LLVM OpenMP* Runtime Library
Loading...
Searching...
No Matches
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#endif
104
105#if KMP_ARCH_X86 || KMP_ARCH_X86_64
106#include <xmmintrin.h>
107#endif
108
109// The below has to be defined before including "kmp_barrier.h".
110#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111#define KMP_INTERNAL_FREE(p) free(p)
112#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#include "kmp_barrier.h"
119#if USE_DEBUGGER
120#include "kmp_debugger.h"
121#endif
122#include "kmp_i18n.h"
123
124#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125
126#include "kmp_wrapper_malloc.h"
127#if KMP_OS_UNIX
128#include <unistd.h>
129#if !defined NSIG && defined _NSIG
130#define NSIG _NSIG
131#endif
132#endif
133
134#if KMP_OS_LINUX
135#pragma weak clock_gettime
136#endif
137
138#if OMPT_SUPPORT
139#include "ompt-internal.h"
140#endif
141
142#if OMPD_SUPPORT
143#include "ompd-specific.h"
144#endif
145
146#ifndef UNLIKELY
147#define UNLIKELY(x) (x)
148#endif
149
150// Affinity format function
151#include "kmp_str.h"
152
153// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154// 3 - fast allocation using sync, non-sync free lists of any size, non-self
155// free lists of limited size.
156#ifndef USE_FAST_MEMORY
157#define USE_FAST_MEMORY 3
158#endif
159
160#ifndef KMP_NESTED_HOT_TEAMS
161#define KMP_NESTED_HOT_TEAMS 0
162#define USE_NESTED_HOT_ARG(x)
163#else
164#if KMP_NESTED_HOT_TEAMS
165#define USE_NESTED_HOT_ARG(x) , x
166#else
167#define USE_NESTED_HOT_ARG(x)
168#endif
169#endif
170
171// Assume using BGET compare_exchange instruction instead of lock by default.
172#ifndef USE_CMP_XCHG_FOR_BGET
173#define USE_CMP_XCHG_FOR_BGET 1
174#endif
175
176// Test to see if queuing lock is better than bootstrap lock for bget
177// #ifndef USE_QUEUING_LOCK_FOR_BGET
178// #define USE_QUEUING_LOCK_FOR_BGET
179// #endif
180
181#define KMP_NSEC_PER_SEC 1000000000L
182#define KMP_USEC_PER_SEC 1000000L
183#define KMP_NSEC_PER_USEC 1000L
184
193enum {
198 /* 0x04 is no longer used */
207 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
208 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
209 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
210
211 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
212 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
213
225 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
226 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
227 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
228 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
229 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
230};
231
235typedef struct ident {
236 kmp_int32 reserved_1;
237 kmp_int32 flags;
239 kmp_int32 reserved_2;
240#if USE_ITT_BUILD
241/* but currently used for storing region-specific ITT */
242/* contextual information. */
243#endif /* USE_ITT_BUILD */
244 kmp_int32 reserved_3;
245 char const *psource;
249 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
250 kmp_int32 get_openmp_version() {
251 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
252 }
258// Some forward declarations.
259typedef union kmp_team kmp_team_t;
260typedef struct kmp_taskdata kmp_taskdata_t;
261typedef union kmp_task_team kmp_task_team_t;
262typedef union kmp_team kmp_team_p;
263typedef union kmp_info kmp_info_p;
264typedef union kmp_root kmp_root_p;
265
266template <bool C = false, bool S = true> class kmp_flag_32;
267template <bool C = false, bool S = true> class kmp_flag_64;
268template <bool C = false, bool S = true> class kmp_atomic_flag_64;
269class kmp_flag_oncore;
270
271#ifdef __cplusplus
272extern "C" {
273#endif
274
275/* ------------------------------------------------------------------------ */
276
277/* Pack two 32-bit signed integers into a 64-bit signed integer */
278/* ToDo: Fix word ordering for big-endian machines. */
279#define KMP_PACK_64(HIGH_32, LOW_32) \
280 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
281
282// Generic string manipulation macros. Assume that _x is of type char *
283#define SKIP_WS(_x) \
284 { \
285 while (*(_x) == ' ' || *(_x) == '\t') \
286 (_x)++; \
287 }
288#define SKIP_DIGITS(_x) \
289 { \
290 while (*(_x) >= '0' && *(_x) <= '9') \
291 (_x)++; \
292 }
293#define SKIP_TOKEN(_x) \
294 { \
295 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
296 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
297 (_x)++; \
298 }
299#define SKIP_TO(_x, _c) \
300 { \
301 while (*(_x) != '\0' && *(_x) != (_c)) \
302 (_x)++; \
303 }
304
305/* ------------------------------------------------------------------------ */
306
307#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
308#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
309
310/* ------------------------------------------------------------------------ */
311/* Enumeration types */
312
313enum kmp_state_timer {
314 ts_stop,
315 ts_start,
316 ts_pause,
317
318 ts_last_state
319};
320
321enum dynamic_mode {
322 dynamic_default,
323#ifdef USE_LOAD_BALANCE
324 dynamic_load_balance,
325#endif /* USE_LOAD_BALANCE */
326 dynamic_random,
327 dynamic_thread_limit,
328 dynamic_max
329};
330
331/* external schedule constants, duplicate enum omp_sched in omp.h in order to
332 * not include it here */
333#ifndef KMP_SCHED_TYPE_DEFINED
334#define KMP_SCHED_TYPE_DEFINED
335typedef enum kmp_sched {
336 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
337 // Note: need to adjust __kmp_sch_map global array in case enum is changed
338 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
339 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
340 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
341 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
342 kmp_sched_upper_std = 5, // upper bound for standard schedules
343 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
344 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
345#if KMP_STATIC_STEAL_ENABLED
346 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
347#endif
348 kmp_sched_upper,
349 kmp_sched_default = kmp_sched_static, // default scheduling
350 kmp_sched_monotonic = 0x80000000
351} kmp_sched_t;
352#endif
353
358enum sched_type : kmp_int32 {
360 kmp_sch_static_chunked = 33,
362 kmp_sch_dynamic_chunked = 35,
364 kmp_sch_runtime = 37,
366 kmp_sch_trapezoidal = 39,
367
368 /* accessible only through KMP_SCHEDULE environment variable */
369 kmp_sch_static_greedy = 40,
370 kmp_sch_static_balanced = 41,
371 /* accessible only through KMP_SCHEDULE environment variable */
372 kmp_sch_guided_iterative_chunked = 42,
373 kmp_sch_guided_analytical_chunked = 43,
374 /* accessible only through KMP_SCHEDULE environment variable */
375 kmp_sch_static_steal = 44,
376
377 /* static with chunk adjustment (e.g., simd) */
378 kmp_sch_static_balanced_chunked = 45,
382 /* accessible only through KMP_SCHEDULE environment variable */
386 kmp_ord_static_chunked = 65,
388 kmp_ord_dynamic_chunked = 67,
389 kmp_ord_guided_chunked = 68,
390 kmp_ord_runtime = 69,
392 kmp_ord_trapezoidal = 71,
395 /* Schedules for Distribute construct */
399 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
400 single iteration/chunk, even if the loop is serialized. For the schedule
401 types listed above, the entire iteration vector is returned if the loop is
402 serialized. This doesn't work for gcc/gcomp sections. */
405 kmp_nm_static_chunked =
406 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
408 kmp_nm_dynamic_chunked = 163,
410 kmp_nm_runtime = 165,
412 kmp_nm_trapezoidal = 167,
413
414 /* accessible only through KMP_SCHEDULE environment variable */
415 kmp_nm_static_greedy = 168,
416 kmp_nm_static_balanced = 169,
417 /* accessible only through KMP_SCHEDULE environment variable */
418 kmp_nm_guided_iterative_chunked = 170,
419 kmp_nm_guided_analytical_chunked = 171,
420 kmp_nm_static_steal =
421 172, /* accessible only through OMP_SCHEDULE environment variable */
422
423 kmp_nm_ord_static_chunked = 193,
425 kmp_nm_ord_dynamic_chunked = 195,
426 kmp_nm_ord_guided_chunked = 196,
427 kmp_nm_ord_runtime = 197,
429 kmp_nm_ord_trapezoidal = 199,
432 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
433 we need to distinguish the three possible cases (no modifier, monotonic
434 modifier, nonmonotonic modifier), we need separate bits for each modifier.
435 The absence of monotonic does not imply nonmonotonic, especially since 4.5
436 says that the behaviour of the "no modifier" case is implementation defined
437 in 4.5, but will become "nonmonotonic" in 5.0.
438
439 Since we're passing a full 32 bit value, we can use a couple of high bits
440 for these flags; out of paranoia we avoid the sign bit.
441
442 These modifiers can be or-ed into non-static schedules by the compiler to
443 pass the additional information. They will be stripped early in the
444 processing in __kmp_dispatch_init when setting up schedules, so most of the
445 code won't ever see schedules with these bits set. */
447 (1 << 29),
449 (1 << 30),
451#define SCHEDULE_WITHOUT_MODIFIERS(s) \
452 (enum sched_type)( \
454#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
455#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
456#define SCHEDULE_HAS_NO_MODIFIERS(s) \
457 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
458#define SCHEDULE_GET_MODIFIERS(s) \
459 ((enum sched_type)( \
460 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
461#define SCHEDULE_SET_MODIFIERS(s, m) \
462 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
463#define SCHEDULE_NONMONOTONIC 0
464#define SCHEDULE_MONOTONIC 1
465
468
469// Apply modifiers on internal kind to standard kind
470static inline void
471__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
472 enum sched_type internal_kind) {
473 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
474 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
475 }
476}
477
478// Apply modifiers on standard kind to internal kind
479static inline void
480__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
481 enum sched_type *internal_kind) {
482 if ((int)kind & (int)kmp_sched_monotonic) {
483 *internal_kind = (enum sched_type)((int)*internal_kind |
485 }
486}
487
488// Get standard schedule without modifiers
489static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
490 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
491}
492
493/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
494typedef union kmp_r_sched {
495 struct {
496 enum sched_type r_sched_type;
497 int chunk;
498 };
499 kmp_int64 sched;
500} kmp_r_sched_t;
501
502extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
503// internal schedule types
504
505enum library_type {
506 library_none,
507 library_serial,
508 library_turnaround,
509 library_throughput
510};
511
512#if KMP_OS_LINUX
513enum clock_function_type {
514 clock_function_gettimeofday,
515 clock_function_clock_gettime
516};
517#endif /* KMP_OS_LINUX */
518
519#if KMP_MIC_SUPPORTED
520enum mic_type { non_mic, mic1, mic2, mic3, dummy };
521#endif
522
523/* -- fast reduction stuff ------------------------------------------------ */
524
525#undef KMP_FAST_REDUCTION_BARRIER
526#define KMP_FAST_REDUCTION_BARRIER 1
527
528#undef KMP_FAST_REDUCTION_CORE_DUO
529#if KMP_ARCH_X86 || KMP_ARCH_X86_64
530#define KMP_FAST_REDUCTION_CORE_DUO 1
531#endif
532
533enum _reduction_method {
534 reduction_method_not_defined = 0,
535 critical_reduce_block = (1 << 8),
536 atomic_reduce_block = (2 << 8),
537 tree_reduce_block = (3 << 8),
538 empty_reduce_block = (4 << 8)
539};
540
541// Description of the packed_reduction_method variable:
542// The packed_reduction_method variable consists of two enum types variables
543// that are packed together into 0-th byte and 1-st byte:
544// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
545// barrier that will be used in fast reduction: bs_plain_barrier or
546// bs_reduction_barrier
547// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
548// be used in fast reduction;
549// Reduction method is of 'enum _reduction_method' type and it's defined the way
550// so that the bits of 0-th byte are empty, so no need to execute a shift
551// instruction while packing/unpacking
552
553#if KMP_FAST_REDUCTION_BARRIER
554#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
555 ((reduction_method) | (barrier_type))
556
557#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
558 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
559
560#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
561 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
562#else
563#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
564 (reduction_method)
565
566#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
567 (packed_reduction_method)
568
569#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
570#endif
571
572#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
573 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
574 (which_reduction_block))
575
576#if KMP_FAST_REDUCTION_BARRIER
577#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
578 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
579
580#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
581 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
582#endif
583
584typedef int PACKED_REDUCTION_METHOD_T;
585
586/* -- end of fast reduction stuff ----------------------------------------- */
587
588#if KMP_OS_WINDOWS
589#define USE_CBLKDATA
590#if KMP_MSVC_COMPAT
591#pragma warning(push)
592#pragma warning(disable : 271 310)
593#endif
594#include <windows.h>
595#if KMP_MSVC_COMPAT
596#pragma warning(pop)
597#endif
598#endif
599
600#if KMP_OS_UNIX
601#include <dlfcn.h>
602#include <pthread.h>
603#endif
604
605enum kmp_hw_t : int {
606 KMP_HW_UNKNOWN = -1,
607 KMP_HW_SOCKET = 0,
608 KMP_HW_PROC_GROUP,
609 KMP_HW_NUMA,
610 KMP_HW_DIE,
611 KMP_HW_LLC,
612 KMP_HW_L3,
613 KMP_HW_TILE,
614 KMP_HW_MODULE,
615 KMP_HW_L2,
616 KMP_HW_L1,
617 KMP_HW_CORE,
618 KMP_HW_THREAD,
619 KMP_HW_LAST
620};
621
622typedef enum kmp_hw_core_type_t {
623 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
624#if KMP_ARCH_X86 || KMP_ARCH_X86_64
625 KMP_HW_CORE_TYPE_ATOM = 0x20,
626 KMP_HW_CORE_TYPE_CORE = 0x40,
627 KMP_HW_MAX_NUM_CORE_TYPES = 3,
628#else
629 KMP_HW_MAX_NUM_CORE_TYPES = 1,
630#endif
631} kmp_hw_core_type_t;
632
633#define KMP_HW_MAX_NUM_CORE_EFFS 8
634
635#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
636 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
637#define KMP_ASSERT_VALID_HW_TYPE(type) \
638 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
639
640#define KMP_FOREACH_HW_TYPE(type) \
641 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
642 type = (kmp_hw_t)((int)type + 1))
643
644const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
645const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
646const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
647
648/* Only Linux* OS and Windows* OS support thread affinity. */
649#if KMP_AFFINITY_SUPPORTED
650
651// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
652#if KMP_OS_WINDOWS
653#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
654typedef struct GROUP_AFFINITY {
655 KAFFINITY Mask;
656 WORD Group;
657 WORD Reserved[3];
658} GROUP_AFFINITY;
659#endif /* _MSC_VER < 1600 */
660#if KMP_GROUP_AFFINITY
661extern int __kmp_num_proc_groups;
662#else
663static const int __kmp_num_proc_groups = 1;
664#endif /* KMP_GROUP_AFFINITY */
665typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
666extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
667
668typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
669extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
670
671typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
672extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
673
674typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
675 GROUP_AFFINITY *);
676extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
677#endif /* KMP_OS_WINDOWS */
678
679#if KMP_USE_HWLOC
680extern hwloc_topology_t __kmp_hwloc_topology;
681extern int __kmp_hwloc_error;
682#endif
683
684extern size_t __kmp_affin_mask_size;
685#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
686#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
687#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
688#define KMP_CPU_SET_ITERATE(i, mask) \
689 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
690#define KMP_CPU_SET(i, mask) (mask)->set(i)
691#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
692#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
693#define KMP_CPU_ZERO(mask) (mask)->zero()
694#define KMP_CPU_ISEMPTY(mask) (mask)->empty()
695#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
696#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
697#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
698#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
699#define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
700#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
701#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
702#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
703#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
704#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
705#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
706#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
707#define KMP_CPU_ALLOC_ARRAY(arr, n) \
708 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
709#define KMP_CPU_FREE_ARRAY(arr, n) \
710 __kmp_affinity_dispatch->deallocate_mask_array(arr)
711#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
712#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
713#define __kmp_get_system_affinity(mask, abort_bool) \
714 (mask)->get_system_affinity(abort_bool)
715#define __kmp_set_system_affinity(mask, abort_bool) \
716 (mask)->set_system_affinity(abort_bool)
717#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
718
719class KMPAffinity {
720public:
721 class Mask {
722 public:
723 void *operator new(size_t n);
724 void operator delete(void *p);
725 void *operator new[](size_t n);
726 void operator delete[](void *p);
727 virtual ~Mask() {}
728 // Set bit i to 1
729 virtual void set(int i) {}
730 // Return bit i
731 virtual bool is_set(int i) const { return false; }
732 // Set bit i to 0
733 virtual void clear(int i) {}
734 // Zero out entire mask
735 virtual void zero() {}
736 // Check whether mask is empty
737 virtual bool empty() const { return true; }
738 // Copy src into this mask
739 virtual void copy(const Mask *src) {}
740 // this &= rhs
741 virtual void bitwise_and(const Mask *rhs) {}
742 // this |= rhs
743 virtual void bitwise_or(const Mask *rhs) {}
744 // this = ~this
745 virtual void bitwise_not() {}
746 // this == rhs
747 virtual bool is_equal(const Mask *rhs) const { return false; }
748 // API for iterating over an affinity mask
749 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
750 virtual int begin() const { return 0; }
751 virtual int end() const { return 0; }
752 virtual int next(int previous) const { return 0; }
753#if KMP_OS_WINDOWS
754 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
755#endif
756 // Set the system's affinity to this affinity mask's value
757 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
758 // Set this affinity mask to the current system affinity
759 virtual int get_system_affinity(bool abort_on_error) { return -1; }
760 // Only 1 DWORD in the mask should have any procs set.
761 // Return the appropriate index, or -1 for an invalid mask.
762 virtual int get_proc_group() const { return -1; }
763 int get_max_cpu() const {
764 int cpu;
765 int max_cpu = -1;
766 KMP_CPU_SET_ITERATE(cpu, this) {
767 if (cpu > max_cpu)
768 max_cpu = cpu;
769 }
770 return max_cpu;
771 }
772 };
773 void *operator new(size_t n);
774 void operator delete(void *p);
775 // Need virtual destructor
776 virtual ~KMPAffinity() = default;
777 // Determine if affinity is capable
778 virtual void determine_capable(const char *env_var) {}
779 // Bind the current thread to os proc
780 virtual void bind_thread(int proc) {}
781 // Factory functions to allocate/deallocate a mask
782 virtual Mask *allocate_mask() { return nullptr; }
783 virtual void deallocate_mask(Mask *m) {}
784 virtual Mask *allocate_mask_array(int num) { return nullptr; }
785 virtual void deallocate_mask_array(Mask *m) {}
786 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
787 static void pick_api();
788 static void destroy_api();
789 enum api_type {
790 NATIVE_OS
791#if KMP_USE_HWLOC
792 ,
793 HWLOC
794#endif
795 };
796 virtual api_type get_api_type() const {
797 KMP_ASSERT(0);
798 return NATIVE_OS;
799 }
800
801private:
802 static bool picked_api;
803};
804
805typedef KMPAffinity::Mask kmp_affin_mask_t;
806extern KMPAffinity *__kmp_affinity_dispatch;
807
808class kmp_affinity_raii_t {
809 kmp_affin_mask_t *mask;
810 bool restored;
811
812public:
813 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
814 : restored(false) {
815 if (KMP_AFFINITY_CAPABLE()) {
816 KMP_CPU_ALLOC(mask);
817 KMP_ASSERT(mask != NULL);
818 __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
819 if (new_mask)
820 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
821 }
822 }
823 void restore() {
824 if (!restored && KMP_AFFINITY_CAPABLE()) {
825 __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
826 KMP_CPU_FREE(mask);
827 }
828 restored = true;
829 }
830 ~kmp_affinity_raii_t() { restore(); }
831};
832
833// Declare local char buffers with this size for printing debug and info
834// messages, using __kmp_affinity_print_mask().
835#define KMP_AFFIN_MASK_PRINT_LEN 1024
836
837enum affinity_type {
838 affinity_none = 0,
839 affinity_physical,
840 affinity_logical,
841 affinity_compact,
842 affinity_scatter,
843 affinity_explicit,
844 affinity_balanced,
845 affinity_disabled, // not used outsize the env var parser
846 affinity_default
847};
848
849enum affinity_top_method {
850 affinity_top_method_all = 0, // try all (supported) methods, in order
851#if KMP_ARCH_X86 || KMP_ARCH_X86_64
852 affinity_top_method_apicid,
853 affinity_top_method_x2apicid,
854 affinity_top_method_x2apicid_1f,
855#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
856 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
857#if KMP_GROUP_AFFINITY
858 affinity_top_method_group,
859#endif /* KMP_GROUP_AFFINITY */
860 affinity_top_method_flat,
861#if KMP_USE_HWLOC
862 affinity_top_method_hwloc,
863#endif
864 affinity_top_method_default
865};
866
867#define affinity_respect_mask_default (2)
868
869typedef struct kmp_affinity_flags_t {
870 unsigned dups : 1;
871 unsigned verbose : 1;
872 unsigned warnings : 1;
873 unsigned respect : 2;
874 unsigned reset : 1;
875 unsigned initialized : 1;
876 unsigned core_types_gran : 1;
877 unsigned core_effs_gran : 1;
878 unsigned omp_places : 1;
879 unsigned reserved : 22;
880} kmp_affinity_flags_t;
881KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
882
883typedef struct kmp_affinity_ids_t {
884 int ids[KMP_HW_LAST];
885 int operator[](size_t idx) const { return ids[idx]; }
886 int &operator[](size_t idx) { return ids[idx]; }
887 kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
888 for (int i = 0; i < KMP_HW_LAST; ++i)
889 ids[i] = rhs[i];
890 return *this;
891 }
892} kmp_affinity_ids_t;
893
894typedef struct kmp_affinity_attrs_t {
895 int core_type : 8;
896 int core_eff : 8;
897 unsigned valid : 1;
898 unsigned reserved : 15;
899} kmp_affinity_attrs_t;
900#define KMP_AFFINITY_ATTRS_UNKNOWN \
901 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
902
903typedef struct kmp_affinity_t {
904 char *proclist;
905 enum affinity_type type;
906 kmp_hw_t gran;
907 int gran_levels;
908 kmp_affinity_attrs_t core_attr_gran;
909 int compact;
910 int offset;
911 kmp_affinity_flags_t flags;
912 unsigned num_masks;
913 kmp_affin_mask_t *masks;
914 kmp_affinity_ids_t *ids;
915 kmp_affinity_attrs_t *attrs;
916 unsigned num_os_id_masks;
917 kmp_affin_mask_t *os_id_masks;
918 const char *env_var;
919} kmp_affinity_t;
920
921#define KMP_AFFINITY_INIT(env) \
922 { \
923 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
924 0, 0, \
925 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
926 FALSE, FALSE, FALSE}, \
927 0, nullptr, nullptr, nullptr, 0, nullptr, env \
928 }
929
930extern enum affinity_top_method __kmp_affinity_top_method;
931extern kmp_affinity_t __kmp_affinity;
932extern kmp_affinity_t __kmp_hh_affinity;
933extern kmp_affinity_t *__kmp_affinities[2];
934
935extern void __kmp_affinity_bind_thread(int which);
936
937extern kmp_affin_mask_t *__kmp_affin_fullMask;
938extern kmp_affin_mask_t *__kmp_affin_origMask;
939extern char *__kmp_cpuinfo_file;
940
941#endif /* KMP_AFFINITY_SUPPORTED */
942
943// This needs to be kept in sync with the values in omp.h !!!
944typedef enum kmp_proc_bind_t {
945 proc_bind_false = 0,
946 proc_bind_true,
947 proc_bind_primary,
948 proc_bind_close,
949 proc_bind_spread,
950 proc_bind_intel, // use KMP_AFFINITY interface
951 proc_bind_default
952} kmp_proc_bind_t;
953
954typedef struct kmp_nested_proc_bind_t {
955 kmp_proc_bind_t *bind_types;
956 int size;
957 int used;
958} kmp_nested_proc_bind_t;
959
960extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
961extern kmp_proc_bind_t __kmp_teams_proc_bind;
962
963extern int __kmp_display_affinity;
964extern char *__kmp_affinity_format;
965static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
966#if OMPT_SUPPORT
967extern int __kmp_tool;
968extern char *__kmp_tool_libraries;
969#endif // OMPT_SUPPORT
970
971#if KMP_AFFINITY_SUPPORTED
972#define KMP_PLACE_ALL (-1)
973#define KMP_PLACE_UNDEFINED (-2)
974// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
975#define KMP_AFFINITY_NON_PROC_BIND \
976 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
977 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
978 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
979#endif /* KMP_AFFINITY_SUPPORTED */
980
981extern int __kmp_affinity_num_places;
982
983typedef enum kmp_cancel_kind_t {
984 cancel_noreq = 0,
985 cancel_parallel = 1,
986 cancel_loop = 2,
987 cancel_sections = 3,
988 cancel_taskgroup = 4
989} kmp_cancel_kind_t;
990
991// KMP_HW_SUBSET support:
992typedef struct kmp_hws_item {
993 int num;
994 int offset;
995} kmp_hws_item_t;
996
997extern kmp_hws_item_t __kmp_hws_socket;
998extern kmp_hws_item_t __kmp_hws_die;
999extern kmp_hws_item_t __kmp_hws_node;
1000extern kmp_hws_item_t __kmp_hws_tile;
1001extern kmp_hws_item_t __kmp_hws_core;
1002extern kmp_hws_item_t __kmp_hws_proc;
1003extern int __kmp_hws_requested;
1004extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1005
1006/* ------------------------------------------------------------------------ */
1007
1008#define KMP_PAD(type, sz) \
1009 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1010
1011// We need to avoid using -1 as a GTID as +1 is added to the gtid
1012// when storing it in a lock, and the value 0 is reserved.
1013#define KMP_GTID_DNE (-2) /* Does not exist */
1014#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1015#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1016#define KMP_GTID_UNKNOWN (-5) /* Is not known */
1017#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1018
1019/* OpenMP 5.0 Memory Management support */
1020
1021#ifndef __OMP_H
1022// Duplicate type definitions from omp.h
1023typedef uintptr_t omp_uintptr_t;
1024
1025typedef enum {
1026 omp_atk_sync_hint = 1,
1027 omp_atk_alignment = 2,
1028 omp_atk_access = 3,
1029 omp_atk_pool_size = 4,
1030 omp_atk_fallback = 5,
1031 omp_atk_fb_data = 6,
1032 omp_atk_pinned = 7,
1033 omp_atk_partition = 8
1034} omp_alloctrait_key_t;
1035
1036typedef enum {
1037 omp_atv_false = 0,
1038 omp_atv_true = 1,
1039 omp_atv_contended = 3,
1040 omp_atv_uncontended = 4,
1041 omp_atv_serialized = 5,
1042 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1043 omp_atv_private = 6,
1044 omp_atv_all = 7,
1045 omp_atv_thread = 8,
1046 omp_atv_pteam = 9,
1047 omp_atv_cgroup = 10,
1048 omp_atv_default_mem_fb = 11,
1049 omp_atv_null_fb = 12,
1050 omp_atv_abort_fb = 13,
1051 omp_atv_allocator_fb = 14,
1052 omp_atv_environment = 15,
1053 omp_atv_nearest = 16,
1054 omp_atv_blocked = 17,
1055 omp_atv_interleaved = 18
1056} omp_alloctrait_value_t;
1057#define omp_atv_default ((omp_uintptr_t)-1)
1058
1059typedef void *omp_memspace_handle_t;
1060extern omp_memspace_handle_t const omp_default_mem_space;
1061extern omp_memspace_handle_t const omp_large_cap_mem_space;
1062extern omp_memspace_handle_t const omp_const_mem_space;
1063extern omp_memspace_handle_t const omp_high_bw_mem_space;
1064extern omp_memspace_handle_t const omp_low_lat_mem_space;
1065extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1066extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1067extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1068
1069typedef struct {
1070 omp_alloctrait_key_t key;
1071 omp_uintptr_t value;
1072} omp_alloctrait_t;
1073
1074typedef void *omp_allocator_handle_t;
1075extern omp_allocator_handle_t const omp_null_allocator;
1076extern omp_allocator_handle_t const omp_default_mem_alloc;
1077extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1078extern omp_allocator_handle_t const omp_const_mem_alloc;
1079extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1080extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1081extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1082extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1083extern omp_allocator_handle_t const omp_thread_mem_alloc;
1084extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1085extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1086extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1087extern omp_allocator_handle_t const kmp_max_mem_alloc;
1088extern omp_allocator_handle_t __kmp_def_allocator;
1089
1090// end of duplicate type definitions from omp.h
1091#endif
1092
1093extern int __kmp_memkind_available;
1094
1095typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1096
1097typedef struct kmp_allocator_t {
1098 omp_memspace_handle_t memspace;
1099 void **memkind; // pointer to memkind
1100 size_t alignment;
1101 omp_alloctrait_value_t fb;
1102 kmp_allocator_t *fb_data;
1103 kmp_uint64 pool_size;
1104 kmp_uint64 pool_used;
1105 bool pinned;
1106} kmp_allocator_t;
1107
1108extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1109 omp_memspace_handle_t,
1110 int ntraits,
1111 omp_alloctrait_t traits[]);
1112extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1113extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1114extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1115// external interfaces, may be used by compiler
1116extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1117extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1118 omp_allocator_handle_t al);
1119extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1120 omp_allocator_handle_t al);
1121extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1122 omp_allocator_handle_t al,
1123 omp_allocator_handle_t free_al);
1124extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1125// internal interfaces, contain real implementation
1126extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1127 omp_allocator_handle_t al);
1128extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1129 omp_allocator_handle_t al);
1130extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1131 omp_allocator_handle_t al,
1132 omp_allocator_handle_t free_al);
1133extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1134
1135extern void __kmp_init_memkind();
1136extern void __kmp_fini_memkind();
1137extern void __kmp_init_target_mem();
1138
1139/* ------------------------------------------------------------------------ */
1140
1141#if ENABLE_LIBOMPTARGET
1142extern void __kmp_init_target_task();
1143#endif
1144
1145/* ------------------------------------------------------------------------ */
1146
1147#define KMP_UINT64_MAX \
1148 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1149
1150#define KMP_MIN_NTH 1
1151
1152#ifndef KMP_MAX_NTH
1153#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1154#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1155#else
1156#define KMP_MAX_NTH INT_MAX
1157#endif
1158#endif /* KMP_MAX_NTH */
1159
1160#ifdef PTHREAD_STACK_MIN
1161#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1162#else
1163#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1164#endif
1165
1166#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1167
1168#if KMP_ARCH_X86
1169#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1170#elif KMP_ARCH_X86_64
1171#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1172#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1173#elif KMP_ARCH_VE
1174// Minimum stack size for pthread for VE is 4MB.
1175// https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1176#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1177#else
1178#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1179#endif
1180
1181#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1182#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1183#define KMP_MAX_MALLOC_POOL_INCR \
1184 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1185
1186#define KMP_MIN_STKOFFSET (0)
1187#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1188#if KMP_OS_DARWIN
1189#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1190#else
1191#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1192#endif
1193
1194#define KMP_MIN_STKPADDING (0)
1195#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1196
1197#define KMP_BLOCKTIME_MULTIPLIER \
1198 (1000000) /* number of blocktime units per second */
1199#define KMP_MIN_BLOCKTIME (0)
1200#define KMP_MAX_BLOCKTIME \
1201 (INT_MAX) /* Must be this for "infinite" setting the work */
1202
1203/* __kmp_blocktime is in microseconds */
1204#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1205
1206#if KMP_USE_MONITOR
1207#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1208#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1209#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1210
1211/* Calculate new number of monitor wakeups for a specific block time based on
1212 previous monitor_wakeups. Only allow increasing number of wakeups */
1213#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1214 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1215 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1216 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1217 ? (monitor_wakeups) \
1218 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1219
1220/* Calculate number of intervals for a specific block time based on
1221 monitor_wakeups */
1222#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1223 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1224 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1225#else
1226#define KMP_BLOCKTIME(team, tid) \
1227 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1228#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1229// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1230extern kmp_uint64 __kmp_ticks_per_msec;
1231extern kmp_uint64 __kmp_ticks_per_usec;
1232#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1233#define KMP_NOW() ((kmp_uint64)_rdtsc())
1234#else
1235#define KMP_NOW() __kmp_hardware_timestamp()
1236#endif
1237#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1238 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1239#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1240#else
1241// System time is retrieved sporadically while blocking.
1242extern kmp_uint64 __kmp_now_nsec();
1243#define KMP_NOW() __kmp_now_nsec()
1244#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1245 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1246#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1247#endif
1248#endif // KMP_USE_MONITOR
1249
1250#define KMP_MIN_STATSCOLS 40
1251#define KMP_MAX_STATSCOLS 4096
1252#define KMP_DEFAULT_STATSCOLS 80
1253
1254#define KMP_MIN_INTERVAL 0
1255#define KMP_MAX_INTERVAL (INT_MAX - 1)
1256#define KMP_DEFAULT_INTERVAL 0
1257
1258#define KMP_MIN_CHUNK 1
1259#define KMP_MAX_CHUNK (INT_MAX - 1)
1260#define KMP_DEFAULT_CHUNK 1
1261
1262#define KMP_MIN_DISP_NUM_BUFF 1
1263#define KMP_DFLT_DISP_NUM_BUFF 7
1264#define KMP_MAX_DISP_NUM_BUFF 4096
1265
1266#define KMP_MAX_ORDERED 8
1267
1268#define KMP_MAX_FIELDS 32
1269
1270#define KMP_MAX_BRANCH_BITS 31
1271
1272#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1273
1274#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1275
1276#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1277
1278/* Minimum number of threads before switch to TLS gtid (experimentally
1279 determined) */
1280/* josh TODO: what about OS X* tuning? */
1281#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1282#define KMP_TLS_GTID_MIN 5
1283#else
1284#define KMP_TLS_GTID_MIN INT_MAX
1285#endif
1286
1287#define KMP_MASTER_TID(tid) (0 == (tid))
1288#define KMP_WORKER_TID(tid) (0 != (tid))
1289
1290#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1291#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1292#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1293
1294#ifndef TRUE
1295#define FALSE 0
1296#define TRUE (!FALSE)
1297#endif
1298
1299/* NOTE: all of the following constants must be even */
1300
1301#if KMP_OS_WINDOWS
1302#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1303#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1304#elif KMP_OS_LINUX
1305#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1306#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1307#elif KMP_OS_DARWIN
1308/* TODO: tune for KMP_OS_DARWIN */
1309#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1310#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1311#elif KMP_OS_DRAGONFLY
1312/* TODO: tune for KMP_OS_DRAGONFLY */
1313#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1314#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1315#elif KMP_OS_FREEBSD
1316/* TODO: tune for KMP_OS_FREEBSD */
1317#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1318#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1319#elif KMP_OS_NETBSD
1320/* TODO: tune for KMP_OS_NETBSD */
1321#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1322#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1323#elif KMP_OS_HURD
1324/* TODO: tune for KMP_OS_HURD */
1325#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1326#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1327#elif KMP_OS_OPENBSD
1328/* TODO: tune for KMP_OS_OPENBSD */
1329#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1330#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1331#endif
1332
1333#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1334typedef struct kmp_cpuid {
1335 kmp_uint32 eax;
1336 kmp_uint32 ebx;
1337 kmp_uint32 ecx;
1338 kmp_uint32 edx;
1339} kmp_cpuid_t;
1340
1341typedef struct kmp_cpuinfo_flags_t {
1342 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1343 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1344 unsigned hybrid : 1;
1345 unsigned reserved : 29; // Ensure size of 32 bits
1346} kmp_cpuinfo_flags_t;
1347
1348typedef struct kmp_cpuinfo {
1349 int initialized; // If 0, other fields are not initialized.
1350 int signature; // CPUID(1).EAX
1351 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1352 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1353 // Model << 4 ) + Model)
1354 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1355 kmp_cpuinfo_flags_t flags;
1356 int apic_id;
1357 int physical_id;
1358 int logical_id;
1359 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1360 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1361} kmp_cpuinfo_t;
1362
1363extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1364
1365#if KMP_OS_UNIX
1366// subleaf is only needed for cache and topology discovery and can be set to
1367// zero in most cases
1368static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1369 __asm__ __volatile__("cpuid"
1370 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1371 : "a"(leaf), "c"(subleaf));
1372}
1373// Load p into FPU control word
1374static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1375 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1376}
1377// Store FPU control word into p
1378static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1379 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1380}
1381static inline void __kmp_clear_x87_fpu_status_word() {
1382#if KMP_MIC
1383 // 32-bit protected mode x87 FPU state
1384 struct x87_fpu_state {
1385 unsigned cw;
1386 unsigned sw;
1387 unsigned tw;
1388 unsigned fip;
1389 unsigned fips;
1390 unsigned fdp;
1391 unsigned fds;
1392 };
1393 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1394 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1395 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1396 "fldenv %0\n\t" // load FP env back
1397 : "+m"(fpu_state), "+m"(fpu_state.sw));
1398#else
1399 __asm__ __volatile__("fnclex");
1400#endif // KMP_MIC
1401}
1402#if __SSE__
1403static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1404static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1405#else
1406static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1407static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1408#endif
1409#else
1410// Windows still has these as external functions in assembly file
1411extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1412extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1413extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1414extern void __kmp_clear_x87_fpu_status_word();
1415static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1416static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1417#endif // KMP_OS_UNIX
1418
1419#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1420
1421// User-level Monitor/Mwait
1422#if KMP_HAVE_UMWAIT
1423// We always try for UMWAIT first
1424#if KMP_HAVE_WAITPKG_INTRINSICS
1425#if KMP_HAVE_IMMINTRIN_H
1426#include <immintrin.h>
1427#elif KMP_HAVE_INTRIN_H
1428#include <intrin.h>
1429#endif
1430#endif // KMP_HAVE_WAITPKG_INTRINSICS
1431
1432KMP_ATTRIBUTE_TARGET_WAITPKG
1433static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1434#if !KMP_HAVE_WAITPKG_INTRINSICS
1435 uint32_t timeHi = uint32_t(counter >> 32);
1436 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1437 char flag;
1438 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1439 "setb %0"
1440 // The "=q" restraint means any register accessible as rl
1441 // in 32-bit mode: a, b, c, and d;
1442 // in 64-bit mode: any integer register
1443 : "=q"(flag)
1444 : "a"(timeLo), "d"(timeHi), "c"(hint)
1445 :);
1446 return flag;
1447#else
1448 return _tpause(hint, counter);
1449#endif
1450}
1451KMP_ATTRIBUTE_TARGET_WAITPKG
1452static inline void __kmp_umonitor(void *cacheline) {
1453#if !KMP_HAVE_WAITPKG_INTRINSICS
1454 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1455 :
1456 : "a"(cacheline)
1457 :);
1458#else
1459 _umonitor(cacheline);
1460#endif
1461}
1462KMP_ATTRIBUTE_TARGET_WAITPKG
1463static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1464#if !KMP_HAVE_WAITPKG_INTRINSICS
1465 uint32_t timeHi = uint32_t(counter >> 32);
1466 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1467 char flag;
1468 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1469 "setb %0"
1470 // The "=q" restraint means any register accessible as rl
1471 // in 32-bit mode: a, b, c, and d;
1472 // in 64-bit mode: any integer register
1473 : "=q"(flag)
1474 : "a"(timeLo), "d"(timeHi), "c"(hint)
1475 :);
1476 return flag;
1477#else
1478 return _umwait(hint, counter);
1479#endif
1480}
1481#elif KMP_HAVE_MWAIT
1482#if KMP_OS_UNIX
1483#include <pmmintrin.h>
1484#else
1485#include <intrin.h>
1486#endif
1487#if KMP_OS_UNIX
1488__attribute__((target("sse3")))
1489#endif
1490static inline void
1491__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1492 _mm_monitor(cacheline, extensions, hints);
1493}
1494#if KMP_OS_UNIX
1495__attribute__((target("sse3")))
1496#endif
1497static inline void
1498__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1499 _mm_mwait(extensions, hints);
1500}
1501#endif // KMP_HAVE_UMWAIT
1502
1503#if KMP_ARCH_X86
1504extern void __kmp_x86_pause(void);
1505#elif KMP_MIC
1506// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1507// regression after removal of extra PAUSE from spin loops. Changing
1508// the delay from 100 to 300 showed even better performance than double PAUSE
1509// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1510static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1511#else
1512static inline void __kmp_x86_pause(void) { _mm_pause(); }
1513#endif
1514#define KMP_CPU_PAUSE() __kmp_x86_pause()
1515#elif KMP_ARCH_PPC64
1516#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1517#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1518#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1519#define KMP_CPU_PAUSE() \
1520 do { \
1521 KMP_PPC64_PRI_LOW(); \
1522 KMP_PPC64_PRI_MED(); \
1523 KMP_PPC64_PRI_LOC_MB(); \
1524 } while (0)
1525#else
1526#define KMP_CPU_PAUSE() /* nothing to do */
1527#endif
1528
1529#define KMP_INIT_YIELD(count) \
1530 { (count) = __kmp_yield_init; }
1531
1532#define KMP_INIT_BACKOFF(time) \
1533 { (time) = __kmp_pause_init; }
1534
1535#define KMP_OVERSUBSCRIBED \
1536 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1537
1538#define KMP_TRY_YIELD \
1539 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1540
1541#define KMP_TRY_YIELD_OVERSUB \
1542 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1543
1544#define KMP_YIELD(cond) \
1545 { \
1546 KMP_CPU_PAUSE(); \
1547 if ((cond) && (KMP_TRY_YIELD)) \
1548 __kmp_yield(); \
1549 }
1550
1551#define KMP_YIELD_OVERSUB() \
1552 { \
1553 KMP_CPU_PAUSE(); \
1554 if ((KMP_TRY_YIELD_OVERSUB)) \
1555 __kmp_yield(); \
1556 }
1557
1558// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1559// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1560#define KMP_YIELD_SPIN(count) \
1561 { \
1562 KMP_CPU_PAUSE(); \
1563 if (KMP_TRY_YIELD) { \
1564 (count) -= 2; \
1565 if (!(count)) { \
1566 __kmp_yield(); \
1567 (count) = __kmp_yield_next; \
1568 } \
1569 } \
1570 }
1571
1572// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1573// (C0.2) state, which improves performance of other SMT threads on the same
1574// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1575// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1576// available, fall back to the regular CPU pause and yield combination.
1577#if KMP_HAVE_UMWAIT
1578#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1579#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1580 { \
1581 if (__kmp_tpause_enabled) { \
1582 if (KMP_OVERSUBSCRIBED) { \
1583 __kmp_tpause(0, (time)); \
1584 } else { \
1585 __kmp_tpause(__kmp_tpause_hint, (time)); \
1586 } \
1587 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1588 } else { \
1589 KMP_CPU_PAUSE(); \
1590 if ((KMP_TRY_YIELD_OVERSUB)) { \
1591 __kmp_yield(); \
1592 } else if (__kmp_use_yield == 1) { \
1593 (count) -= 2; \
1594 if (!(count)) { \
1595 __kmp_yield(); \
1596 (count) = __kmp_yield_next; \
1597 } \
1598 } \
1599 } \
1600 }
1601#else
1602#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1603 { \
1604 KMP_CPU_PAUSE(); \
1605 if ((KMP_TRY_YIELD_OVERSUB)) \
1606 __kmp_yield(); \
1607 else if (__kmp_use_yield == 1) { \
1608 (count) -= 2; \
1609 if (!(count)) { \
1610 __kmp_yield(); \
1611 (count) = __kmp_yield_next; \
1612 } \
1613 } \
1614 }
1615#endif // KMP_HAVE_UMWAIT
1616
1617/* ------------------------------------------------------------------------ */
1618/* Support datatypes for the orphaned construct nesting checks. */
1619/* ------------------------------------------------------------------------ */
1620
1621/* When adding to this enum, add its corresponding string in cons_text_c[]
1622 * array in kmp_error.cpp */
1623enum cons_type {
1624 ct_none,
1625 ct_parallel,
1626 ct_pdo,
1627 ct_pdo_ordered,
1628 ct_psections,
1629 ct_psingle,
1630 ct_critical,
1631 ct_ordered_in_parallel,
1632 ct_ordered_in_pdo,
1633 ct_master,
1634 ct_reduce,
1635 ct_barrier,
1636 ct_masked
1637};
1638
1639#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1640
1641struct cons_data {
1642 ident_t const *ident;
1643 enum cons_type type;
1644 int prev;
1645 kmp_user_lock_p
1646 name; /* address exclusively for critical section name comparison */
1647};
1648
1649struct cons_header {
1650 int p_top, w_top, s_top;
1651 int stack_size, stack_top;
1652 struct cons_data *stack_data;
1653};
1654
1655struct kmp_region_info {
1656 char *text;
1657 int offset[KMP_MAX_FIELDS];
1658 int length[KMP_MAX_FIELDS];
1659};
1660
1661/* ---------------------------------------------------------------------- */
1662/* ---------------------------------------------------------------------- */
1663
1664#if KMP_OS_WINDOWS
1665typedef HANDLE kmp_thread_t;
1666typedef DWORD kmp_key_t;
1667#endif /* KMP_OS_WINDOWS */
1668
1669#if KMP_OS_UNIX
1670typedef pthread_t kmp_thread_t;
1671typedef pthread_key_t kmp_key_t;
1672#endif
1673
1674extern kmp_key_t __kmp_gtid_threadprivate_key;
1675
1676typedef struct kmp_sys_info {
1677 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1678 long minflt; /* the number of page faults serviced without any I/O */
1679 long majflt; /* the number of page faults serviced that required I/O */
1680 long nswap; /* the number of times a process was "swapped" out of memory */
1681 long inblock; /* the number of times the file system had to perform input */
1682 long oublock; /* the number of times the file system had to perform output */
1683 long nvcsw; /* the number of times a context switch was voluntarily */
1684 long nivcsw; /* the number of times a context switch was forced */
1685} kmp_sys_info_t;
1686
1687#if USE_ITT_BUILD
1688// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1689// required type here. Later we will check the type meets requirements.
1690typedef int kmp_itt_mark_t;
1691#define KMP_ITT_DEBUG 0
1692#endif /* USE_ITT_BUILD */
1693
1694typedef kmp_int32 kmp_critical_name[8];
1695
1705typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1706typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1707 ...);
1708
1713/* ---------------------------------------------------------------------------
1714 */
1715/* Threadprivate initialization/finalization function declarations */
1716
1717/* for non-array objects: __kmpc_threadprivate_register() */
1718
1723typedef void *(*kmpc_ctor)(void *);
1724
1729typedef void (*kmpc_dtor)(
1730 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1731 compiler */
1736typedef void *(*kmpc_cctor)(void *, void *);
1737
1738/* for array objects: __kmpc_threadprivate_register_vec() */
1739/* First arg: "this" pointer */
1740/* Last arg: number of array elements */
1746typedef void *(*kmpc_ctor_vec)(void *, size_t);
1752typedef void (*kmpc_dtor_vec)(void *, size_t);
1758typedef void *(*kmpc_cctor_vec)(void *, void *,
1759 size_t); /* function unused by compiler */
1760
1765/* keeps tracked of threadprivate cache allocations for cleanup later */
1766typedef struct kmp_cached_addr {
1767 void **addr; /* address of allocated cache */
1768 void ***compiler_cache; /* pointer to compiler's cache */
1769 void *data; /* pointer to global data */
1770 struct kmp_cached_addr *next; /* pointer to next cached address */
1771} kmp_cached_addr_t;
1772
1773struct private_data {
1774 struct private_data *next; /* The next descriptor in the list */
1775 void *data; /* The data buffer for this descriptor */
1776 int more; /* The repeat count for this descriptor */
1777 size_t size; /* The data size for this descriptor */
1778};
1779
1780struct private_common {
1781 struct private_common *next;
1782 struct private_common *link;
1783 void *gbl_addr;
1784 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1785 size_t cmn_size;
1786};
1787
1788struct shared_common {
1789 struct shared_common *next;
1790 struct private_data *pod_init;
1791 void *obj_init;
1792 void *gbl_addr;
1793 union {
1794 kmpc_ctor ctor;
1795 kmpc_ctor_vec ctorv;
1796 } ct;
1797 union {
1798 kmpc_cctor cctor;
1799 kmpc_cctor_vec cctorv;
1800 } cct;
1801 union {
1802 kmpc_dtor dtor;
1803 kmpc_dtor_vec dtorv;
1804 } dt;
1805 size_t vec_len;
1806 int is_vec;
1807 size_t cmn_size;
1808};
1809
1810#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1811#define KMP_HASH_TABLE_SIZE \
1812 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1813#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1814#define KMP_HASH(x) \
1815 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1816
1817struct common_table {
1818 struct private_common *data[KMP_HASH_TABLE_SIZE];
1819};
1820
1821struct shared_table {
1822 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1823};
1824
1825/* ------------------------------------------------------------------------ */
1826
1827#if KMP_USE_HIER_SCHED
1828// Shared barrier data that exists inside a single unit of the scheduling
1829// hierarchy
1830typedef struct kmp_hier_private_bdata_t {
1831 kmp_int32 num_active;
1832 kmp_uint64 index;
1833 kmp_uint64 wait_val[2];
1834} kmp_hier_private_bdata_t;
1835#endif
1836
1837typedef struct kmp_sched_flags {
1838 unsigned ordered : 1;
1839 unsigned nomerge : 1;
1840 unsigned contains_last : 1;
1841#if KMP_USE_HIER_SCHED
1842 unsigned use_hier : 1;
1843 unsigned unused : 28;
1844#else
1845 unsigned unused : 29;
1846#endif
1847} kmp_sched_flags_t;
1848
1849KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1850
1851#if KMP_STATIC_STEAL_ENABLED
1852typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1853 kmp_int32 count;
1854 kmp_int32 ub;
1855 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1856 kmp_int32 lb;
1857 kmp_int32 st;
1858 kmp_int32 tc;
1859 kmp_lock_t *steal_lock; // lock used for chunk stealing
1860 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1861 // a) parm3 is properly aligned and
1862 // b) all parm1-4 are on the same cache line.
1863 // Because of parm1-4 are used together, performance seems to be better
1864 // if they are on the same cache line (not measured though).
1865
1866 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1867 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1868 kmp_int32 parm2; // make no real change at least while padding is off.
1869 kmp_int32 parm3;
1870 kmp_int32 parm4;
1871 };
1872
1873 kmp_uint32 ordered_lower;
1874 kmp_uint32 ordered_upper;
1875#if KMP_OS_WINDOWS
1876 kmp_int32 last_upper;
1877#endif /* KMP_OS_WINDOWS */
1878} dispatch_private_info32_t;
1879
1880typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1881 kmp_int64 count; // current chunk number for static & static-steal scheduling
1882 kmp_int64 ub; /* upper-bound */
1883 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1884 kmp_int64 lb; /* lower-bound */
1885 kmp_int64 st; /* stride */
1886 kmp_int64 tc; /* trip count (number of iterations) */
1887 kmp_lock_t *steal_lock; // lock used for chunk stealing
1888 /* parm[1-4] are used in different ways by different scheduling algorithms */
1889
1890 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1891 // a) parm3 is properly aligned and
1892 // b) all parm1-4 are in the same cache line.
1893 // Because of parm1-4 are used together, performance seems to be better
1894 // if they are in the same line (not measured though).
1895
1896 struct KMP_ALIGN(32) {
1897 kmp_int64 parm1;
1898 kmp_int64 parm2;
1899 kmp_int64 parm3;
1900 kmp_int64 parm4;
1901 };
1902
1903 kmp_uint64 ordered_lower;
1904 kmp_uint64 ordered_upper;
1905#if KMP_OS_WINDOWS
1906 kmp_int64 last_upper;
1907#endif /* KMP_OS_WINDOWS */
1908} dispatch_private_info64_t;
1909#else /* KMP_STATIC_STEAL_ENABLED */
1910typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1911 kmp_int32 lb;
1912 kmp_int32 ub;
1913 kmp_int32 st;
1914 kmp_int32 tc;
1915
1916 kmp_int32 parm1;
1917 kmp_int32 parm2;
1918 kmp_int32 parm3;
1919 kmp_int32 parm4;
1920
1921 kmp_int32 count;
1922
1923 kmp_uint32 ordered_lower;
1924 kmp_uint32 ordered_upper;
1925#if KMP_OS_WINDOWS
1926 kmp_int32 last_upper;
1927#endif /* KMP_OS_WINDOWS */
1928} dispatch_private_info32_t;
1929
1930typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1931 kmp_int64 lb; /* lower-bound */
1932 kmp_int64 ub; /* upper-bound */
1933 kmp_int64 st; /* stride */
1934 kmp_int64 tc; /* trip count (number of iterations) */
1935
1936 /* parm[1-4] are used in different ways by different scheduling algorithms */
1937 kmp_int64 parm1;
1938 kmp_int64 parm2;
1939 kmp_int64 parm3;
1940 kmp_int64 parm4;
1941
1942 kmp_int64 count; /* current chunk number for static scheduling */
1943
1944 kmp_uint64 ordered_lower;
1945 kmp_uint64 ordered_upper;
1946#if KMP_OS_WINDOWS
1947 kmp_int64 last_upper;
1948#endif /* KMP_OS_WINDOWS */
1949} dispatch_private_info64_t;
1950#endif /* KMP_STATIC_STEAL_ENABLED */
1951
1952typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1953 union private_info {
1954 dispatch_private_info32_t p32;
1955 dispatch_private_info64_t p64;
1956 } u;
1957 enum sched_type schedule; /* scheduling algorithm */
1958 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1959 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1960 kmp_int32 ordered_bumped;
1961 // Stack of buffers for nest of serial regions
1962 struct dispatch_private_info *next;
1963 kmp_int32 type_size; /* the size of types in private_info */
1964#if KMP_USE_HIER_SCHED
1965 kmp_int32 hier_id;
1966 void *parent; /* hierarchical scheduling parent pointer */
1967#endif
1968 enum cons_type pushed_ws;
1969} dispatch_private_info_t;
1970
1971typedef struct dispatch_shared_info32 {
1972 /* chunk index under dynamic, number of idle threads under static-steal;
1973 iteration index otherwise */
1974 volatile kmp_uint32 iteration;
1975 volatile kmp_int32 num_done;
1976 volatile kmp_uint32 ordered_iteration;
1977 // Dummy to retain the structure size after making ordered_iteration scalar
1978 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1979} dispatch_shared_info32_t;
1980
1981typedef struct dispatch_shared_info64 {
1982 /* chunk index under dynamic, number of idle threads under static-steal;
1983 iteration index otherwise */
1984 volatile kmp_uint64 iteration;
1985 volatile kmp_int64 num_done;
1986 volatile kmp_uint64 ordered_iteration;
1987 // Dummy to retain the structure size after making ordered_iteration scalar
1988 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1989} dispatch_shared_info64_t;
1990
1991typedef struct dispatch_shared_info {
1992 union shared_info {
1993 dispatch_shared_info32_t s32;
1994 dispatch_shared_info64_t s64;
1995 } u;
1996 volatile kmp_uint32 buffer_index;
1997 volatile kmp_int32 doacross_buf_idx; // teamwise index
1998 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1999 kmp_int32 doacross_num_done; // count finished threads
2000#if KMP_USE_HIER_SCHED
2001 void *hier;
2002#endif
2003#if KMP_USE_HWLOC
2004 // When linking with libhwloc, the ORDERED EPCC test slows down on big
2005 // machines (> 48 cores). Performance analysis showed that a cache thrash
2006 // was occurring and this padding helps alleviate the problem.
2007 char padding[64];
2008#endif
2009} dispatch_shared_info_t;
2010
2011typedef struct kmp_disp {
2012 /* Vector for ORDERED SECTION */
2013 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2014 /* Vector for END ORDERED SECTION */
2015 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2016
2017 dispatch_shared_info_t *th_dispatch_sh_current;
2018 dispatch_private_info_t *th_dispatch_pr_current;
2019
2020 dispatch_private_info_t *th_disp_buffer;
2021 kmp_uint32 th_disp_index;
2022 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2023 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2024 kmp_int64 *th_doacross_info; // info on loop bounds
2025#if KMP_USE_INTERNODE_ALIGNMENT
2026 char more_padding[INTERNODE_CACHE_LINE];
2027#endif
2028} kmp_disp_t;
2029
2030/* ------------------------------------------------------------------------ */
2031/* Barrier stuff */
2032
2033/* constants for barrier state update */
2034#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2035#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2036#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2037#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2038
2039#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2040#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2041#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2042
2043#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2044#error "Barrier sleep bit must be smaller than barrier bump bit"
2045#endif
2046#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2047#error "Barrier unused bit must be smaller than barrier bump bit"
2048#endif
2049
2050// Constants for release barrier wait state: currently, hierarchical only
2051#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2052#define KMP_BARRIER_OWN_FLAG \
2053 1 // Normal state; worker waiting on own b_go flag in release
2054#define KMP_BARRIER_PARENT_FLAG \
2055 2 // Special state; worker waiting on parent's b_go flag in release
2056#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2057 3 // Special state; tells worker to shift from parent to own b_go
2058#define KMP_BARRIER_SWITCHING \
2059 4 // Special state; worker resets appropriate flag on wake-up
2060
2061#define KMP_NOT_SAFE_TO_REAP \
2062 0 // Thread th_reap_state: not safe to reap (tasking)
2063#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2064
2065// The flag_type describes the storage used for the flag.
2066enum flag_type {
2067 flag32,
2068 flag64,
2069 atomic_flag64,
2070 flag_oncore,
2071 flag_unset
2072};
2073
2074enum barrier_type {
2075 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2076 barriers if enabled) */
2077 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2078#if KMP_FAST_REDUCTION_BARRIER
2079 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2080#endif // KMP_FAST_REDUCTION_BARRIER
2081 bs_last_barrier /* Just a placeholder to mark the end */
2082};
2083
2084// to work with reduction barriers just like with plain barriers
2085#if !KMP_FAST_REDUCTION_BARRIER
2086#define bs_reduction_barrier bs_plain_barrier
2087#endif // KMP_FAST_REDUCTION_BARRIER
2088
2089typedef enum kmp_bar_pat { /* Barrier communication patterns */
2090 bp_linear_bar =
2091 0, /* Single level (degenerate) tree */
2092 bp_tree_bar =
2093 1, /* Balanced tree with branching factor 2^n */
2094 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2095 branching factor 2^n */
2096 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2097 bp_dist_bar = 4, /* Distributed barrier */
2098 bp_last_bar /* Placeholder to mark the end */
2099} kmp_bar_pat_e;
2100
2101#define KMP_BARRIER_ICV_PUSH 1
2102
2103/* Record for holding the values of the internal controls stack records */
2104typedef struct kmp_internal_control {
2105 int serial_nesting_level; /* corresponds to the value of the
2106 th_team_serialized field */
2107 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2108 thread) */
2109 kmp_int8
2110 bt_set; /* internal control for whether blocktime is explicitly set */
2111 int blocktime; /* internal control for blocktime */
2112#if KMP_USE_MONITOR
2113 int bt_intervals; /* internal control for blocktime intervals */
2114#endif
2115 int nproc; /* internal control for #threads for next parallel region (per
2116 thread) */
2117 int thread_limit; /* internal control for thread-limit-var */
2118 int task_thread_limit; /* internal control for thread-limit-var of a task*/
2119 int max_active_levels; /* internal control for max_active_levels */
2120 kmp_r_sched_t
2121 sched; /* internal control for runtime schedule {sched,chunk} pair */
2122 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2123 kmp_int32 default_device; /* internal control for default device */
2124 struct kmp_internal_control *next;
2125} kmp_internal_control_t;
2126
2127static inline void copy_icvs(kmp_internal_control_t *dst,
2128 kmp_internal_control_t *src) {
2129 *dst = *src;
2130}
2131
2132/* Thread barrier needs volatile barrier fields */
2133typedef struct KMP_ALIGN_CACHE kmp_bstate {
2134 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2135 // uses of it). It is not explicitly aligned below, because we *don't* want
2136 // it to be padded -- instead, we fit b_go into the same cache line with
2137 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2138 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2139 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2140 // same NGO store
2141 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2142 KMP_ALIGN_CACHE volatile kmp_uint64
2143 b_arrived; // STATE => task reached synch point.
2144 kmp_uint32 *skip_per_level;
2145 kmp_uint32 my_level;
2146 kmp_int32 parent_tid;
2147 kmp_int32 old_tid;
2148 kmp_uint32 depth;
2149 struct kmp_bstate *parent_bar;
2150 kmp_team_t *team;
2151 kmp_uint64 leaf_state;
2152 kmp_uint32 nproc;
2153 kmp_uint8 base_leaf_kids;
2154 kmp_uint8 leaf_kids;
2155 kmp_uint8 offset;
2156 kmp_uint8 wait_flag;
2157 kmp_uint8 use_oncore_barrier;
2158#if USE_DEBUGGER
2159 // The following field is intended for the debugger solely. Only the worker
2160 // thread itself accesses this field: the worker increases it by 1 when it
2161 // arrives to a barrier.
2162 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2163#endif /* USE_DEBUGGER */
2164} kmp_bstate_t;
2165
2166union KMP_ALIGN_CACHE kmp_barrier_union {
2167 double b_align; /* use worst case alignment */
2168 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2169 kmp_bstate_t bb;
2170};
2171
2172typedef union kmp_barrier_union kmp_balign_t;
2173
2174/* Team barrier needs only non-volatile arrived counter */
2175union KMP_ALIGN_CACHE kmp_barrier_team_union {
2176 double b_align; /* use worst case alignment */
2177 char b_pad[CACHE_LINE];
2178 struct {
2179 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2180#if USE_DEBUGGER
2181 // The following two fields are indended for the debugger solely. Only
2182 // primary thread of the team accesses these fields: the first one is
2183 // increased by 1 when the primary thread arrives to a barrier, the second
2184 // one is increased by one when all the threads arrived.
2185 kmp_uint b_master_arrived;
2186 kmp_uint b_team_arrived;
2187#endif
2188 };
2189};
2190
2191typedef union kmp_barrier_team_union kmp_balign_team_t;
2192
2193/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2194 threads when a condition changes. This is to workaround an NPTL bug where
2195 padding was added to pthread_cond_t which caused the initialization routine
2196 to write outside of the structure if compiled on pre-NPTL threads. */
2197#if KMP_OS_WINDOWS
2198typedef struct kmp_win32_mutex {
2199 /* The Lock */
2200 CRITICAL_SECTION cs;
2201} kmp_win32_mutex_t;
2202
2203typedef struct kmp_win32_cond {
2204 /* Count of the number of waiters. */
2205 int waiters_count_;
2206
2207 /* Serialize access to <waiters_count_> */
2208 kmp_win32_mutex_t waiters_count_lock_;
2209
2210 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2211 int release_count_;
2212
2213 /* Keeps track of the current "generation" so that we don't allow */
2214 /* one thread to steal all the "releases" from the broadcast. */
2215 int wait_generation_count_;
2216
2217 /* A manual-reset event that's used to block and release waiting threads. */
2218 HANDLE event_;
2219} kmp_win32_cond_t;
2220#endif
2221
2222#if KMP_OS_UNIX
2223
2224union KMP_ALIGN_CACHE kmp_cond_union {
2225 double c_align;
2226 char c_pad[CACHE_LINE];
2227 pthread_cond_t c_cond;
2228};
2229
2230typedef union kmp_cond_union kmp_cond_align_t;
2231
2232union KMP_ALIGN_CACHE kmp_mutex_union {
2233 double m_align;
2234 char m_pad[CACHE_LINE];
2235 pthread_mutex_t m_mutex;
2236};
2237
2238typedef union kmp_mutex_union kmp_mutex_align_t;
2239
2240#endif /* KMP_OS_UNIX */
2241
2242typedef struct kmp_desc_base {
2243 void *ds_stackbase;
2244 size_t ds_stacksize;
2245 int ds_stackgrow;
2246 kmp_thread_t ds_thread;
2247 volatile int ds_tid;
2248 int ds_gtid;
2249#if KMP_OS_WINDOWS
2250 volatile int ds_alive;
2251 DWORD ds_thread_id;
2252/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2253 However, debugger support (libomp_db) cannot work with handles, because they
2254 uncomparable. For example, debugger requests info about thread with handle h.
2255 h is valid within debugger process, and meaningless within debugee process.
2256 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2257 within debugee process, but it is a *new* handle which does *not* equal to
2258 any other handle in debugee... The only way to compare handles is convert
2259 them to system-wide ids. GetThreadId() function is available only in
2260 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2261 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2262 thread id by call to GetCurrentThreadId() from within the thread and save it
2263 to let libomp_db identify threads. */
2264#endif /* KMP_OS_WINDOWS */
2265} kmp_desc_base_t;
2266
2267typedef union KMP_ALIGN_CACHE kmp_desc {
2268 double ds_align; /* use worst case alignment */
2269 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2270 kmp_desc_base_t ds;
2271} kmp_desc_t;
2272
2273typedef struct kmp_local {
2274 volatile int this_construct; /* count of single's encountered by thread */
2275 void *reduce_data;
2276#if KMP_USE_BGET
2277 void *bget_data;
2278 void *bget_list;
2279#if !USE_CMP_XCHG_FOR_BGET
2280#ifdef USE_QUEUING_LOCK_FOR_BGET
2281 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2282#else
2283 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2284// bootstrap lock so we can use it at library
2285// shutdown.
2286#endif /* USE_LOCK_FOR_BGET */
2287#endif /* ! USE_CMP_XCHG_FOR_BGET */
2288#endif /* KMP_USE_BGET */
2289
2290 PACKED_REDUCTION_METHOD_T
2291 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2292 __kmpc_end_reduce*() */
2293
2294} kmp_local_t;
2295
2296#define KMP_CHECK_UPDATE(a, b) \
2297 if ((a) != (b)) \
2298 (a) = (b)
2299#define KMP_CHECK_UPDATE_SYNC(a, b) \
2300 if ((a) != (b)) \
2301 TCW_SYNC_PTR((a), (b))
2302
2303#define get__blocktime(xteam, xtid) \
2304 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2305#define get__bt_set(xteam, xtid) \
2306 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2307#if KMP_USE_MONITOR
2308#define get__bt_intervals(xteam, xtid) \
2309 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2310#endif
2311
2312#define get__dynamic_2(xteam, xtid) \
2313 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2314#define get__nproc_2(xteam, xtid) \
2315 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2316#define get__sched_2(xteam, xtid) \
2317 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2318
2319#define set__blocktime_team(xteam, xtid, xval) \
2320 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2321 (xval))
2322
2323#if KMP_USE_MONITOR
2324#define set__bt_intervals_team(xteam, xtid, xval) \
2325 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2326 (xval))
2327#endif
2328
2329#define set__bt_set_team(xteam, xtid, xval) \
2330 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2331
2332#define set__dynamic(xthread, xval) \
2333 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2334#define get__dynamic(xthread) \
2335 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2336
2337#define set__nproc(xthread, xval) \
2338 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2339
2340#define set__thread_limit(xthread, xval) \
2341 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2342
2343#define set__max_active_levels(xthread, xval) \
2344 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2345
2346#define get__max_active_levels(xthread) \
2347 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2348
2349#define set__sched(xthread, xval) \
2350 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2351
2352#define set__proc_bind(xthread, xval) \
2353 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2354#define get__proc_bind(xthread) \
2355 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2356
2357// OpenMP tasking data structures
2358
2359typedef enum kmp_tasking_mode {
2360 tskm_immediate_exec = 0,
2361 tskm_extra_barrier = 1,
2362 tskm_task_teams = 2,
2363 tskm_max = 2
2364} kmp_tasking_mode_t;
2365
2366extern kmp_tasking_mode_t
2367 __kmp_tasking_mode; /* determines how/when to execute tasks */
2368extern int __kmp_task_stealing_constraint;
2369extern int __kmp_enable_task_throttling;
2370extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2371// specified, defaults to 0 otherwise
2372// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2373extern kmp_int32 __kmp_max_task_priority;
2374// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2375extern kmp_uint64 __kmp_taskloop_min_tasks;
2376
2377/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2378 taskdata first */
2379#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2380#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2381
2382// The tt_found_tasks flag is a signal to all threads in the team that tasks
2383// were spawned and queued since the previous barrier release.
2384#define KMP_TASKING_ENABLED(task_team) \
2385 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2393typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2394
2395typedef union kmp_cmplrdata {
2396 kmp_int32 priority;
2397 kmp_routine_entry_t
2398 destructors; /* pointer to function to invoke deconstructors of
2399 firstprivate C++ objects */
2400 /* future data */
2401} kmp_cmplrdata_t;
2402
2403/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2406typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2407 void *shareds;
2408 kmp_routine_entry_t
2409 routine;
2410 kmp_int32 part_id;
2411 kmp_cmplrdata_t
2412 data1; /* Two known optional additions: destructors and priority */
2413 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2414 /* future data */
2415 /* private vars */
2416} kmp_task_t;
2417
2422typedef struct kmp_taskgroup {
2423 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2424 std::atomic<kmp_int32>
2425 cancel_request; // request for cancellation of this taskgroup
2426 struct kmp_taskgroup *parent; // parent taskgroup
2427 // Block of data to perform task reduction
2428 void *reduce_data; // reduction related info
2429 kmp_int32 reduce_num_data; // number of data items to reduce
2430 uintptr_t *gomp_data; // gomp reduction data
2431} kmp_taskgroup_t;
2432
2433// forward declarations
2434typedef union kmp_depnode kmp_depnode_t;
2435typedef struct kmp_depnode_list kmp_depnode_list_t;
2436typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2437
2438// macros for checking dep flag as an integer
2439#define KMP_DEP_IN 0x1
2440#define KMP_DEP_OUT 0x2
2441#define KMP_DEP_INOUT 0x3
2442#define KMP_DEP_MTX 0x4
2443#define KMP_DEP_SET 0x8
2444#define KMP_DEP_ALL 0x80
2445// Compiler sends us this info:
2446typedef struct kmp_depend_info {
2447 kmp_intptr_t base_addr;
2448 size_t len;
2449 union {
2450 kmp_uint8 flag; // flag as an unsigned char
2451 struct { // flag as a set of 8 bits
2452 unsigned in : 1;
2453 unsigned out : 1;
2454 unsigned mtx : 1;
2455 unsigned set : 1;
2456 unsigned unused : 3;
2457 unsigned all : 1;
2458 } flags;
2459 };
2460} kmp_depend_info_t;
2461
2462// Internal structures to work with task dependencies:
2463struct kmp_depnode_list {
2464 kmp_depnode_t *node;
2465 kmp_depnode_list_t *next;
2466};
2467
2468// Max number of mutexinoutset dependencies per node
2469#define MAX_MTX_DEPS 4
2470
2471typedef struct kmp_base_depnode {
2472 kmp_depnode_list_t *successors; /* used under lock */
2473 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2474 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2475 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2476 kmp_lock_t lock; /* guards shared fields: task, successors */
2477#if KMP_SUPPORT_GRAPH_OUTPUT
2478 kmp_uint32 id;
2479#endif
2480 std::atomic<kmp_int32> npredecessors;
2481 std::atomic<kmp_int32> nrefs;
2482} kmp_base_depnode_t;
2483
2484union KMP_ALIGN_CACHE kmp_depnode {
2485 double dn_align; /* use worst case alignment */
2486 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2487 kmp_base_depnode_t dn;
2488};
2489
2490struct kmp_dephash_entry {
2491 kmp_intptr_t addr;
2492 kmp_depnode_t *last_out;
2493 kmp_depnode_list_t *last_set;
2494 kmp_depnode_list_t *prev_set;
2495 kmp_uint8 last_flag;
2496 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2497 kmp_dephash_entry_t *next_in_bucket;
2498};
2499
2500typedef struct kmp_dephash {
2501 kmp_dephash_entry_t **buckets;
2502 size_t size;
2503 kmp_depnode_t *last_all;
2504 size_t generation;
2505 kmp_uint32 nelements;
2506 kmp_uint32 nconflicts;
2507} kmp_dephash_t;
2508
2509typedef struct kmp_task_affinity_info {
2510 kmp_intptr_t base_addr;
2511 size_t len;
2512 struct {
2513 bool flag1 : 1;
2514 bool flag2 : 1;
2515 kmp_int32 reserved : 30;
2516 } flags;
2517} kmp_task_affinity_info_t;
2518
2519typedef enum kmp_event_type_t {
2520 KMP_EVENT_UNINITIALIZED = 0,
2521 KMP_EVENT_ALLOW_COMPLETION = 1
2522} kmp_event_type_t;
2523
2524typedef struct {
2525 kmp_event_type_t type;
2526 kmp_tas_lock_t lock;
2527 union {
2528 kmp_task_t *task;
2529 } ed;
2530} kmp_event_t;
2531
2532#if OMPX_TASKGRAPH
2533// Initial number of allocated nodes while recording
2534#define INIT_MAPSIZE 50
2535
2536typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2537 unsigned nowait : 1;
2538 unsigned re_record : 1;
2539 unsigned reserved : 30;
2540} kmp_taskgraph_flags_t;
2541
2543typedef struct kmp_node_info {
2544 kmp_task_t *task; // Pointer to the actual task
2545 kmp_int32 *successors; // Array of the succesors ids
2546 kmp_int32 nsuccessors; // Number of succesors of the node
2547 std::atomic<kmp_int32>
2548 npredecessors_counter; // Number of predessors on the fly
2549 kmp_int32 npredecessors; // Total number of predecessors
2550 kmp_int32 successors_size; // Number of allocated succesors ids
2551 kmp_taskdata_t *parent_task; // Parent implicit task
2552} kmp_node_info_t;
2553
2555typedef enum kmp_tdg_status {
2556 KMP_TDG_NONE = 0,
2557 KMP_TDG_RECORDING = 1,
2558 KMP_TDG_READY = 2
2559} kmp_tdg_status_t;
2560
2562typedef struct kmp_tdg_info {
2563 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2564 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2565 kmp_int32 map_size; // Number of allocated TDG nodes
2566 kmp_int32 num_roots; // Number of roots tasks int the TDG
2567 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2568 kmp_node_info_t *record_map; // Array of TDG nodes
2569 kmp_tdg_status_t tdg_status =
2570 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2571 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2572 kmp_bootstrap_lock_t
2573 graph_lock; // Protect graph attributes when updated via taskloop_recur
2574 // Taskloop reduction related
2575 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2576 // __kmpc_taskred_init
2577 kmp_int32 rec_num_taskred;
2578} kmp_tdg_info_t;
2579
2580extern int __kmp_tdg_dot;
2581extern kmp_int32 __kmp_max_tdgs;
2582extern kmp_tdg_info_t **__kmp_global_tdgs;
2583extern kmp_int32 __kmp_curr_tdg_idx;
2584extern kmp_int32 __kmp_successors_size;
2585extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2586extern kmp_int32 __kmp_num_tdg;
2587#endif
2588
2589#ifdef BUILD_TIED_TASK_STACK
2590
2591/* Tied Task stack definitions */
2592typedef struct kmp_stack_block {
2593 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2594 struct kmp_stack_block *sb_next;
2595 struct kmp_stack_block *sb_prev;
2596} kmp_stack_block_t;
2597
2598typedef struct kmp_task_stack {
2599 kmp_stack_block_t ts_first_block; // first block of stack entries
2600 kmp_taskdata_t **ts_top; // pointer to the top of stack
2601 kmp_int32 ts_entries; // number of entries on the stack
2602} kmp_task_stack_t;
2603
2604#endif // BUILD_TIED_TASK_STACK
2605
2606typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2607 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2608 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2609 unsigned final : 1; /* task is final(1) so execute immediately */
2610 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2611 code path */
2612 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2613 invoke destructors from the runtime */
2614 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2615 context of the RTL) */
2616 unsigned priority_specified : 1; /* set if the compiler provides priority
2617 setting for the task */
2618 unsigned detachable : 1; /* 1 == can detach */
2619 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2620 unsigned reserved : 8; /* reserved for compiler use */
2621
2622 /* Library flags */ /* Total library flags must be 16 bits */
2623 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2624 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2625 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2626 // (1) or may be deferred (0)
2627 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2628 // (0) [>= 2 threads]
2629 /* If either team_serial or tasking_ser is set, task team may be NULL */
2630 /* Task State Flags: */
2631 unsigned started : 1; /* 1==started, 0==not started */
2632 unsigned executing : 1; /* 1==executing, 0==not executing */
2633 unsigned complete : 1; /* 1==complete, 0==not complete */
2634 unsigned freed : 1; /* 1==freed, 0==allocated */
2635 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2636#if OMPX_TASKGRAPH
2637 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2638 unsigned reserved31 : 6; /* reserved for library use */
2639#else
2640 unsigned reserved31 : 7; /* reserved for library use */
2641#endif
2642
2643} kmp_tasking_flags_t;
2644
2645typedef struct kmp_target_data {
2646 void *async_handle; // libomptarget async handle for task completion query
2647} kmp_target_data_t;
2648
2649struct kmp_taskdata { /* aligned during dynamic allocation */
2650 kmp_int32 td_task_id; /* id, assigned by debugger */
2651 kmp_tasking_flags_t td_flags; /* task flags */
2652 kmp_team_t *td_team; /* team for this task */
2653 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2654 /* Currently not used except for perhaps IDB */
2655 kmp_taskdata_t *td_parent; /* parent task */
2656 kmp_int32 td_level; /* task nesting level */
2657 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2658 ident_t *td_ident; /* task identifier */
2659 // Taskwait data.
2660 ident_t *td_taskwait_ident;
2661 kmp_uint32 td_taskwait_counter;
2662 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2663 KMP_ALIGN_CACHE kmp_internal_control_t
2664 td_icvs; /* Internal control variables for the task */
2665 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2666 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2667 deallocated */
2668 std::atomic<kmp_int32>
2669 td_incomplete_child_tasks; /* Child tasks not yet complete */
2670 kmp_taskgroup_t
2671 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2672 kmp_dephash_t
2673 *td_dephash; // Dependencies for children tasks are tracked from here
2674 kmp_depnode_t
2675 *td_depnode; // Pointer to graph node if this task has dependencies
2676 kmp_task_team_t *td_task_team;
2677 size_t td_size_alloc; // Size of task structure, including shareds etc.
2678#if defined(KMP_GOMP_COMPAT)
2679 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2680 kmp_int32 td_size_loop_bounds;
2681#endif
2682 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2683#if defined(KMP_GOMP_COMPAT)
2684 // GOMP sends in a copy function for copy constructors
2685 void (*td_copy_func)(void *, void *);
2686#endif
2687 kmp_event_t td_allow_completion_event;
2688#if OMPT_SUPPORT
2689 ompt_task_info_t ompt_task_info;
2690#endif
2691#if OMPX_TASKGRAPH
2692 bool is_taskgraph = 0; // whether the task is within a TDG
2693 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2694#endif
2695 kmp_target_data_t td_target_data;
2696}; // struct kmp_taskdata
2697
2698// Make sure padding above worked
2699KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2700
2701// Data for task team but per thread
2702typedef struct kmp_base_thread_data {
2703 kmp_info_p *td_thr; // Pointer back to thread info
2704 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2705 // queued?
2706 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2707 kmp_taskdata_t *
2708 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2709 kmp_int32 td_deque_size; // Size of deck
2710 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2711 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2712 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2713 // GEH: shouldn't this be volatile since used in while-spin?
2714 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2715#ifdef BUILD_TIED_TASK_STACK
2716 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2717// scheduling constraint
2718#endif // BUILD_TIED_TASK_STACK
2719} kmp_base_thread_data_t;
2720
2721#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2722#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2723
2724#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2725#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2726
2727typedef union KMP_ALIGN_CACHE kmp_thread_data {
2728 kmp_base_thread_data_t td;
2729 double td_align; /* use worst case alignment */
2730 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2731} kmp_thread_data_t;
2732
2733typedef struct kmp_task_pri {
2734 kmp_thread_data_t td;
2735 kmp_int32 priority;
2736 kmp_task_pri *next;
2737} kmp_task_pri_t;
2738
2739// Data for task teams which are used when tasking is enabled for the team
2740typedef struct kmp_base_task_team {
2741 kmp_bootstrap_lock_t
2742 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2743 /* must be bootstrap lock since used at library shutdown*/
2744
2745 // TODO: check performance vs kmp_tas_lock_t
2746 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2747 kmp_task_pri_t *tt_task_pri_list;
2748
2749 kmp_task_team_t *tt_next; /* For linking the task team free list */
2750 kmp_thread_data_t
2751 *tt_threads_data; /* Array of per-thread structures for task team */
2752 /* Data survives task team deallocation */
2753 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2754 executing this team? */
2755 /* TRUE means tt_threads_data is set up and initialized */
2756 kmp_int32 tt_nproc; /* #threads in team */
2757 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2758 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2759 kmp_int32 tt_untied_task_encountered;
2760 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2761 // There is hidden helper thread encountered in this task team so that we must
2762 // wait when waiting on task team
2763 kmp_int32 tt_hidden_helper_task_encountered;
2764
2765 KMP_ALIGN_CACHE
2766 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2767
2768 KMP_ALIGN_CACHE
2769 volatile kmp_uint32
2770 tt_active; /* is the team still actively executing tasks */
2771} kmp_base_task_team_t;
2772
2773union KMP_ALIGN_CACHE kmp_task_team {
2774 kmp_base_task_team_t tt;
2775 double tt_align; /* use worst case alignment */
2776 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2777};
2778
2779#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2780// Free lists keep same-size free memory slots for fast memory allocation
2781// routines
2782typedef struct kmp_free_list {
2783 void *th_free_list_self; // Self-allocated tasks free list
2784 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2785 // threads
2786 void *th_free_list_other; // Non-self free list (to be returned to owner's
2787 // sync list)
2788} kmp_free_list_t;
2789#endif
2790#if KMP_NESTED_HOT_TEAMS
2791// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2792// are not put in teams pool, and they don't put threads in threads pool.
2793typedef struct kmp_hot_team_ptr {
2794 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2795 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2796} kmp_hot_team_ptr_t;
2797#endif
2798typedef struct kmp_teams_size {
2799 kmp_int32 nteams; // number of teams in a league
2800 kmp_int32 nth; // number of threads in each team of the league
2801} kmp_teams_size_t;
2802
2803// This struct stores a thread that acts as a "root" for a contention
2804// group. Contention groups are rooted at kmp_root threads, but also at
2805// each primary thread of each team created in the teams construct.
2806// This struct therefore also stores a thread_limit associated with
2807// that contention group, and a counter to track the number of threads
2808// active in that contention group. Each thread has a list of these: CG
2809// root threads have an entry in their list in which cg_root refers to
2810// the thread itself, whereas other workers in the CG will have a
2811// single entry where cg_root is same as the entry containing their CG
2812// root. When a thread encounters a teams construct, it will add a new
2813// entry to the front of its list, because it now roots a new CG.
2814typedef struct kmp_cg_root {
2815 kmp_info_p *cg_root; // "root" thread for a contention group
2816 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2817 // thread_limit clause for teams primary threads
2818 kmp_int32 cg_thread_limit;
2819 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2820 struct kmp_cg_root *up; // pointer to higher level CG root in list
2821} kmp_cg_root_t;
2822
2823// OpenMP thread data structures
2824
2825typedef struct KMP_ALIGN_CACHE kmp_base_info {
2826 /* Start with the readonly data which is cache aligned and padded. This is
2827 written before the thread starts working by the primary thread. Uber
2828 masters may update themselves later. Usage does not consider serialized
2829 regions. */
2830 kmp_desc_t th_info;
2831 kmp_team_p *th_team; /* team we belong to */
2832 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2833 kmp_info_p *th_next_pool; /* next available thread in the pool */
2834 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2835 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2836
2837 /* The following are cached from the team info structure */
2838 /* TODO use these in more places as determined to be needed via profiling */
2839 int th_team_nproc; /* number of threads in a team */
2840 kmp_info_p *th_team_master; /* the team's primary thread */
2841 int th_team_serialized; /* team is serialized */
2842 microtask_t th_teams_microtask; /* save entry address for teams construct */
2843 int th_teams_level; /* save initial level of teams construct */
2844/* it is 0 on device but may be any on host */
2845
2846/* The blocktime info is copied from the team struct to the thread struct */
2847/* at the start of a barrier, and the values stored in the team are used */
2848/* at points in the code where the team struct is no longer guaranteed */
2849/* to exist (from the POV of worker threads). */
2850#if KMP_USE_MONITOR
2851 int th_team_bt_intervals;
2852 int th_team_bt_set;
2853#else
2854 kmp_uint64 th_team_bt_intervals;
2855#endif
2856
2857#if KMP_AFFINITY_SUPPORTED
2858 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2859 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2860 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2861#endif
2862 omp_allocator_handle_t th_def_allocator; /* default allocator */
2863 /* The data set by the primary thread at reinit, then R/W by the worker */
2864 KMP_ALIGN_CACHE int
2865 th_set_nproc; /* if > 0, then only use this request for the next fork */
2866#if KMP_NESTED_HOT_TEAMS
2867 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2868#endif
2869 kmp_proc_bind_t
2870 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2871 kmp_teams_size_t
2872 th_teams_size; /* number of teams/threads in teams construct */
2873#if KMP_AFFINITY_SUPPORTED
2874 int th_current_place; /* place currently bound to */
2875 int th_new_place; /* place to bind to in par reg */
2876 int th_first_place; /* first place in partition */
2877 int th_last_place; /* last place in partition */
2878#endif
2879 int th_prev_level; /* previous level for affinity format */
2880 int th_prev_num_threads; /* previous num_threads for affinity format */
2881#if USE_ITT_BUILD
2882 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2883 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2884 kmp_uint64 th_frame_time; /* frame timestamp */
2885#endif /* USE_ITT_BUILD */
2886 kmp_local_t th_local;
2887 struct private_common *th_pri_head;
2888
2889 /* Now the data only used by the worker (after initial allocation) */
2890 /* TODO the first serial team should actually be stored in the info_t
2891 structure. this will help reduce initial allocation overhead */
2892 KMP_ALIGN_CACHE kmp_team_p
2893 *th_serial_team; /*serialized team held in reserve*/
2894
2895#if OMPT_SUPPORT
2896 ompt_thread_info_t ompt_thread_info;
2897#endif
2898
2899 /* The following are also read by the primary thread during reinit */
2900 struct common_table *th_pri_common;
2901
2902 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2903 /* while awaiting queuing lock acquire */
2904
2905 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2906 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2907
2908 ident_t *th_ident;
2909 unsigned th_x; // Random number generator data
2910 unsigned th_a; // Random number generator data
2911
2912 /* Tasking-related data for the thread */
2913 kmp_task_team_t *th_task_team; // Task team struct
2914 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2915 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2916 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2917 // at nested levels
2918 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2919 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2920 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2921 // tasking, thus safe to reap
2922
2923 /* More stuff for keeping track of active/sleeping threads (this part is
2924 written by the worker thread) */
2925 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2926 int th_active; // ! sleeping; 32 bits for TCR/TCW
2927 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2928 // 0 = not used in team; 1 = used in team;
2929 // 2 = transitioning to not used in team; 3 = transitioning to used in team
2930 struct cons_header *th_cons; // used for consistency check
2931#if KMP_USE_HIER_SCHED
2932 // used for hierarchical scheduling
2933 kmp_hier_private_bdata_t *th_hier_bar_data;
2934#endif
2935
2936 /* Add the syncronizing data which is cache aligned and padded. */
2937 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2938
2939 KMP_ALIGN_CACHE volatile kmp_int32
2940 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2941
2942#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2943#define NUM_LISTS 4
2944 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2945// allocation routines
2946#endif
2947
2948#if KMP_OS_WINDOWS
2949 kmp_win32_cond_t th_suspend_cv;
2950 kmp_win32_mutex_t th_suspend_mx;
2951 std::atomic<int> th_suspend_init;
2952#endif
2953#if KMP_OS_UNIX
2954 kmp_cond_align_t th_suspend_cv;
2955 kmp_mutex_align_t th_suspend_mx;
2956 std::atomic<int> th_suspend_init_count;
2957#endif
2958
2959#if USE_ITT_BUILD
2960 kmp_itt_mark_t th_itt_mark_single;
2961// alignment ???
2962#endif /* USE_ITT_BUILD */
2963#if KMP_STATS_ENABLED
2964 kmp_stats_list *th_stats;
2965#endif
2966#if KMP_OS_UNIX
2967 std::atomic<bool> th_blocking;
2968#endif
2969 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2970} kmp_base_info_t;
2971
2972typedef union KMP_ALIGN_CACHE kmp_info {
2973 double th_align; /* use worst case alignment */
2974 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2975 kmp_base_info_t th;
2976} kmp_info_t;
2977
2978// OpenMP thread team data structures
2979
2980typedef struct kmp_base_data {
2981 volatile kmp_uint32 t_value;
2982} kmp_base_data_t;
2983
2984typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2985 double dt_align; /* use worst case alignment */
2986 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2987 kmp_base_data_t dt;
2988} kmp_sleep_team_t;
2989
2990typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2991 double dt_align; /* use worst case alignment */
2992 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2993 kmp_base_data_t dt;
2994} kmp_ordered_team_t;
2995
2996typedef int (*launch_t)(int gtid);
2997
2998/* Minimum number of ARGV entries to malloc if necessary */
2999#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3000
3001// Set up how many argv pointers will fit in cache lines containing
3002// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3003// larger value for more space between the primary write/worker read section and
3004// read/write by all section seems to buy more performance on EPCC PARALLEL.
3005#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3006#define KMP_INLINE_ARGV_BYTES \
3007 (4 * CACHE_LINE - \
3008 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3009 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3010 CACHE_LINE))
3011#else
3012#define KMP_INLINE_ARGV_BYTES \
3013 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3014#endif
3015#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3016
3017typedef struct KMP_ALIGN_CACHE kmp_base_team {
3018 // Synchronization Data
3019 // ---------------------------------------------------------------------------
3020 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3021 kmp_balign_team_t t_bar[bs_last_barrier];
3022 std::atomic<int> t_construct; // count of single directive encountered by team
3023 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3024
3025 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3026 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3027 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3028
3029 // Primary thread only
3030 // ---------------------------------------------------------------------------
3031 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3032 int t_master_this_cons; // "this_construct" single counter of primary thread
3033 // in parent team
3034 ident_t *t_ident; // if volatile, have to change too much other crud to
3035 // volatile too
3036 kmp_team_p *t_parent; // parent team
3037 kmp_team_p *t_next_pool; // next free team in the team pool
3038 kmp_disp_t *t_dispatch; // thread's dispatch data
3039 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3040 kmp_proc_bind_t t_proc_bind; // bind type for par region
3041#if USE_ITT_BUILD
3042 kmp_uint64 t_region_time; // region begin timestamp
3043#endif /* USE_ITT_BUILD */
3044
3045 // Primary thread write, workers read
3046 // --------------------------------------------------------------------------
3047 KMP_ALIGN_CACHE void **t_argv;
3048 int t_argc;
3049 int t_nproc; // number of threads in team
3050 microtask_t t_pkfn;
3051 launch_t t_invoke; // procedure to launch the microtask
3052
3053#if OMPT_SUPPORT
3054 ompt_team_info_t ompt_team_info;
3055 ompt_lw_taskteam_t *ompt_serialized_team_info;
3056#endif
3057
3058#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3059 kmp_int8 t_fp_control_saved;
3060 kmp_int8 t_pad2b;
3061 kmp_int16 t_x87_fpu_control_word; // FP control regs
3062 kmp_uint32 t_mxcsr;
3063#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3064
3065 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3066
3067 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3068 kmp_taskdata_t
3069 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3070 int t_level; // nested parallel level
3071
3072 KMP_ALIGN_CACHE int t_max_argc;
3073 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3074 int t_serialized; // levels deep of serialized teams
3075 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3076 int t_id; // team's id, assigned by debugger.
3077 int t_active_level; // nested active parallel level
3078 kmp_r_sched_t t_sched; // run-time schedule for the team
3079#if KMP_AFFINITY_SUPPORTED
3080 int t_first_place; // first & last place in parent thread's partition.
3081 int t_last_place; // Restore these values to primary thread after par region.
3082#endif // KMP_AFFINITY_SUPPORTED
3083 int t_display_affinity;
3084 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3085 // omp_set_num_threads() call
3086 omp_allocator_handle_t t_def_allocator; /* default allocator */
3087
3088// Read/write by workers as well
3089#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3090 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3091 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3092 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3093 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3094 char dummy_padding[1024];
3095#endif
3096 // Internal control stack for additional nested teams.
3097 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3098 // for SERIALIZED teams nested 2 or more levels deep
3099 // typed flag to store request state of cancellation
3100 std::atomic<kmp_int32> t_cancel_request;
3101 int t_master_active; // save on fork, restore on join
3102 void *t_copypriv_data; // team specific pointer to copyprivate data array
3103#if KMP_OS_WINDOWS
3104 std::atomic<kmp_uint32> t_copyin_counter;
3105#endif
3106#if USE_ITT_BUILD
3107 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3108#endif /* USE_ITT_BUILD */
3109 distributedBarrier *b; // Distributed barrier data associated with team
3110} kmp_base_team_t;
3111
3112union KMP_ALIGN_CACHE kmp_team {
3113 kmp_base_team_t t;
3114 double t_align; /* use worst case alignment */
3115 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3116};
3117
3118typedef union KMP_ALIGN_CACHE kmp_time_global {
3119 double dt_align; /* use worst case alignment */
3120 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3121 kmp_base_data_t dt;
3122} kmp_time_global_t;
3123
3124typedef struct kmp_base_global {
3125 /* cache-aligned */
3126 kmp_time_global_t g_time;
3127
3128 /* non cache-aligned */
3129 volatile int g_abort;
3130 volatile int g_done;
3131
3132 int g_dynamic;
3133 enum dynamic_mode g_dynamic_mode;
3134} kmp_base_global_t;
3135
3136typedef union KMP_ALIGN_CACHE kmp_global {
3137 kmp_base_global_t g;
3138 double g_align; /* use worst case alignment */
3139 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3140} kmp_global_t;
3141
3142typedef struct kmp_base_root {
3143 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3144 // (r_in_parallel>= 0)
3145 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3146 // the synch overhead or keeping r_active
3147 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3148 // keeps a count of active parallel regions per root
3149 std::atomic<int> r_in_parallel;
3150 // GEH: This is misnamed, should be r_active_levels
3151 kmp_team_t *r_root_team;
3152 kmp_team_t *r_hot_team;
3153 kmp_info_t *r_uber_thread;
3154 kmp_lock_t r_begin_lock;
3155 volatile int r_begin;
3156 int r_blocktime; /* blocktime for this root and descendants */
3157#if KMP_AFFINITY_SUPPORTED
3158 int r_affinity_assigned;
3159#endif // KMP_AFFINITY_SUPPORTED
3160} kmp_base_root_t;
3161
3162typedef union KMP_ALIGN_CACHE kmp_root {
3163 kmp_base_root_t r;
3164 double r_align; /* use worst case alignment */
3165 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3166} kmp_root_t;
3167
3168struct fortran_inx_info {
3169 kmp_int32 data;
3170};
3171
3172// This list type exists to hold old __kmp_threads arrays so that
3173// old references to them may complete while reallocation takes place when
3174// expanding the array. The items in this list are kept alive until library
3175// shutdown.
3176typedef struct kmp_old_threads_list_t {
3177 kmp_info_t **threads;
3178 struct kmp_old_threads_list_t *next;
3179} kmp_old_threads_list_t;
3180
3181/* ------------------------------------------------------------------------ */
3182
3183extern int __kmp_settings;
3184extern int __kmp_duplicate_library_ok;
3185#if USE_ITT_BUILD
3186extern int __kmp_forkjoin_frames;
3187extern int __kmp_forkjoin_frames_mode;
3188#endif
3189extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3190extern int __kmp_determ_red;
3191
3192#ifdef KMP_DEBUG
3193extern int kmp_a_debug;
3194extern int kmp_b_debug;
3195extern int kmp_c_debug;
3196extern int kmp_d_debug;
3197extern int kmp_e_debug;
3198extern int kmp_f_debug;
3199#endif /* KMP_DEBUG */
3200
3201/* For debug information logging using rotating buffer */
3202#define KMP_DEBUG_BUF_LINES_INIT 512
3203#define KMP_DEBUG_BUF_LINES_MIN 1
3204
3205#define KMP_DEBUG_BUF_CHARS_INIT 128
3206#define KMP_DEBUG_BUF_CHARS_MIN 2
3207
3208extern int
3209 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3210extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3211extern int
3212 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3213extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3214 entry pointer */
3215
3216extern char *__kmp_debug_buffer; /* Debug buffer itself */
3217extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3218 printed in buffer so far */
3219extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3220 recommended in warnings */
3221/* end rotating debug buffer */
3222
3223#ifdef KMP_DEBUG
3224extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3225
3226#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3227extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3228#define KMP_PAR_RANGE_FILENAME_LEN 1024
3229extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3230extern int __kmp_par_range_lb;
3231extern int __kmp_par_range_ub;
3232#endif
3233
3234/* For printing out dynamic storage map for threads and teams */
3235extern int
3236 __kmp_storage_map; /* True means print storage map for threads and teams */
3237extern int __kmp_storage_map_verbose; /* True means storage map includes
3238 placement info */
3239extern int __kmp_storage_map_verbose_specified;
3240
3241#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3242extern kmp_cpuinfo_t __kmp_cpuinfo;
3243static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3244#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3245static inline bool __kmp_is_hybrid_cpu() { return true; }
3246#else
3247static inline bool __kmp_is_hybrid_cpu() { return false; }
3248#endif
3249
3250extern volatile int __kmp_init_serial;
3251extern volatile int __kmp_init_gtid;
3252extern volatile int __kmp_init_common;
3253extern volatile int __kmp_need_register_serial;
3254extern volatile int __kmp_init_middle;
3255extern volatile int __kmp_init_parallel;
3256#if KMP_USE_MONITOR
3257extern volatile int __kmp_init_monitor;
3258#endif
3259extern volatile int __kmp_init_user_locks;
3260extern volatile int __kmp_init_hidden_helper_threads;
3261extern int __kmp_init_counter;
3262extern int __kmp_root_counter;
3263extern int __kmp_version;
3264
3265/* list of address of allocated caches for commons */
3266extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3267
3268/* Barrier algorithm types and options */
3269extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3270extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3271extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3272extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3273extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3274extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3275extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3276extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3277extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3278extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3279extern char const *__kmp_barrier_type_name[bs_last_barrier];
3280extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3281
3282/* Global Locks */
3283extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3284extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3285extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3286extern kmp_bootstrap_lock_t
3287 __kmp_exit_lock; /* exit() is not always thread-safe */
3288#if KMP_USE_MONITOR
3289extern kmp_bootstrap_lock_t
3290 __kmp_monitor_lock; /* control monitor thread creation */
3291#endif
3292extern kmp_bootstrap_lock_t
3293 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3294 __kmp_threads expansion to co-exist */
3295
3296extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3297extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3298extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3299
3300extern enum library_type __kmp_library;
3301
3302extern enum sched_type __kmp_sched; /* default runtime scheduling */
3303extern enum sched_type __kmp_static; /* default static scheduling method */
3304extern enum sched_type __kmp_guided; /* default guided scheduling method */
3305extern enum sched_type __kmp_auto; /* default auto scheduling method */
3306extern int __kmp_chunk; /* default runtime chunk size */
3307extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3308
3309extern size_t __kmp_stksize; /* stack size per thread */
3310#if KMP_USE_MONITOR
3311extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3312#endif
3313extern size_t __kmp_stkoffset; /* stack offset per thread */
3314extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3315
3316extern size_t
3317 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3318extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3319extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3320extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3321extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3322extern int __kmp_generate_warnings; /* should we issue warnings? */
3323extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3324
3325#ifdef DEBUG_SUSPEND
3326extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3327#endif
3328
3329extern kmp_int32 __kmp_use_yield;
3330extern kmp_int32 __kmp_use_yield_exp_set;
3331extern kmp_uint32 __kmp_yield_init;
3332extern kmp_uint32 __kmp_yield_next;
3333extern kmp_uint64 __kmp_pause_init;
3334
3335/* ------------------------------------------------------------------------- */
3336extern int __kmp_allThreadsSpecified;
3337
3338extern size_t __kmp_align_alloc;
3339/* following data protected by initialization routines */
3340extern int __kmp_xproc; /* number of processors in the system */
3341extern int __kmp_avail_proc; /* number of processors available to the process */
3342extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3343extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3344// maximum total number of concurrently-existing threads on device
3345extern int __kmp_max_nth;
3346// maximum total number of concurrently-existing threads in a contention group
3347extern int __kmp_cg_max_nth;
3348extern int __kmp_task_max_nth; // max threads used in a task
3349extern int __kmp_teams_max_nth; // max threads used in a teams construct
3350extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3351 __kmp_root */
3352extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3353 region a la OMP_NUM_THREADS */
3354extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3355 initialization */
3356extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3357 used (fixed) */
3358extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3359 (__kmpc_threadprivate_cached()) */
3360extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3361 blocking (env setting) */
3362extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3363extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3364
3365// Convert raw blocktime from ms to us if needed.
3366static inline void __kmp_aux_convert_blocktime(int *bt) {
3367 if (__kmp_blocktime_units == 'm') {
3368 if (*bt > INT_MAX / 1000) {
3369 *bt = INT_MAX / 1000;
3370 KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3371 }
3372 *bt = *bt * 1000;
3373 }
3374}
3375
3376#if KMP_USE_MONITOR
3377extern int
3378 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3379extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3380 blocking */
3381#endif
3382#ifdef KMP_ADJUST_BLOCKTIME
3383extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3384#endif /* KMP_ADJUST_BLOCKTIME */
3385#ifdef KMP_DFLT_NTH_CORES
3386extern int __kmp_ncores; /* Total number of cores for threads placement */
3387#endif
3388/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3389extern int __kmp_abort_delay;
3390
3391extern int __kmp_need_register_atfork_specified;
3392extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3393 to install fork handler */
3394extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3395 0 - not set, will be set at runtime
3396 1 - using stack search
3397 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3398 X*) or TlsGetValue(Windows* OS))
3399 3 - static TLS (__declspec(thread) __kmp_gtid),
3400 Linux* OS .so only. */
3401extern int
3402 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3403#ifdef KMP_TDATA_GTID
3404extern KMP_THREAD_LOCAL int __kmp_gtid;
3405#endif
3406extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3407extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3408#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3409extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3410extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3411extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3412#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3413
3414// max_active_levels for nested parallelism enabled by default via
3415// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3416extern int __kmp_dflt_max_active_levels;
3417// Indicates whether value of __kmp_dflt_max_active_levels was already
3418// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3419extern bool __kmp_dflt_max_active_levels_set;
3420extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3421 concurrent execution per team */
3422#if KMP_NESTED_HOT_TEAMS
3423extern int __kmp_hot_teams_mode;
3424extern int __kmp_hot_teams_max_level;
3425#endif
3426
3427#if KMP_OS_LINUX
3428extern enum clock_function_type __kmp_clock_function;
3429extern int __kmp_clock_function_param;
3430#endif /* KMP_OS_LINUX */
3431
3432#if KMP_MIC_SUPPORTED
3433extern enum mic_type __kmp_mic_type;
3434#endif
3435
3436#ifdef USE_LOAD_BALANCE
3437extern double __kmp_load_balance_interval; // load balance algorithm interval
3438#endif /* USE_LOAD_BALANCE */
3439
3440// OpenMP 3.1 - Nested num threads array
3441typedef struct kmp_nested_nthreads_t {
3442 int *nth;
3443 int size;
3444 int used;
3445} kmp_nested_nthreads_t;
3446
3447extern kmp_nested_nthreads_t __kmp_nested_nth;
3448
3449#if KMP_USE_ADAPTIVE_LOCKS
3450
3451// Parameters for the speculative lock backoff system.
3452struct kmp_adaptive_backoff_params_t {
3453 // Number of soft retries before it counts as a hard retry.
3454 kmp_uint32 max_soft_retries;
3455 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3456 // the right
3457 kmp_uint32 max_badness;
3458};
3459
3460extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3461
3462#if KMP_DEBUG_ADAPTIVE_LOCKS
3463extern const char *__kmp_speculative_statsfile;
3464#endif
3465
3466#endif // KMP_USE_ADAPTIVE_LOCKS
3467
3468extern int __kmp_display_env; /* TRUE or FALSE */
3469extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3470extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3471extern int __kmp_nteams;
3472extern int __kmp_teams_thread_limit;
3473
3474/* ------------------------------------------------------------------------- */
3475
3476/* the following are protected by the fork/join lock */
3477/* write: lock read: anytime */
3478extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3479/* Holds old arrays of __kmp_threads until library shutdown */
3480extern kmp_old_threads_list_t *__kmp_old_threads_list;
3481/* read/write: lock */
3482extern volatile kmp_team_t *__kmp_team_pool;
3483extern volatile kmp_info_t *__kmp_thread_pool;
3484extern kmp_info_t *__kmp_thread_pool_insert_pt;
3485
3486// total num threads reachable from some root thread including all root threads
3487extern volatile int __kmp_nth;
3488/* total number of threads reachable from some root thread including all root
3489 threads, and those in the thread pool */
3490extern volatile int __kmp_all_nth;
3491extern std::atomic<int> __kmp_thread_pool_active_nth;
3492
3493extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3494/* end data protected by fork/join lock */
3495/* ------------------------------------------------------------------------- */
3496
3497#define __kmp_get_gtid() __kmp_get_global_thread_id()
3498#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3499#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3500#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3501#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3502
3503// AT: Which way is correct?
3504// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3505// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3506#define __kmp_get_team_num_threads(gtid) \
3507 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3508
3509static inline bool KMP_UBER_GTID(int gtid) {
3510 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3511 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3512 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3513 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3514}
3515
3516static inline int __kmp_tid_from_gtid(int gtid) {
3517 KMP_DEBUG_ASSERT(gtid >= 0);
3518 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3519}
3520
3521static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3522 KMP_DEBUG_ASSERT(tid >= 0 && team);
3523 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3524}
3525
3526static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3527 KMP_DEBUG_ASSERT(thr);
3528 return thr->th.th_info.ds.ds_gtid;
3529}
3530
3531static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3532 KMP_DEBUG_ASSERT(gtid >= 0);
3533 return __kmp_threads[gtid];
3534}
3535
3536static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3537 KMP_DEBUG_ASSERT(gtid >= 0);
3538 return __kmp_threads[gtid]->th.th_team;
3539}
3540
3541static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3542 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3543 KMP_FATAL(ThreadIdentInvalid);
3544}
3545
3546#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3547extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3548extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3549extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3550extern int __kmp_mwait_hints; // Hints to pass in to mwait
3551#endif
3552
3553#if KMP_HAVE_UMWAIT
3554extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3555extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3556extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3557extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3558#endif
3559
3560/* ------------------------------------------------------------------------- */
3561
3562extern kmp_global_t __kmp_global; /* global status */
3563
3564extern kmp_info_t __kmp_monitor;
3565// For Debugging Support Library
3566extern std::atomic<kmp_int32> __kmp_team_counter;
3567// For Debugging Support Library
3568extern std::atomic<kmp_int32> __kmp_task_counter;
3569
3570#if USE_DEBUGGER
3571#define _KMP_GEN_ID(counter) \
3572 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3573#else
3574#define _KMP_GEN_ID(counter) (~0)
3575#endif /* USE_DEBUGGER */
3576
3577#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3578#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3579
3580/* ------------------------------------------------------------------------ */
3581
3582extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3583 size_t size, char const *format, ...);
3584
3585extern void __kmp_serial_initialize(void);
3586extern void __kmp_middle_initialize(void);
3587extern void __kmp_parallel_initialize(void);
3588
3589extern void __kmp_internal_begin(void);
3590extern void __kmp_internal_end_library(int gtid);
3591extern void __kmp_internal_end_thread(int gtid);
3592extern void __kmp_internal_end_atexit(void);
3593extern void __kmp_internal_end_dtor(void);
3594extern void __kmp_internal_end_dest(void *);
3595
3596extern int __kmp_register_root(int initial_thread);
3597extern void __kmp_unregister_root(int gtid);
3598extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3599
3600extern int __kmp_ignore_mppbeg(void);
3601extern int __kmp_ignore_mppend(void);
3602
3603extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3604extern void __kmp_exit_single(int gtid);
3605
3606extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3607extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3608
3609#ifdef USE_LOAD_BALANCE
3610extern int __kmp_get_load_balance(int);
3611#endif
3612
3613extern int __kmp_get_global_thread_id(void);
3614extern int __kmp_get_global_thread_id_reg(void);
3615extern void __kmp_exit_thread(int exit_status);
3616extern void __kmp_abort(char const *format, ...);
3617extern void __kmp_abort_thread(void);
3618KMP_NORETURN extern void __kmp_abort_process(void);
3619extern void __kmp_warn(char const *format, ...);
3620
3621extern void __kmp_set_num_threads(int new_nth, int gtid);
3622
3623// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3624// registered.
3625static inline kmp_info_t *__kmp_entry_thread() {
3626 int gtid = __kmp_entry_gtid();
3627
3628 return __kmp_threads[gtid];
3629}
3630
3631extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3632extern int __kmp_get_max_active_levels(int gtid);
3633extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3634extern int __kmp_get_team_size(int gtid, int level);
3635extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3636extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3637
3638extern unsigned short __kmp_get_random(kmp_info_t *thread);
3639extern void __kmp_init_random(kmp_info_t *thread);
3640
3641extern kmp_r_sched_t __kmp_get_schedule_global(void);
3642extern void __kmp_adjust_num_threads(int new_nproc);
3643extern void __kmp_check_stksize(size_t *val);
3644
3645extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3646extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3647extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3648#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3649#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3650#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3651
3652#if USE_FAST_MEMORY
3653extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3654 size_t size KMP_SRC_LOC_DECL);
3655extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3656extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3657extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3658#define __kmp_fast_allocate(this_thr, size) \
3659 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3660#define __kmp_fast_free(this_thr, ptr) \
3661 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3662#endif
3663
3664extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3665extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3666 size_t elsize KMP_SRC_LOC_DECL);
3667extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3668 size_t size KMP_SRC_LOC_DECL);
3669extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3670#define __kmp_thread_malloc(th, size) \
3671 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3672#define __kmp_thread_calloc(th, nelem, elsize) \
3673 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3674#define __kmp_thread_realloc(th, ptr, size) \
3675 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3676#define __kmp_thread_free(th, ptr) \
3677 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3678
3679extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3680
3681extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3682 kmp_proc_bind_t proc_bind);
3683extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3684 int num_threads);
3685extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3686 int num_teams_ub, int num_threads);
3687
3688extern void __kmp_yield();
3689
3690extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3691 enum sched_type schedule, kmp_int32 lb,
3692 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3693extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3694 enum sched_type schedule, kmp_uint32 lb,
3695 kmp_uint32 ub, kmp_int32 st,
3696 kmp_int32 chunk);
3697extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3698 enum sched_type schedule, kmp_int64 lb,
3699 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3700extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3701 enum sched_type schedule, kmp_uint64 lb,
3702 kmp_uint64 ub, kmp_int64 st,
3703 kmp_int64 chunk);
3704
3705extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3706 kmp_int32 *p_last, kmp_int32 *p_lb,
3707 kmp_int32 *p_ub, kmp_int32 *p_st);
3708extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3709 kmp_int32 *p_last, kmp_uint32 *p_lb,
3710 kmp_uint32 *p_ub, kmp_int32 *p_st);
3711extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3712 kmp_int32 *p_last, kmp_int64 *p_lb,
3713 kmp_int64 *p_ub, kmp_int64 *p_st);
3714extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3715 kmp_int32 *p_last, kmp_uint64 *p_lb,
3716 kmp_uint64 *p_ub, kmp_int64 *p_st);
3717
3718extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3719extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3720extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3721extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3722
3723#ifdef KMP_GOMP_COMPAT
3724
3725extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3726 enum sched_type schedule, kmp_int32 lb,
3727 kmp_int32 ub, kmp_int32 st,
3728 kmp_int32 chunk, int push_ws);
3729extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3730 enum sched_type schedule, kmp_uint32 lb,
3731 kmp_uint32 ub, kmp_int32 st,
3732 kmp_int32 chunk, int push_ws);
3733extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3734 enum sched_type schedule, kmp_int64 lb,
3735 kmp_int64 ub, kmp_int64 st,
3736 kmp_int64 chunk, int push_ws);
3737extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3738 enum sched_type schedule, kmp_uint64 lb,
3739 kmp_uint64 ub, kmp_int64 st,
3740 kmp_int64 chunk, int push_ws);
3741extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3742extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3743extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3744extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3745
3746#endif /* KMP_GOMP_COMPAT */
3747
3748extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3749extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3750extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3751extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3752extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3753extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3754 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3755 void *obj);
3756extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3757 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3758
3759extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3760 int final_spin
3761#if USE_ITT_BUILD
3762 ,
3763 void *itt_sync_obj
3764#endif
3765);
3766extern void __kmp_release_64(kmp_flag_64<> *flag);
3767
3768extern void __kmp_infinite_loop(void);
3769
3770extern void __kmp_cleanup(void);
3771
3772#if KMP_HANDLE_SIGNALS
3773extern int __kmp_handle_signals;
3774extern void __kmp_install_signals(int parallel_init);
3775extern void __kmp_remove_signals(void);
3776#endif
3777
3778extern void __kmp_clear_system_time(void);
3779extern void __kmp_read_system_time(double *delta);
3780
3781extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3782
3783extern void __kmp_expand_host_name(char *buffer, size_t size);
3784extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3785
3786#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3787extern void
3788__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3789#endif
3790
3791extern void
3792__kmp_runtime_initialize(void); /* machine specific initialization */
3793extern void __kmp_runtime_destroy(void);
3794
3795#if KMP_AFFINITY_SUPPORTED
3796extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3797 kmp_affin_mask_t *mask);
3798extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3799 kmp_affin_mask_t *mask);
3800extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3801extern void __kmp_affinity_uninitialize(void);
3802extern void __kmp_affinity_set_init_mask(
3803 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3804void __kmp_affinity_bind_init_mask(int gtid);
3805extern void __kmp_affinity_bind_place(int gtid);
3806extern void __kmp_affinity_determine_capable(const char *env_var);
3807extern int __kmp_aux_set_affinity(void **mask);
3808extern int __kmp_aux_get_affinity(void **mask);
3809extern int __kmp_aux_get_affinity_max_proc();
3810extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3811extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3812extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3813extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3814#if KMP_OS_LINUX || KMP_OS_FREEBSD
3815extern int kmp_set_thread_affinity_mask_initial(void);
3816#endif
3817static inline void __kmp_assign_root_init_mask() {
3818 int gtid = __kmp_entry_gtid();
3819 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3820 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3821 __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3822 __kmp_affinity_bind_init_mask(gtid);
3823 r->r.r_affinity_assigned = TRUE;
3824 }
3825}
3826static inline void __kmp_reset_root_init_mask(int gtid) {
3827 if (!KMP_AFFINITY_CAPABLE())
3828 return;
3829 kmp_info_t *th = __kmp_threads[gtid];
3830 kmp_root_t *r = th->th.th_root;
3831 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3832 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3833 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3834 r->r.r_affinity_assigned = FALSE;
3835 }
3836}
3837#else /* KMP_AFFINITY_SUPPORTED */
3838#define __kmp_assign_root_init_mask() /* Nothing */
3839static inline void __kmp_reset_root_init_mask(int gtid) {}
3840#endif /* KMP_AFFINITY_SUPPORTED */
3841// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3842// format string is for affinity, so platforms that do not support
3843// affinity can still use the other fields, e.g., %n for num_threads
3844extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3845 kmp_str_buf_t *buffer);
3846extern void __kmp_aux_display_affinity(int gtid, const char *format);
3847
3848extern void __kmp_cleanup_hierarchy();
3849extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3850
3851#if KMP_USE_FUTEX
3852
3853extern int __kmp_futex_determine_capable(void);
3854
3855#endif // KMP_USE_FUTEX
3856
3857extern void __kmp_gtid_set_specific(int gtid);
3858extern int __kmp_gtid_get_specific(void);
3859
3860extern double __kmp_read_cpu_time(void);
3861
3862extern int __kmp_read_system_info(struct kmp_sys_info *info);
3863
3864#if KMP_USE_MONITOR
3865extern void __kmp_create_monitor(kmp_info_t *th);
3866#endif
3867
3868extern void *__kmp_launch_thread(kmp_info_t *thr);
3869
3870extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3871
3872#if KMP_OS_WINDOWS
3873extern int __kmp_still_running(kmp_info_t *th);
3874extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3875extern void __kmp_free_handle(kmp_thread_t tHandle);
3876#endif
3877
3878#if KMP_USE_MONITOR
3879extern void __kmp_reap_monitor(kmp_info_t *th);
3880#endif
3881extern void __kmp_reap_worker(kmp_info_t *th);
3882extern void __kmp_terminate_thread(int gtid);
3883
3884extern int __kmp_try_suspend_mx(kmp_info_t *th);
3885extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3886extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3887
3888extern void __kmp_elapsed(double *);
3889extern void __kmp_elapsed_tick(double *);
3890
3891extern void __kmp_enable(int old_state);
3892extern void __kmp_disable(int *old_state);
3893
3894extern void __kmp_thread_sleep(int millis);
3895
3896extern void __kmp_common_initialize(void);
3897extern void __kmp_common_destroy(void);
3898extern void __kmp_common_destroy_gtid(int gtid);
3899
3900#if KMP_OS_UNIX
3901extern void __kmp_register_atfork(void);
3902#endif
3903extern void __kmp_suspend_initialize(void);
3904extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3905extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3906
3907extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3908 int tid);
3909extern kmp_team_t *
3910__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3911#if OMPT_SUPPORT
3912 ompt_data_t ompt_parallel_data,
3913#endif
3914 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3915 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3916extern void __kmp_free_thread(kmp_info_t *);
3917extern void __kmp_free_team(kmp_root_t *,
3918 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3919extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3920
3921/* ------------------------------------------------------------------------ */
3922
3923extern void __kmp_initialize_bget(kmp_info_t *th);
3924extern void __kmp_finalize_bget(kmp_info_t *th);
3925
3926KMP_EXPORT void *kmpc_malloc(size_t size);
3927KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3928KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3929KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3930KMP_EXPORT void kmpc_free(void *ptr);
3931
3932/* declarations for internal use */
3933
3934extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3935 size_t reduce_size, void *reduce_data,
3936 void (*reduce)(void *, void *));
3937extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3938extern int __kmp_barrier_gomp_cancel(int gtid);
3939
3944enum fork_context_e {
3945 fork_context_gnu,
3947 fork_context_intel,
3948 fork_context_last
3949};
3950extern int __kmp_fork_call(ident_t *loc, int gtid,
3951 enum fork_context_e fork_context, kmp_int32 argc,
3952 microtask_t microtask, launch_t invoker,
3953 kmp_va_list ap);
3954
3955extern void __kmp_join_call(ident_t *loc, int gtid
3956#if OMPT_SUPPORT
3957 ,
3958 enum fork_context_e fork_context
3959#endif
3960 ,
3961 int exit_teams = 0);
3962
3963extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3964extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3965extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3966extern int __kmp_invoke_task_func(int gtid);
3967extern void __kmp_run_before_invoked_task(int gtid, int tid,
3968 kmp_info_t *this_thr,
3969 kmp_team_t *team);
3970extern void __kmp_run_after_invoked_task(int gtid, int tid,
3971 kmp_info_t *this_thr,
3972 kmp_team_t *team);
3973
3974// should never have been exported
3975KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3976extern int __kmp_invoke_teams_master(int gtid);
3977extern void __kmp_teams_master(int gtid);
3978extern int __kmp_aux_get_team_num();
3979extern int __kmp_aux_get_num_teams();
3980extern void __kmp_save_internal_controls(kmp_info_t *thread);
3981extern void __kmp_user_set_library(enum library_type arg);
3982extern void __kmp_aux_set_library(enum library_type arg);
3983extern void __kmp_aux_set_stacksize(size_t arg);
3984extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3985extern void __kmp_aux_set_defaults(char const *str, size_t len);
3986
3987/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3988void kmpc_set_blocktime(int arg);
3989void ompc_set_nested(int flag);
3990void ompc_set_dynamic(int flag);
3991void ompc_set_num_threads(int arg);
3992
3993extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3994 kmp_team_t *team, int tid);
3995extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3996extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3997 kmp_tasking_flags_t *flags,
3998 size_t sizeof_kmp_task_t,
3999 size_t sizeof_shareds,
4000 kmp_routine_entry_t task_entry);
4001extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4002 kmp_team_t *team, int tid,
4003 int set_curr_task);
4004extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4005extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4006
4007extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4008 int gtid,
4009 kmp_task_t *task);
4010extern void __kmp_fulfill_event(kmp_event_t *event);
4011
4012extern void __kmp_free_task_team(kmp_info_t *thread,
4013 kmp_task_team_t *task_team);
4014extern void __kmp_reap_task_teams(void);
4015extern void __kmp_wait_to_unref_task_teams(void);
4016extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4017 int always);
4018extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4019extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4020#if USE_ITT_BUILD
4021 ,
4022 void *itt_sync_obj
4023#endif /* USE_ITT_BUILD */
4024 ,
4025 int wait = 1);
4026extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4027 int gtid);
4028
4029extern int __kmp_is_address_mapped(void *addr);
4030extern kmp_uint64 __kmp_hardware_timestamp(void);
4031
4032#if KMP_OS_UNIX
4033extern int __kmp_read_from_file(char const *path, char const *format, ...);
4034#endif
4035
4036/* ------------------------------------------------------------------------ */
4037//
4038// Assembly routines that have no compiler intrinsic replacement
4039//
4040
4041extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4042 void *argv[]
4043#if OMPT_SUPPORT
4044 ,
4045 void **exit_frame_ptr
4046#endif
4047);
4048
4049/* ------------------------------------------------------------------------ */
4050
4051KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4052KMP_EXPORT void __kmpc_end(ident_t *);
4053
4054KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4055 kmpc_ctor_vec ctor,
4056 kmpc_cctor_vec cctor,
4057 kmpc_dtor_vec dtor,
4058 size_t vector_length);
4059KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4060 kmpc_ctor ctor, kmpc_cctor cctor,
4061 kmpc_dtor dtor);
4062KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4063 void *data, size_t size);
4064
4065KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4066KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4067KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4068KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4069
4070KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4071KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4072 kmpc_micro microtask, ...);
4073KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4074 kmpc_micro microtask, kmp_int32 cond,
4075 void *args);
4076
4077KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4078KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4079
4080KMP_EXPORT void __kmpc_flush(ident_t *);
4081KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4082KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4083KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4084KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4085 kmp_int32 filter);
4086KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4087KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4088KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4089KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4090 kmp_critical_name *);
4091KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4092 kmp_critical_name *);
4093KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4094 kmp_critical_name *, uint32_t hint);
4095
4096KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4097KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4098
4099KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4100 kmp_int32 global_tid);
4101
4102KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4103KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4104
4105KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4106KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4107 kmp_int32 numberOfSections);
4108KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4109
4110KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4111 kmp_int32 schedtype, kmp_int32 *plastiter,
4112 kmp_int *plower, kmp_int *pupper,
4113 kmp_int *pstride, kmp_int incr,
4114 kmp_int chunk);
4115
4116KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4117
4118KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4119 size_t cpy_size, void *cpy_data,
4120 void (*cpy_func)(void *, void *),
4121 kmp_int32 didit);
4122
4123KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4124 void *cpy_data);
4125
4126extern void KMPC_SET_NUM_THREADS(int arg);
4127extern void KMPC_SET_DYNAMIC(int flag);
4128extern void KMPC_SET_NESTED(int flag);
4129
4130/* OMP 3.0 tasking interface routines */
4131KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4132 kmp_task_t *new_task);
4133KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4134 kmp_int32 flags,
4135 size_t sizeof_kmp_task_t,
4136 size_t sizeof_shareds,
4137 kmp_routine_entry_t task_entry);
4138KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4139 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4140 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4141KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4142 kmp_task_t *task);
4143KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4144 kmp_task_t *task);
4145KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4146 kmp_task_t *new_task);
4147KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4148KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4149 int end_part);
4150
4151#if TASK_UNUSED
4152void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4153void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4154 kmp_task_t *task);
4155#endif // TASK_UNUSED
4156
4157/* ------------------------------------------------------------------------ */
4158
4159KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4160KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4161
4162KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4163 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4164 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4165 kmp_depend_info_t *noalias_dep_list);
4166KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4167 kmp_int32 ndeps,
4168 kmp_depend_info_t *dep_list,
4169 kmp_int32 ndeps_noalias,
4170 kmp_depend_info_t *noalias_dep_list);
4171/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4172 * Placeholder for taskwait with nowait clause.*/
4173KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4174 kmp_int32 ndeps,
4175 kmp_depend_info_t *dep_list,
4176 kmp_int32 ndeps_noalias,
4177 kmp_depend_info_t *noalias_dep_list,
4178 kmp_int32 has_no_wait);
4179
4180extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4181 bool serialize_immediate);
4182
4183KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4184 kmp_int32 cncl_kind);
4185KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4186 kmp_int32 cncl_kind);
4187KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4188KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4189
4190KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4191KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4192KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4193 kmp_int32 if_val, kmp_uint64 *lb,
4194 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4195 kmp_int32 sched, kmp_uint64 grainsize,
4196 void *task_dup);
4197KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4198 kmp_task_t *task, kmp_int32 if_val,
4199 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4200 kmp_int32 nogroup, kmp_int32 sched,
4201 kmp_uint64 grainsize, kmp_int32 modifier,
4202 void *task_dup);
4203KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4204KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4205KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4206KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4207 int is_ws, int num,
4208 void *data);
4209KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4210 int num, void *data);
4211KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4212 int is_ws);
4213KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4214 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4215 kmp_task_affinity_info_t *affin_list);
4216KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4217KMP_EXPORT int __kmp_get_max_teams(void);
4218KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4219KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4220
4221/* Interface target task integration */
4222KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4223KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4224
4225/* Lock interface routines (fast versions with gtid passed in) */
4226KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4227 void **user_lock);
4228KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4229 void **user_lock);
4230KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4231 void **user_lock);
4232KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4233 void **user_lock);
4234KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4235KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4236 void **user_lock);
4237KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4238 void **user_lock);
4239KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4240 void **user_lock);
4241KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4242KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4243 void **user_lock);
4244
4245KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4246 void **user_lock, uintptr_t hint);
4247KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4248 void **user_lock,
4249 uintptr_t hint);
4250
4251#if OMPX_TASKGRAPH
4252// Taskgraph's Record & Replay mechanism
4253// __kmp_tdg_is_recording: check whether a given TDG is recording
4254// status: the tdg's current status
4255static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4256 return status == KMP_TDG_RECORDING;
4257}
4258
4259KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4260 kmp_int32 input_flags,
4261 kmp_int32 tdg_id);
4262KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4263 kmp_int32 input_flags, kmp_int32 tdg_id);
4264#endif
4265/* Interface to fast scalable reduce methods routines */
4266
4267KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4268 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4269 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4270 kmp_critical_name *lck);
4271KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4272 kmp_critical_name *lck);
4273KMP_EXPORT kmp_int32 __kmpc_reduce(
4274 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4275 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4276 kmp_critical_name *lck);
4277KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4278 kmp_critical_name *lck);
4279
4280/* Internal fast reduction routines */
4281
4282extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4283 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4284 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4285 kmp_critical_name *lck);
4286
4287// this function is for testing set/get/determine reduce method
4288KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4289
4290KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4291KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4292
4293// C++ port
4294// missing 'extern "C"' declarations
4295
4296KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4297KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4298KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4299 kmp_int32 num_threads);
4300
4301KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4302 int proc_bind);
4303KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4304 kmp_int32 num_teams,
4305 kmp_int32 num_threads);
4306KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4307 kmp_int32 thread_limit);
4308/* Function for OpenMP 5.1 num_teams clause */
4309KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4310 kmp_int32 num_teams_lb,
4311 kmp_int32 num_teams_ub,
4312 kmp_int32 num_threads);
4313KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4314 kmpc_micro microtask, ...);
4315struct kmp_dim { // loop bounds info casted to kmp_int64
4316 kmp_int64 lo; // lower
4317 kmp_int64 up; // upper
4318 kmp_int64 st; // stride
4319};
4320KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4321 kmp_int32 num_dims,
4322 const struct kmp_dim *dims);
4323KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4324 const kmp_int64 *vec);
4325KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4326 const kmp_int64 *vec);
4327KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4328
4329KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4330 void *data, size_t size,
4331 void ***cache);
4332
4333// The routines below are not exported.
4334// Consider making them 'static' in corresponding source files.
4335void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4336 void *data_addr, size_t pc_size);
4337struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4338 void *data_addr,
4339 size_t pc_size);
4340void __kmp_threadprivate_resize_cache(int newCapacity);
4341void __kmp_cleanup_threadprivate_caches();
4342
4343// ompc_, kmpc_ entries moved from omp.h.
4344#if KMP_OS_WINDOWS
4345#define KMPC_CONVENTION __cdecl
4346#else
4347#define KMPC_CONVENTION
4348#endif
4349
4350#ifndef __OMP_H
4351typedef enum omp_sched_t {
4352 omp_sched_static = 1,
4353 omp_sched_dynamic = 2,
4354 omp_sched_guided = 3,
4355 omp_sched_auto = 4
4356} omp_sched_t;
4357typedef void *kmp_affinity_mask_t;
4358#endif
4359
4360KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4361KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4362KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4363KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4364KMP_EXPORT int KMPC_CONVENTION
4365kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4366KMP_EXPORT int KMPC_CONVENTION
4367kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4368KMP_EXPORT int KMPC_CONVENTION
4369kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4370
4371KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4372KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4373KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4374KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4375KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4376void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4377size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4378void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4379size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4380 char const *format);
4381
4382enum kmp_target_offload_kind {
4383 tgt_disabled = 0,
4384 tgt_default = 1,
4385 tgt_mandatory = 2
4386};
4387typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4388// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4389extern kmp_target_offload_kind_t __kmp_target_offload;
4390extern int __kmpc_get_target_offload();
4391
4392// Constants used in libomptarget
4393#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4394#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4395
4396// OMP Pause Resource
4397
4398// The following enum is used both to set the status in __kmp_pause_status, and
4399// as the internal equivalent of the externally-visible omp_pause_resource_t.
4400typedef enum kmp_pause_status_t {
4401 kmp_not_paused = 0, // status is not paused, or, requesting resume
4402 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4403 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4404} kmp_pause_status_t;
4405
4406// This stores the pause state of the runtime
4407extern kmp_pause_status_t __kmp_pause_status;
4408extern int __kmpc_pause_resource(kmp_pause_status_t level);
4409extern int __kmp_pause_resource(kmp_pause_status_t level);
4410// Soft resume sets __kmp_pause_status, and wakes up all threads.
4411extern void __kmp_resume_if_soft_paused();
4412// Hard resume simply resets the status to not paused. Library will appear to
4413// be uninitialized after hard pause. Let OMP constructs trigger required
4414// initializations.
4415static inline void __kmp_resume_if_hard_paused() {
4416 if (__kmp_pause_status == kmp_hard_paused) {
4417 __kmp_pause_status = kmp_not_paused;
4418 }
4419}
4420
4421extern void __kmp_omp_display_env(int verbose);
4422
4423// 1: it is initializing hidden helper team
4424extern volatile int __kmp_init_hidden_helper;
4425// 1: the hidden helper team is done
4426extern volatile int __kmp_hidden_helper_team_done;
4427// 1: enable hidden helper task
4428extern kmp_int32 __kmp_enable_hidden_helper;
4429// Main thread of hidden helper team
4430extern kmp_info_t *__kmp_hidden_helper_main_thread;
4431// Descriptors for the hidden helper threads
4432extern kmp_info_t **__kmp_hidden_helper_threads;
4433// Number of hidden helper threads
4434extern kmp_int32 __kmp_hidden_helper_threads_num;
4435// Number of hidden helper tasks that have not been executed yet
4436extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4437
4438extern void __kmp_hidden_helper_initialize();
4439extern void __kmp_hidden_helper_threads_initz_routine();
4440extern void __kmp_do_initialize_hidden_helper_threads();
4441extern void __kmp_hidden_helper_threads_initz_wait();
4442extern void __kmp_hidden_helper_initz_release();
4443extern void __kmp_hidden_helper_threads_deinitz_wait();
4444extern void __kmp_hidden_helper_threads_deinitz_release();
4445extern void __kmp_hidden_helper_main_thread_wait();
4446extern void __kmp_hidden_helper_worker_thread_wait();
4447extern void __kmp_hidden_helper_worker_thread_signal();
4448extern void __kmp_hidden_helper_main_thread_release();
4449
4450// Check whether a given thread is a hidden helper thread
4451#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4452 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4453
4454#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4455 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4456
4457#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4458 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4459
4460#define KMP_HIDDEN_HELPER_TEAM(team) \
4461 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4462
4463// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4464// main thread, is skipped.
4465#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4466 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4467
4468// Return the adjusted gtid value by subtracting from gtid the number
4469// of hidden helper threads. This adjusted value is the gtid the thread would
4470// have received if there were no hidden helper threads.
4471static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4472 int adjusted_gtid = gtid;
4473 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4474 gtid - __kmp_hidden_helper_threads_num >= 0) {
4475 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4476 }
4477 return adjusted_gtid;
4478}
4479
4480// Support for error directive
4481typedef enum kmp_severity_t {
4482 severity_warning = 1,
4483 severity_fatal = 2
4484} kmp_severity_t;
4485extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4486
4487// Support for scope directive
4488KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4489KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4490
4491#ifdef __cplusplus
4492}
4493#endif
4494
4495template <bool C, bool S>
4496extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4497template <bool C, bool S>
4498extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4499template <bool C, bool S>
4500extern void __kmp_atomic_suspend_64(int th_gtid,
4501 kmp_atomic_flag_64<C, S> *flag);
4502extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4503#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4504template <bool C, bool S>
4505extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4506template <bool C, bool S>
4507extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4508template <bool C, bool S>
4509extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4510extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4511#endif
4512template <bool C, bool S>
4513extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4514template <bool C, bool S>
4515extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4516template <bool C, bool S>
4517extern void __kmp_atomic_resume_64(int target_gtid,
4518 kmp_atomic_flag_64<C, S> *flag);
4519extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4520
4521template <bool C, bool S>
4522int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4523 kmp_flag_32<C, S> *flag, int final_spin,
4524 int *thread_finished,
4525#if USE_ITT_BUILD
4526 void *itt_sync_obj,
4527#endif /* USE_ITT_BUILD */
4528 kmp_int32 is_constrained);
4529template <bool C, bool S>
4530int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4531 kmp_flag_64<C, S> *flag, int final_spin,
4532 int *thread_finished,
4533#if USE_ITT_BUILD
4534 void *itt_sync_obj,
4535#endif /* USE_ITT_BUILD */
4536 kmp_int32 is_constrained);
4537template <bool C, bool S>
4538int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4539 kmp_atomic_flag_64<C, S> *flag,
4540 int final_spin, int *thread_finished,
4541#if USE_ITT_BUILD
4542 void *itt_sync_obj,
4543#endif /* USE_ITT_BUILD */
4544 kmp_int32 is_constrained);
4545int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4546 kmp_flag_oncore *flag, int final_spin,
4547 int *thread_finished,
4548#if USE_ITT_BUILD
4549 void *itt_sync_obj,
4550#endif /* USE_ITT_BUILD */
4551 kmp_int32 is_constrained);
4552
4553extern int __kmp_nesting_mode;
4554extern int __kmp_nesting_mode_nlevels;
4555extern int *__kmp_nesting_nth_level;
4556extern void __kmp_init_nesting_mode();
4557extern void __kmp_set_nesting_mode_threads();
4558
4566 FILE *f;
4567
4568 void close() {
4569 if (f && f != stdout && f != stderr) {
4570 fclose(f);
4571 f = nullptr;
4572 }
4573 }
4574
4575public:
4576 kmp_safe_raii_file_t() : f(nullptr) {}
4577 kmp_safe_raii_file_t(const char *filename, const char *mode,
4578 const char *env_var = nullptr)
4579 : f(nullptr) {
4580 open(filename, mode, env_var);
4581 }
4582 ~kmp_safe_raii_file_t() { close(); }
4583
4587 void open(const char *filename, const char *mode,
4588 const char *env_var = nullptr) {
4589 KMP_ASSERT(!f);
4590 f = fopen(filename, mode);
4591 if (!f) {
4592 int code = errno;
4593 if (env_var) {
4594 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4595 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4596 } else {
4597 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4598 __kmp_msg_null);
4599 }
4600 }
4601 }
4604 int try_open(const char *filename, const char *mode) {
4605 KMP_ASSERT(!f);
4606 f = fopen(filename, mode);
4607 if (!f)
4608 return errno;
4609 return 0;
4610 }
4613 void set_stdout() {
4614 KMP_ASSERT(!f);
4615 f = stdout;
4616 }
4619 void set_stderr() {
4620 KMP_ASSERT(!f);
4621 f = stderr;
4622 }
4623 operator bool() { return bool(f); }
4624 operator FILE *() { return f; }
4625};
4626
4627template <typename SourceType, typename TargetType,
4628 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4629 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4630 bool isSourceSigned = std::is_signed<SourceType>::value,
4631 bool isTargetSigned = std::is_signed<TargetType>::value>
4632struct kmp_convert {};
4633
4634// Both types are signed; Source smaller
4635template <typename SourceType, typename TargetType>
4636struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4637 static TargetType to(SourceType src) { return (TargetType)src; }
4638};
4639// Source equal
4640template <typename SourceType, typename TargetType>
4641struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4642 static TargetType to(SourceType src) { return src; }
4643};
4644// Source bigger
4645template <typename SourceType, typename TargetType>
4646struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4647 static TargetType to(SourceType src) {
4648 KMP_ASSERT(src <= static_cast<SourceType>(
4649 (std::numeric_limits<TargetType>::max)()));
4650 KMP_ASSERT(src >= static_cast<SourceType>(
4651 (std::numeric_limits<TargetType>::min)()));
4652 return (TargetType)src;
4653 }
4654};
4655
4656// Source signed, Target unsigned
4657// Source smaller
4658template <typename SourceType, typename TargetType>
4659struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4660 static TargetType to(SourceType src) {
4661 KMP_ASSERT(src >= 0);
4662 return (TargetType)src;
4663 }
4664};
4665// Source equal
4666template <typename SourceType, typename TargetType>
4667struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4668 static TargetType to(SourceType src) {
4669 KMP_ASSERT(src >= 0);
4670 return (TargetType)src;
4671 }
4672};
4673// Source bigger
4674template <typename SourceType, typename TargetType>
4675struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4676 static TargetType to(SourceType src) {
4677 KMP_ASSERT(src >= 0);
4678 KMP_ASSERT(src <= static_cast<SourceType>(
4679 (std::numeric_limits<TargetType>::max)()));
4680 return (TargetType)src;
4681 }
4682};
4683
4684// Source unsigned, Target signed
4685// Source smaller
4686template <typename SourceType, typename TargetType>
4687struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4688 static TargetType to(SourceType src) { return (TargetType)src; }
4689};
4690// Source equal
4691template <typename SourceType, typename TargetType>
4692struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4693 static TargetType to(SourceType src) {
4694 KMP_ASSERT(src <= static_cast<SourceType>(
4695 (std::numeric_limits<TargetType>::max)()));
4696 return (TargetType)src;
4697 }
4698};
4699// Source bigger
4700template <typename SourceType, typename TargetType>
4701struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4702 static TargetType to(SourceType src) {
4703 KMP_ASSERT(src <= static_cast<SourceType>(
4704 (std::numeric_limits<TargetType>::max)()));
4705 return (TargetType)src;
4706 }
4707};
4708
4709// Source unsigned, Target unsigned
4710// Source smaller
4711template <typename SourceType, typename TargetType>
4712struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4713 static TargetType to(SourceType src) { return (TargetType)src; }
4714};
4715// Source equal
4716template <typename SourceType, typename TargetType>
4717struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4718 static TargetType to(SourceType src) { return src; }
4719};
4720// Source bigger
4721template <typename SourceType, typename TargetType>
4722struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4723 static TargetType to(SourceType src) {
4724 KMP_ASSERT(src <= static_cast<SourceType>(
4725 (std::numeric_limits<TargetType>::max)()));
4726 return (TargetType)src;
4727 }
4728};
4729
4730template <typename T1, typename T2>
4731static inline void __kmp_type_convert(T1 src, T2 *dest) {
4732 *dest = kmp_convert<T1, T2>::to(src);
4733}
4734
4735#endif /* KMP_H */
void set_stdout()
Definition kmp.h:4613
void set_stderr()
Definition kmp.h:4619
int try_open(const char *filename, const char *mode)
Definition kmp.h:4604
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition kmp.h:4587
struct ident ident_t
@ KMP_IDENT_KMPC
Definition kmp.h:197
@ KMP_IDENT_IMB
Definition kmp.h:195
@ KMP_IDENT_WORK_LOOP
Definition kmp.h:215
@ KMP_IDENT_BARRIER_IMPL
Definition kmp.h:206
@ KMP_IDENT_WORK_SECTIONS
Definition kmp.h:217
@ KMP_IDENT_AUTOPAR
Definition kmp.h:200
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition kmp.h:224
@ KMP_IDENT_WORK_DISTRIBUTE
Definition kmp.h:219
@ KMP_IDENT_BARRIER_EXPL
Definition kmp.h:204
@ KMP_IDENT_ATOMIC_REDUCE
Definition kmp.h:202
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, kmp_int32 thread_limit)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition kmp.h:1705
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition kmp.h:1729
void *(* kmpc_cctor)(void *, void *)
Definition kmp.h:1736
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition kmp.h:1758
void *(* kmpc_ctor)(void *)
Definition kmp.h:1723
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
void *(* kmpc_ctor_vec)(void *, size_t)
Definition kmp.h:1746
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition kmp.h:1752
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
sched_type
Definition kmp.h:358
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition kmp.h:409
@ kmp_sch_runtime_simd
Definition kmp.h:380
@ kmp_nm_ord_auto
Definition kmp.h:428
@ kmp_sch_auto
Definition kmp.h:365
@ kmp_nm_auto
Definition kmp.h:411
@ kmp_distribute_static_chunked
Definition kmp.h:396
@ kmp_sch_static
Definition kmp.h:361
@ kmp_sch_guided_simd
Definition kmp.h:379
@ kmp_sch_modifier_monotonic
Definition kmp.h:446
@ kmp_sch_default
Definition kmp.h:466
@ kmp_sch_modifier_nonmonotonic
Definition kmp.h:448
@ kmp_nm_ord_static
Definition kmp.h:424
@ kmp_distribute_static
Definition kmp.h:397
@ kmp_sch_guided_chunked
Definition kmp.h:363
@ kmp_nm_static
Definition kmp.h:407
@ kmp_sch_lower
Definition kmp.h:359
@ kmp_nm_upper
Definition kmp.h:430
@ kmp_ord_lower
Definition kmp.h:385
@ kmp_ord_static
Definition kmp.h:387
@ kmp_sch_upper
Definition kmp.h:383
@ kmp_ord_upper
Definition kmp.h:393
@ kmp_nm_lower
Definition kmp.h:403
@ kmp_ord_auto
Definition kmp.h:391
Definition kmp.h:235
kmp_int32 reserved_1
Definition kmp.h:236
char const * psource
Definition kmp.h:245
kmp_int32 reserved_2
Definition kmp.h:239
kmp_int32 reserved_3
Definition kmp.h:244
kmp_int32 flags
Definition kmp.h:237