matrix
-
matrix(BettiTally,ZZ) -- Betti diagram to matrix
-
matrix(BettiTally,ZZ,ZZ) -- Betti diagram to matrix
-
pureAll -- Vector of first betti number of our three specific exact complexes
-
pureAll(List) -- Vector of first betti number of our three specific exact complexes
-
pureBetti -- list of smallest integral Betti numbers corresponding to a degree sequence
-
pureBetti(List) -- list of smallest integral Betti numbers corresponding to a degree sequence
-
pureBettiDiagram -- pure Betti diagram given a list of degrees
-
pureBettiDiagram(List) -- pure Betti diagram given a list of degrees
-
pureCharFree -- first betti number of specific exact complex
-
pureCharFree(List) -- first betti number of specific exact complex
-
pureCohomologyTable -- pure cohomology table given zeros of Hilbert polynomial
-
pureCohomologyTable(List,ZZ,ZZ) -- pure cohomology table given zeros of Hilbert polynomial
-
pureTwoInvariant -- first betti number of specific exact complex
-
pureTwoInvariant(List) -- first betti number of specific exact complex
-
pureWeyman -- first betti number of specific exact complex
-
pureWeyman(List) -- first betti number of specific exact complex
-
randomModule -- module with random relations in prescribed degrees
-
randomModule(List,ZZ) -- module with random relations in prescribed degrees
-
randomSocleModule -- random finite length module with prescribed number of socle elements in single degree
-
randomSocleModule(List,ZZ) -- random finite length module with prescribed number of socle elements in single degree
-
RealizationModules -- An argument for the option TableEntries
-
supportFunctional (missing documentation)
-
TableEntries -- Set the convention for what kind of pure Betti diagrams to use in a decomposition.