next | previous | forward | backward | up | top | index | toc | Macaulay2 website
GraphicalModelsMLE :: scoreEquations(...,RealPrecision=>...)

scoreEquations(...,RealPrecision=>...) -- the number of bits of precision to use in the computation

Synopsis

Description

This optional input only applies when the sample data or the sample covariance matrix has real entries. By default, the precision is 53 (the default precision for real numbers in M2).

i1 : G = mixedGraph(digraph {{1,2},{1,3},{2,3},{3,4}},bigraph {{3,4}});
i2 : R=gaussianRing(G);
i3 : U = matrix{{6.2849049, 10.292875, 1.038475, 1.1845757}, {3.1938475, 3.2573, 1.13847, 1}, {4/5, 3/2, 9/8, 3/10}, {10/7, 2/3,1, 8/3}};

                4          4
o3 : Matrix RR    <--- RR
              53         53
i4 : J=scoreEquations(R,U,RealPrecision=>3)

                                                                  
o4 = ideal (19026p    + 1431174p    - 9211, 1310966502451200p    +
                  4,4           3,4                          3,3  
     ------------------------------------------------------------------------
                                                                             
     274389565440p    - 4362116140411, 5p    - 6, p    - 5, 21l    + 6144p   
                  3,4                    2,2       1,1         3,4        3,4
     ------------------------------------------------------------------------
                                                                            
     + 256, 97542150480l    - 3183089664p    - 341458895, 341397526680l    +
                        2,3              3,4                           1,3  
     ------------------------------------------------------------------------
                                                       2
     21426247680p    + 3228576859, 5l    - 8, 11132928p    + 2862348p    -
                 3,4                 1,2               3,4           3,4
     ------------------------------------------------------------------------
     9211)

o4 : Ideal of QQ[l   ..l   , l   , l   , p   , p   , p   , p   , p   ]
                  1,2   1,3   2,3   3,4   1,1   2,2   3,3   4,4   3,4

Further information

See also

Functions with optional argument named RealPrecision :