LLVM OpenMP* Runtime Library
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#endif
104
105#if KMP_ARCH_X86 || KMP_ARCH_X86_64
106#include <xmmintrin.h>
107#endif
108
109// The below has to be defined before including "kmp_barrier.h".
110#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
111#define KMP_INTERNAL_FREE(p) free(p)
112#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
113#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#include "kmp_barrier.h"
119#if USE_DEBUGGER
120#include "kmp_debugger.h"
121#endif
122#include "kmp_i18n.h"
123
124#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125
126#include "kmp_wrapper_malloc.h"
127#if KMP_OS_UNIX
128#include <unistd.h>
129#if !defined NSIG && defined _NSIG
130#define NSIG _NSIG
131#endif
132#endif
133
134#if KMP_OS_LINUX
135#pragma weak clock_gettime
136#endif
137
138#if OMPT_SUPPORT
139#include "ompt-internal.h"
140#endif
141
142#if OMPD_SUPPORT
143#include "ompd-specific.h"
144#endif
145
146#ifndef UNLIKELY
147#define UNLIKELY(x) (x)
148#endif
149
150// Affinity format function
151#include "kmp_str.h"
152
153// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154// 3 - fast allocation using sync, non-sync free lists of any size, non-self
155// free lists of limited size.
156#ifndef USE_FAST_MEMORY
157#define USE_FAST_MEMORY 3
158#endif
159
160#ifndef KMP_NESTED_HOT_TEAMS
161#define KMP_NESTED_HOT_TEAMS 0
162#define USE_NESTED_HOT_ARG(x)
163#else
164#if KMP_NESTED_HOT_TEAMS
165#define USE_NESTED_HOT_ARG(x) , x
166#else
167#define USE_NESTED_HOT_ARG(x)
168#endif
169#endif
170
171// Assume using BGET compare_exchange instruction instead of lock by default.
172#ifndef USE_CMP_XCHG_FOR_BGET
173#define USE_CMP_XCHG_FOR_BGET 1
174#endif
175
176// Test to see if queuing lock is better than bootstrap lock for bget
177// #ifndef USE_QUEUING_LOCK_FOR_BGET
178// #define USE_QUEUING_LOCK_FOR_BGET
179// #endif
180
181#define KMP_NSEC_PER_SEC 1000000000L
182#define KMP_USEC_PER_SEC 1000000L
183
192enum {
197 /* 0x04 is no longer used */
206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209
210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212
224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229};
230
234typedef struct ident {
235 kmp_int32 reserved_1;
236 kmp_int32 flags;
238 kmp_int32 reserved_2;
239#if USE_ITT_BUILD
240/* but currently used for storing region-specific ITT */
241/* contextual information. */
242#endif /* USE_ITT_BUILD */
243 kmp_int32 reserved_3;
244 char const *psource;
248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249 kmp_int32 get_openmp_version() {
250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251 }
257// Some forward declarations.
258typedef union kmp_team kmp_team_t;
259typedef struct kmp_taskdata kmp_taskdata_t;
260typedef union kmp_task_team kmp_task_team_t;
261typedef union kmp_team kmp_team_p;
262typedef union kmp_info kmp_info_p;
263typedef union kmp_root kmp_root_p;
264
265template <bool C = false, bool S = true> class kmp_flag_32;
266template <bool C = false, bool S = true> class kmp_flag_64;
267template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268class kmp_flag_oncore;
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274/* ------------------------------------------------------------------------ */
275
276/* Pack two 32-bit signed integers into a 64-bit signed integer */
277/* ToDo: Fix word ordering for big-endian machines. */
278#define KMP_PACK_64(HIGH_32, LOW_32) \
279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280
281// Generic string manipulation macros. Assume that _x is of type char *
282#define SKIP_WS(_x) \
283 { \
284 while (*(_x) == ' ' || *(_x) == '\t') \
285 (_x)++; \
286 }
287#define SKIP_DIGITS(_x) \
288 { \
289 while (*(_x) >= '0' && *(_x) <= '9') \
290 (_x)++; \
291 }
292#define SKIP_TOKEN(_x) \
293 { \
294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296 (_x)++; \
297 }
298#define SKIP_TO(_x, _c) \
299 { \
300 while (*(_x) != '\0' && *(_x) != (_c)) \
301 (_x)++; \
302 }
303
304/* ------------------------------------------------------------------------ */
305
306#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308
309/* ------------------------------------------------------------------------ */
310/* Enumeration types */
311
312enum kmp_state_timer {
313 ts_stop,
314 ts_start,
315 ts_pause,
316
317 ts_last_state
318};
319
320enum dynamic_mode {
321 dynamic_default,
322#ifdef USE_LOAD_BALANCE
323 dynamic_load_balance,
324#endif /* USE_LOAD_BALANCE */
325 dynamic_random,
326 dynamic_thread_limit,
327 dynamic_max
328};
329
330/* external schedule constants, duplicate enum omp_sched in omp.h in order to
331 * not include it here */
332#ifndef KMP_SCHED_TYPE_DEFINED
333#define KMP_SCHED_TYPE_DEFINED
334typedef enum kmp_sched {
335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336 // Note: need to adjust __kmp_sch_map global array in case enum is changed
337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341 kmp_sched_upper_std = 5, // upper bound for standard schedules
342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344#if KMP_STATIC_STEAL_ENABLED
345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346#endif
347 kmp_sched_upper,
348 kmp_sched_default = kmp_sched_static, // default scheduling
349 kmp_sched_monotonic = 0x80000000
350} kmp_sched_t;
351#endif
352
357enum sched_type : kmp_int32 {
359 kmp_sch_static_chunked = 33,
361 kmp_sch_dynamic_chunked = 35,
363 kmp_sch_runtime = 37,
365 kmp_sch_trapezoidal = 39,
366
367 /* accessible only through KMP_SCHEDULE environment variable */
368 kmp_sch_static_greedy = 40,
369 kmp_sch_static_balanced = 41,
370 /* accessible only through KMP_SCHEDULE environment variable */
371 kmp_sch_guided_iterative_chunked = 42,
372 kmp_sch_guided_analytical_chunked = 43,
373 /* accessible only through KMP_SCHEDULE environment variable */
374 kmp_sch_static_steal = 44,
375
376 /* static with chunk adjustment (e.g., simd) */
377 kmp_sch_static_balanced_chunked = 45,
381 /* accessible only through KMP_SCHEDULE environment variable */
385 kmp_ord_static_chunked = 65,
387 kmp_ord_dynamic_chunked = 67,
388 kmp_ord_guided_chunked = 68,
389 kmp_ord_runtime = 69,
391 kmp_ord_trapezoidal = 71,
394 /* Schedules for Distribute construct */
398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399 single iteration/chunk, even if the loop is serialized. For the schedule
400 types listed above, the entire iteration vector is returned if the loop is
401 serialized. This doesn't work for gcc/gcomp sections. */
404 kmp_nm_static_chunked =
405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407 kmp_nm_dynamic_chunked = 163,
409 kmp_nm_runtime = 165,
411 kmp_nm_trapezoidal = 167,
412
413 /* accessible only through KMP_SCHEDULE environment variable */
414 kmp_nm_static_greedy = 168,
415 kmp_nm_static_balanced = 169,
416 /* accessible only through KMP_SCHEDULE environment variable */
417 kmp_nm_guided_iterative_chunked = 170,
418 kmp_nm_guided_analytical_chunked = 171,
419 kmp_nm_static_steal =
420 172, /* accessible only through OMP_SCHEDULE environment variable */
421
422 kmp_nm_ord_static_chunked = 193,
424 kmp_nm_ord_dynamic_chunked = 195,
425 kmp_nm_ord_guided_chunked = 196,
426 kmp_nm_ord_runtime = 197,
428 kmp_nm_ord_trapezoidal = 199,
431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432 we need to distinguish the three possible cases (no modifier, monotonic
433 modifier, nonmonotonic modifier), we need separate bits for each modifier.
434 The absence of monotonic does not imply nonmonotonic, especially since 4.5
435 says that the behaviour of the "no modifier" case is implementation defined
436 in 4.5, but will become "nonmonotonic" in 5.0.
437
438 Since we're passing a full 32 bit value, we can use a couple of high bits
439 for these flags; out of paranoia we avoid the sign bit.
440
441 These modifiers can be or-ed into non-static schedules by the compiler to
442 pass the additional information. They will be stripped early in the
443 processing in __kmp_dispatch_init when setting up schedules, so most of the
444 code won't ever see schedules with these bits set. */
446 (1 << 29),
448 (1 << 30),
450#define SCHEDULE_WITHOUT_MODIFIERS(s) \
451 (enum sched_type)( \
453#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455#define SCHEDULE_HAS_NO_MODIFIERS(s) \
456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457#define SCHEDULE_GET_MODIFIERS(s) \
458 ((enum sched_type)( \
459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460#define SCHEDULE_SET_MODIFIERS(s, m) \
461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462#define SCHEDULE_NONMONOTONIC 0
463#define SCHEDULE_MONOTONIC 1
464
467
468// Apply modifiers on internal kind to standard kind
469static inline void
470__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471 enum sched_type internal_kind) {
472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474 }
475}
476
477// Apply modifiers on standard kind to internal kind
478static inline void
479__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480 enum sched_type *internal_kind) {
481 if ((int)kind & (int)kmp_sched_monotonic) {
482 *internal_kind = (enum sched_type)((int)*internal_kind |
484 }
485}
486
487// Get standard schedule without modifiers
488static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490}
491
492/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493typedef union kmp_r_sched {
494 struct {
495 enum sched_type r_sched_type;
496 int chunk;
497 };
498 kmp_int64 sched;
499} kmp_r_sched_t;
500
501extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502// internal schedule types
503
504enum library_type {
505 library_none,
506 library_serial,
507 library_turnaround,
508 library_throughput
509};
510
511#if KMP_OS_LINUX
512enum clock_function_type {
513 clock_function_gettimeofday,
514 clock_function_clock_gettime
515};
516#endif /* KMP_OS_LINUX */
517
518#if KMP_MIC_SUPPORTED
519enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520#endif
521
522/* -- fast reduction stuff ------------------------------------------------ */
523
524#undef KMP_FAST_REDUCTION_BARRIER
525#define KMP_FAST_REDUCTION_BARRIER 1
526
527#undef KMP_FAST_REDUCTION_CORE_DUO
528#if KMP_ARCH_X86 || KMP_ARCH_X86_64
529#define KMP_FAST_REDUCTION_CORE_DUO 1
530#endif
531
532enum _reduction_method {
533 reduction_method_not_defined = 0,
534 critical_reduce_block = (1 << 8),
535 atomic_reduce_block = (2 << 8),
536 tree_reduce_block = (3 << 8),
537 empty_reduce_block = (4 << 8)
538};
539
540// Description of the packed_reduction_method variable:
541// The packed_reduction_method variable consists of two enum types variables
542// that are packed together into 0-th byte and 1-st byte:
543// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544// barrier that will be used in fast reduction: bs_plain_barrier or
545// bs_reduction_barrier
546// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547// be used in fast reduction;
548// Reduction method is of 'enum _reduction_method' type and it's defined the way
549// so that the bits of 0-th byte are empty, so no need to execute a shift
550// instruction while packing/unpacking
551
552#if KMP_FAST_REDUCTION_BARRIER
553#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554 ((reduction_method) | (barrier_type))
555
556#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558
559#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561#else
562#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563 (reduction_method)
564
565#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566 (packed_reduction_method)
567
568#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569#endif
570
571#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573 (which_reduction_block))
574
575#if KMP_FAST_REDUCTION_BARRIER
576#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578
579#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581#endif
582
583typedef int PACKED_REDUCTION_METHOD_T;
584
585/* -- end of fast reduction stuff ----------------------------------------- */
586
587#if KMP_OS_WINDOWS
588#define USE_CBLKDATA
589#if KMP_MSVC_COMPAT
590#pragma warning(push)
591#pragma warning(disable : 271 310)
592#endif
593#include <windows.h>
594#if KMP_MSVC_COMPAT
595#pragma warning(pop)
596#endif
597#endif
598
599#if KMP_OS_UNIX
600#include <dlfcn.h>
601#include <pthread.h>
602#endif
603
604enum kmp_hw_t : int {
605 KMP_HW_UNKNOWN = -1,
606 KMP_HW_SOCKET = 0,
607 KMP_HW_PROC_GROUP,
608 KMP_HW_NUMA,
609 KMP_HW_DIE,
610 KMP_HW_LLC,
611 KMP_HW_L3,
612 KMP_HW_TILE,
613 KMP_HW_MODULE,
614 KMP_HW_L2,
615 KMP_HW_L1,
616 KMP_HW_CORE,
617 KMP_HW_THREAD,
618 KMP_HW_LAST
619};
620
621typedef enum kmp_hw_core_type_t {
622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623#if KMP_ARCH_X86 || KMP_ARCH_X86_64
624 KMP_HW_CORE_TYPE_ATOM = 0x20,
625 KMP_HW_CORE_TYPE_CORE = 0x40,
626 KMP_HW_MAX_NUM_CORE_TYPES = 3,
627#else
628 KMP_HW_MAX_NUM_CORE_TYPES = 1,
629#endif
630} kmp_hw_core_type_t;
631
632#define KMP_HW_MAX_NUM_CORE_EFFS 8
633
634#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636#define KMP_ASSERT_VALID_HW_TYPE(type) \
637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638
639#define KMP_FOREACH_HW_TYPE(type) \
640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
641 type = (kmp_hw_t)((int)type + 1))
642
643const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646
647/* Only Linux* OS and Windows* OS support thread affinity. */
648#if KMP_AFFINITY_SUPPORTED
649
650// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651#if KMP_OS_WINDOWS
652#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653typedef struct GROUP_AFFINITY {
654 KAFFINITY Mask;
655 WORD Group;
656 WORD Reserved[3];
657} GROUP_AFFINITY;
658#endif /* _MSC_VER < 1600 */
659#if KMP_GROUP_AFFINITY
660extern int __kmp_num_proc_groups;
661#else
662static const int __kmp_num_proc_groups = 1;
663#endif /* KMP_GROUP_AFFINITY */
664typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666
667typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669
670typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672
673typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674 GROUP_AFFINITY *);
675extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676#endif /* KMP_OS_WINDOWS */
677
678#if KMP_USE_HWLOC
679extern hwloc_topology_t __kmp_hwloc_topology;
680extern int __kmp_hwloc_error;
681#endif
682
683extern size_t __kmp_affin_mask_size;
684#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687#define KMP_CPU_SET_ITERATE(i, mask) \
688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689#define KMP_CPU_SET(i, mask) (mask)->set(i)
690#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692#define KMP_CPU_ZERO(mask) (mask)->zero()
693#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704#define KMP_CPU_ALLOC_ARRAY(arr, n) \
705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706#define KMP_CPU_FREE_ARRAY(arr, n) \
707 __kmp_affinity_dispatch->deallocate_mask_array(arr)
708#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710#define __kmp_get_system_affinity(mask, abort_bool) \
711 (mask)->get_system_affinity(abort_bool)
712#define __kmp_set_system_affinity(mask, abort_bool) \
713 (mask)->set_system_affinity(abort_bool)
714#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715
716class KMPAffinity {
717public:
718 class Mask {
719 public:
720 void *operator new(size_t n);
721 void operator delete(void *p);
722 void *operator new[](size_t n);
723 void operator delete[](void *p);
724 virtual ~Mask() {}
725 // Set bit i to 1
726 virtual void set(int i) {}
727 // Return bit i
728 virtual bool is_set(int i) const { return false; }
729 // Set bit i to 0
730 virtual void clear(int i) {}
731 // Zero out entire mask
732 virtual void zero() {}
733 // Copy src into this mask
734 virtual void copy(const Mask *src) {}
735 // this &= rhs
736 virtual void bitwise_and(const Mask *rhs) {}
737 // this |= rhs
738 virtual void bitwise_or(const Mask *rhs) {}
739 // this = ~this
740 virtual void bitwise_not() {}
741 // API for iterating over an affinity mask
742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743 virtual int begin() const { return 0; }
744 virtual int end() const { return 0; }
745 virtual int next(int previous) const { return 0; }
746#if KMP_OS_WINDOWS
747 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748#endif
749 // Set the system's affinity to this affinity mask's value
750 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751 // Set this affinity mask to the current system affinity
752 virtual int get_system_affinity(bool abort_on_error) { return -1; }
753 // Only 1 DWORD in the mask should have any procs set.
754 // Return the appropriate index, or -1 for an invalid mask.
755 virtual int get_proc_group() const { return -1; }
756 int get_max_cpu() const {
757 int cpu;
758 int max_cpu = -1;
759 KMP_CPU_SET_ITERATE(cpu, this) {
760 if (cpu > max_cpu)
761 max_cpu = cpu;
762 }
763 return max_cpu;
764 }
765 };
766 void *operator new(size_t n);
767 void operator delete(void *p);
768 // Need virtual destructor
769 virtual ~KMPAffinity() = default;
770 // Determine if affinity is capable
771 virtual void determine_capable(const char *env_var) {}
772 // Bind the current thread to os proc
773 virtual void bind_thread(int proc) {}
774 // Factory functions to allocate/deallocate a mask
775 virtual Mask *allocate_mask() { return nullptr; }
776 virtual void deallocate_mask(Mask *m) {}
777 virtual Mask *allocate_mask_array(int num) { return nullptr; }
778 virtual void deallocate_mask_array(Mask *m) {}
779 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
780 static void pick_api();
781 static void destroy_api();
782 enum api_type {
783 NATIVE_OS
784#if KMP_USE_HWLOC
785 ,
786 HWLOC
787#endif
788 };
789 virtual api_type get_api_type() const {
790 KMP_ASSERT(0);
791 return NATIVE_OS;
792 }
793
794private:
795 static bool picked_api;
796};
797
798typedef KMPAffinity::Mask kmp_affin_mask_t;
799extern KMPAffinity *__kmp_affinity_dispatch;
800
801// Declare local char buffers with this size for printing debug and info
802// messages, using __kmp_affinity_print_mask().
803#define KMP_AFFIN_MASK_PRINT_LEN 1024
804
805enum affinity_type {
806 affinity_none = 0,
807 affinity_physical,
808 affinity_logical,
809 affinity_compact,
810 affinity_scatter,
811 affinity_explicit,
812 affinity_balanced,
813 affinity_disabled, // not used outsize the env var parser
814 affinity_default
815};
816
817enum affinity_top_method {
818 affinity_top_method_all = 0, // try all (supported) methods, in order
819#if KMP_ARCH_X86 || KMP_ARCH_X86_64
820 affinity_top_method_apicid,
821 affinity_top_method_x2apicid,
822 affinity_top_method_x2apicid_1f,
823#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
824 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
825#if KMP_GROUP_AFFINITY
826 affinity_top_method_group,
827#endif /* KMP_GROUP_AFFINITY */
828 affinity_top_method_flat,
829#if KMP_USE_HWLOC
830 affinity_top_method_hwloc,
831#endif
832 affinity_top_method_default
833};
834
835#define affinity_respect_mask_default (2)
836
837typedef struct kmp_affinity_flags_t {
838 unsigned dups : 1;
839 unsigned verbose : 1;
840 unsigned warnings : 1;
841 unsigned respect : 2;
842 unsigned reset : 1;
843 unsigned initialized : 1;
844 unsigned reserved : 25;
845} kmp_affinity_flags_t;
846KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
847
848typedef struct kmp_affinity_ids_t {
849 int ids[KMP_HW_LAST];
850 int operator[](size_t idx) const { return ids[idx]; }
851 int &operator[](size_t idx) { return ids[idx]; }
852 kmp_affinity_ids_t &operator=(const kmp_affinity_ids_t &rhs) {
853 for (int i = 0; i < KMP_HW_LAST; ++i)
854 ids[i] = rhs[i];
855 return *this;
856 }
857} kmp_affinity_ids_t;
858
859typedef struct kmp_affinity_attrs_t {
860 int core_type : 8;
861 int core_eff : 8;
862 unsigned valid : 1;
863 unsigned reserved : 15;
864} kmp_affinity_attrs_t;
865#define KMP_AFFINITY_ATTRS_UNKNOWN \
866 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
867
868typedef struct kmp_affinity_t {
869 char *proclist;
870 enum affinity_type type;
871 kmp_hw_t gran;
872 int gran_levels;
873 int compact;
874 int offset;
875 kmp_affinity_flags_t flags;
876 unsigned num_masks;
877 kmp_affin_mask_t *masks;
878 kmp_affinity_ids_t *ids;
879 kmp_affinity_attrs_t *attrs;
880 unsigned num_os_id_masks;
881 kmp_affin_mask_t *os_id_masks;
882 const char *env_var;
883} kmp_affinity_t;
884
885#define KMP_AFFINITY_INIT(env) \
886 { \
887 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, 0, 0, \
888 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE}, 0, \
889 nullptr, nullptr, nullptr, 0, nullptr, env \
890 }
891
892extern enum affinity_top_method __kmp_affinity_top_method;
893extern kmp_affinity_t __kmp_affinity;
894extern kmp_affinity_t __kmp_hh_affinity;
895extern kmp_affinity_t *__kmp_affinities[2];
896
897extern void __kmp_affinity_bind_thread(int which);
898
899extern kmp_affin_mask_t *__kmp_affin_fullMask;
900extern kmp_affin_mask_t *__kmp_affin_origMask;
901extern char *__kmp_cpuinfo_file;
902
903#endif /* KMP_AFFINITY_SUPPORTED */
904
905// This needs to be kept in sync with the values in omp.h !!!
906typedef enum kmp_proc_bind_t {
907 proc_bind_false = 0,
908 proc_bind_true,
909 proc_bind_primary,
910 proc_bind_close,
911 proc_bind_spread,
912 proc_bind_intel, // use KMP_AFFINITY interface
913 proc_bind_default
914} kmp_proc_bind_t;
915
916typedef struct kmp_nested_proc_bind_t {
917 kmp_proc_bind_t *bind_types;
918 int size;
919 int used;
920} kmp_nested_proc_bind_t;
921
922extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
923extern kmp_proc_bind_t __kmp_teams_proc_bind;
924
925extern int __kmp_display_affinity;
926extern char *__kmp_affinity_format;
927static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
928#if OMPT_SUPPORT
929extern int __kmp_tool;
930extern char *__kmp_tool_libraries;
931#endif // OMPT_SUPPORT
932
933#if KMP_AFFINITY_SUPPORTED
934#define KMP_PLACE_ALL (-1)
935#define KMP_PLACE_UNDEFINED (-2)
936// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
937#define KMP_AFFINITY_NON_PROC_BIND \
938 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
939 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
940 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
941#endif /* KMP_AFFINITY_SUPPORTED */
942
943extern int __kmp_affinity_num_places;
944
945typedef enum kmp_cancel_kind_t {
946 cancel_noreq = 0,
947 cancel_parallel = 1,
948 cancel_loop = 2,
949 cancel_sections = 3,
950 cancel_taskgroup = 4
951} kmp_cancel_kind_t;
952
953// KMP_HW_SUBSET support:
954typedef struct kmp_hws_item {
955 int num;
956 int offset;
957} kmp_hws_item_t;
958
959extern kmp_hws_item_t __kmp_hws_socket;
960extern kmp_hws_item_t __kmp_hws_die;
961extern kmp_hws_item_t __kmp_hws_node;
962extern kmp_hws_item_t __kmp_hws_tile;
963extern kmp_hws_item_t __kmp_hws_core;
964extern kmp_hws_item_t __kmp_hws_proc;
965extern int __kmp_hws_requested;
966extern int __kmp_hws_abs_flag; // absolute or per-item number requested
967
968/* ------------------------------------------------------------------------ */
969
970#define KMP_PAD(type, sz) \
971 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
972
973// We need to avoid using -1 as a GTID as +1 is added to the gtid
974// when storing it in a lock, and the value 0 is reserved.
975#define KMP_GTID_DNE (-2) /* Does not exist */
976#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
977#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
978#define KMP_GTID_UNKNOWN (-5) /* Is not known */
979#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
980
981/* OpenMP 5.0 Memory Management support */
982
983#ifndef __OMP_H
984// Duplicate type definitions from omp.h
985typedef uintptr_t omp_uintptr_t;
986
987typedef enum {
988 omp_atk_sync_hint = 1,
989 omp_atk_alignment = 2,
990 omp_atk_access = 3,
991 omp_atk_pool_size = 4,
992 omp_atk_fallback = 5,
993 omp_atk_fb_data = 6,
994 omp_atk_pinned = 7,
995 omp_atk_partition = 8
996} omp_alloctrait_key_t;
997
998typedef enum {
999 omp_atv_false = 0,
1000 omp_atv_true = 1,
1001 omp_atv_contended = 3,
1002 omp_atv_uncontended = 4,
1003 omp_atv_serialized = 5,
1004 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1005 omp_atv_private = 6,
1006 omp_atv_all = 7,
1007 omp_atv_thread = 8,
1008 omp_atv_pteam = 9,
1009 omp_atv_cgroup = 10,
1010 omp_atv_default_mem_fb = 11,
1011 omp_atv_null_fb = 12,
1012 omp_atv_abort_fb = 13,
1013 omp_atv_allocator_fb = 14,
1014 omp_atv_environment = 15,
1015 omp_atv_nearest = 16,
1016 omp_atv_blocked = 17,
1017 omp_atv_interleaved = 18
1018} omp_alloctrait_value_t;
1019#define omp_atv_default ((omp_uintptr_t)-1)
1020
1021typedef void *omp_memspace_handle_t;
1022extern omp_memspace_handle_t const omp_default_mem_space;
1023extern omp_memspace_handle_t const omp_large_cap_mem_space;
1024extern omp_memspace_handle_t const omp_const_mem_space;
1025extern omp_memspace_handle_t const omp_high_bw_mem_space;
1026extern omp_memspace_handle_t const omp_low_lat_mem_space;
1027extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1028extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1029extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1030
1031typedef struct {
1032 omp_alloctrait_key_t key;
1033 omp_uintptr_t value;
1034} omp_alloctrait_t;
1035
1036typedef void *omp_allocator_handle_t;
1037extern omp_allocator_handle_t const omp_null_allocator;
1038extern omp_allocator_handle_t const omp_default_mem_alloc;
1039extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1040extern omp_allocator_handle_t const omp_const_mem_alloc;
1041extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1042extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1043extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1044extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1045extern omp_allocator_handle_t const omp_thread_mem_alloc;
1046extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1047extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1048extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1049extern omp_allocator_handle_t const kmp_max_mem_alloc;
1050extern omp_allocator_handle_t __kmp_def_allocator;
1051
1052// end of duplicate type definitions from omp.h
1053#endif
1054
1055extern int __kmp_memkind_available;
1056
1057typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1058
1059typedef struct kmp_allocator_t {
1060 omp_memspace_handle_t memspace;
1061 void **memkind; // pointer to memkind
1062 size_t alignment;
1063 omp_alloctrait_value_t fb;
1064 kmp_allocator_t *fb_data;
1065 kmp_uint64 pool_size;
1066 kmp_uint64 pool_used;
1067 bool pinned;
1068} kmp_allocator_t;
1069
1070extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1071 omp_memspace_handle_t,
1072 int ntraits,
1073 omp_alloctrait_t traits[]);
1074extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1075extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1076extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1077// external interfaces, may be used by compiler
1078extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1079extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1080 omp_allocator_handle_t al);
1081extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1082 omp_allocator_handle_t al);
1083extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1084 omp_allocator_handle_t al,
1085 omp_allocator_handle_t free_al);
1086extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1087// internal interfaces, contain real implementation
1088extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1089 omp_allocator_handle_t al);
1090extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1091 omp_allocator_handle_t al);
1092extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1093 omp_allocator_handle_t al,
1094 omp_allocator_handle_t free_al);
1095extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1096
1097extern void __kmp_init_memkind();
1098extern void __kmp_fini_memkind();
1099extern void __kmp_init_target_mem();
1100
1101/* ------------------------------------------------------------------------ */
1102
1103#if ENABLE_LIBOMPTARGET
1104extern void __kmp_init_target_task();
1105#endif
1106
1107/* ------------------------------------------------------------------------ */
1108
1109#define KMP_UINT64_MAX \
1110 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1111
1112#define KMP_MIN_NTH 1
1113
1114#ifndef KMP_MAX_NTH
1115#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1116#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1117#else
1118#define KMP_MAX_NTH INT_MAX
1119#endif
1120#endif /* KMP_MAX_NTH */
1121
1122#ifdef PTHREAD_STACK_MIN
1123#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1124#else
1125#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1126#endif
1127
1128#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1129
1130#if KMP_ARCH_X86
1131#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1132#elif KMP_ARCH_X86_64
1133#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1134#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1135#else
1136#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1137#endif
1138
1139#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1140#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1141#define KMP_MAX_MALLOC_POOL_INCR \
1142 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1143
1144#define KMP_MIN_STKOFFSET (0)
1145#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1146#if KMP_OS_DARWIN
1147#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1148#else
1149#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1150#endif
1151
1152#define KMP_MIN_STKPADDING (0)
1153#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1154
1155#define KMP_BLOCKTIME_MULTIPLIER \
1156 (1000) /* number of blocktime units per second */
1157#define KMP_MIN_BLOCKTIME (0)
1158#define KMP_MAX_BLOCKTIME \
1159 (INT_MAX) /* Must be this for "infinite" setting the work */
1160
1161/* __kmp_blocktime is in milliseconds */
1162#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1163
1164#if KMP_USE_MONITOR
1165#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1166#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1167#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1168
1169/* Calculate new number of monitor wakeups for a specific block time based on
1170 previous monitor_wakeups. Only allow increasing number of wakeups */
1171#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1172 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1173 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1174 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1175 ? (monitor_wakeups) \
1176 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1177
1178/* Calculate number of intervals for a specific block time based on
1179 monitor_wakeups */
1180#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1181 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1182 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1183#else
1184#define KMP_BLOCKTIME(team, tid) \
1185 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1186#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1187// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1188extern kmp_uint64 __kmp_ticks_per_msec;
1189#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1190#define KMP_NOW() ((kmp_uint64)_rdtsc())
1191#else
1192#define KMP_NOW() __kmp_hardware_timestamp()
1193#endif
1194#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1195#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1196 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1197#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1198#else
1199// System time is retrieved sporadically while blocking.
1200extern kmp_uint64 __kmp_now_nsec();
1201#define KMP_NOW() __kmp_now_nsec()
1202#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1203#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1204 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1205#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1206#endif
1207#endif // KMP_USE_MONITOR
1208
1209#define KMP_MIN_STATSCOLS 40
1210#define KMP_MAX_STATSCOLS 4096
1211#define KMP_DEFAULT_STATSCOLS 80
1212
1213#define KMP_MIN_INTERVAL 0
1214#define KMP_MAX_INTERVAL (INT_MAX - 1)
1215#define KMP_DEFAULT_INTERVAL 0
1216
1217#define KMP_MIN_CHUNK 1
1218#define KMP_MAX_CHUNK (INT_MAX - 1)
1219#define KMP_DEFAULT_CHUNK 1
1220
1221#define KMP_MIN_DISP_NUM_BUFF 1
1222#define KMP_DFLT_DISP_NUM_BUFF 7
1223#define KMP_MAX_DISP_NUM_BUFF 4096
1224
1225#define KMP_MAX_ORDERED 8
1226
1227#define KMP_MAX_FIELDS 32
1228
1229#define KMP_MAX_BRANCH_BITS 31
1230
1231#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1232
1233#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1234
1235#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1236
1237/* Minimum number of threads before switch to TLS gtid (experimentally
1238 determined) */
1239/* josh TODO: what about OS X* tuning? */
1240#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1241#define KMP_TLS_GTID_MIN 5
1242#else
1243#define KMP_TLS_GTID_MIN INT_MAX
1244#endif
1245
1246#define KMP_MASTER_TID(tid) (0 == (tid))
1247#define KMP_WORKER_TID(tid) (0 != (tid))
1248
1249#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1250#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1251#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1252
1253#ifndef TRUE
1254#define FALSE 0
1255#define TRUE (!FALSE)
1256#endif
1257
1258/* NOTE: all of the following constants must be even */
1259
1260#if KMP_OS_WINDOWS
1261#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1262#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1263#elif KMP_OS_LINUX
1264#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1265#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1266#elif KMP_OS_DARWIN
1267/* TODO: tune for KMP_OS_DARWIN */
1268#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1269#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1270#elif KMP_OS_DRAGONFLY
1271/* TODO: tune for KMP_OS_DRAGONFLY */
1272#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1273#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1274#elif KMP_OS_FREEBSD
1275/* TODO: tune for KMP_OS_FREEBSD */
1276#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1277#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1278#elif KMP_OS_NETBSD
1279/* TODO: tune for KMP_OS_NETBSD */
1280#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1281#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1282#elif KMP_OS_HURD
1283/* TODO: tune for KMP_OS_HURD */
1284#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1285#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1286#elif KMP_OS_OPENBSD
1287/* TODO: tune for KMP_OS_OPENBSD */
1288#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1289#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1290#endif
1291
1292#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1293typedef struct kmp_cpuid {
1294 kmp_uint32 eax;
1295 kmp_uint32 ebx;
1296 kmp_uint32 ecx;
1297 kmp_uint32 edx;
1298} kmp_cpuid_t;
1299
1300typedef struct kmp_cpuinfo_flags_t {
1301 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1302 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1303 unsigned hybrid : 1;
1304 unsigned reserved : 29; // Ensure size of 32 bits
1305} kmp_cpuinfo_flags_t;
1306
1307typedef struct kmp_cpuinfo {
1308 int initialized; // If 0, other fields are not initialized.
1309 int signature; // CPUID(1).EAX
1310 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1311 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1312 // Model << 4 ) + Model)
1313 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1314 kmp_cpuinfo_flags_t flags;
1315 int apic_id;
1316 int physical_id;
1317 int logical_id;
1318 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1319 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1320} kmp_cpuinfo_t;
1321
1322extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1323
1324#if KMP_OS_UNIX
1325// subleaf is only needed for cache and topology discovery and can be set to
1326// zero in most cases
1327static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1328 __asm__ __volatile__("cpuid"
1329 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1330 : "a"(leaf), "c"(subleaf));
1331}
1332// Load p into FPU control word
1333static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1334 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1335}
1336// Store FPU control word into p
1337static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1338 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1339}
1340static inline void __kmp_clear_x87_fpu_status_word() {
1341#if KMP_MIC
1342 // 32-bit protected mode x87 FPU state
1343 struct x87_fpu_state {
1344 unsigned cw;
1345 unsigned sw;
1346 unsigned tw;
1347 unsigned fip;
1348 unsigned fips;
1349 unsigned fdp;
1350 unsigned fds;
1351 };
1352 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1353 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1354 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1355 "fldenv %0\n\t" // load FP env back
1356 : "+m"(fpu_state), "+m"(fpu_state.sw));
1357#else
1358 __asm__ __volatile__("fnclex");
1359#endif // KMP_MIC
1360}
1361#if __SSE__
1362static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1363static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1364#else
1365static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1366static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1367#endif
1368#else
1369// Windows still has these as external functions in assembly file
1370extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1371extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1372extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1373extern void __kmp_clear_x87_fpu_status_word();
1374static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1375static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1376#endif // KMP_OS_UNIX
1377
1378#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1379
1380// User-level Monitor/Mwait
1381#if KMP_HAVE_UMWAIT
1382// We always try for UMWAIT first
1383#if KMP_HAVE_WAITPKG_INTRINSICS
1384#if KMP_HAVE_IMMINTRIN_H
1385#include <immintrin.h>
1386#elif KMP_HAVE_INTRIN_H
1387#include <intrin.h>
1388#endif
1389#endif // KMP_HAVE_WAITPKG_INTRINSICS
1390
1391KMP_ATTRIBUTE_TARGET_WAITPKG
1392static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1393#if !KMP_HAVE_WAITPKG_INTRINSICS
1394 uint32_t timeHi = uint32_t(counter >> 32);
1395 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1396 char flag;
1397 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1398 "setb %0"
1399 // The "=q" restraint means any register accessible as rl
1400 // in 32-bit mode: a, b, c, and d;
1401 // in 64-bit mode: any integer register
1402 : "=q"(flag)
1403 : "a"(timeLo), "d"(timeHi), "c"(hint)
1404 :);
1405 return flag;
1406#else
1407 return _tpause(hint, counter);
1408#endif
1409}
1410KMP_ATTRIBUTE_TARGET_WAITPKG
1411static inline void __kmp_umonitor(void *cacheline) {
1412#if !KMP_HAVE_WAITPKG_INTRINSICS
1413 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1414 :
1415 : "a"(cacheline)
1416 :);
1417#else
1418 _umonitor(cacheline);
1419#endif
1420}
1421KMP_ATTRIBUTE_TARGET_WAITPKG
1422static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1423#if !KMP_HAVE_WAITPKG_INTRINSICS
1424 uint32_t timeHi = uint32_t(counter >> 32);
1425 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1426 char flag;
1427 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1428 "setb %0"
1429 // The "=q" restraint means any register accessible as rl
1430 // in 32-bit mode: a, b, c, and d;
1431 // in 64-bit mode: any integer register
1432 : "=q"(flag)
1433 : "a"(timeLo), "d"(timeHi), "c"(hint)
1434 :);
1435 return flag;
1436#else
1437 return _umwait(hint, counter);
1438#endif
1439}
1440#elif KMP_HAVE_MWAIT
1441#if KMP_OS_UNIX
1442#include <pmmintrin.h>
1443#else
1444#include <intrin.h>
1445#endif
1446#if KMP_OS_UNIX
1447__attribute__((target("sse3")))
1448#endif
1449static inline void
1450__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1451 _mm_monitor(cacheline, extensions, hints);
1452}
1453#if KMP_OS_UNIX
1454__attribute__((target("sse3")))
1455#endif
1456static inline void
1457__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1458 _mm_mwait(extensions, hints);
1459}
1460#endif // KMP_HAVE_UMWAIT
1461
1462#if KMP_ARCH_X86
1463extern void __kmp_x86_pause(void);
1464#elif KMP_MIC
1465// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1466// regression after removal of extra PAUSE from spin loops. Changing
1467// the delay from 100 to 300 showed even better performance than double PAUSE
1468// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1469static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1470#else
1471static inline void __kmp_x86_pause(void) { _mm_pause(); }
1472#endif
1473#define KMP_CPU_PAUSE() __kmp_x86_pause()
1474#elif KMP_ARCH_PPC64
1475#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1476#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1477#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1478#define KMP_CPU_PAUSE() \
1479 do { \
1480 KMP_PPC64_PRI_LOW(); \
1481 KMP_PPC64_PRI_MED(); \
1482 KMP_PPC64_PRI_LOC_MB(); \
1483 } while (0)
1484#else
1485#define KMP_CPU_PAUSE() /* nothing to do */
1486#endif
1487
1488#define KMP_INIT_YIELD(count) \
1489 { (count) = __kmp_yield_init; }
1490
1491#define KMP_INIT_BACKOFF(time) \
1492 { (time) = __kmp_pause_init; }
1493
1494#define KMP_OVERSUBSCRIBED \
1495 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1496
1497#define KMP_TRY_YIELD \
1498 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1499
1500#define KMP_TRY_YIELD_OVERSUB \
1501 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1502
1503#define KMP_YIELD(cond) \
1504 { \
1505 KMP_CPU_PAUSE(); \
1506 if ((cond) && (KMP_TRY_YIELD)) \
1507 __kmp_yield(); \
1508 }
1509
1510#define KMP_YIELD_OVERSUB() \
1511 { \
1512 KMP_CPU_PAUSE(); \
1513 if ((KMP_TRY_YIELD_OVERSUB)) \
1514 __kmp_yield(); \
1515 }
1516
1517// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1518// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1519#define KMP_YIELD_SPIN(count) \
1520 { \
1521 KMP_CPU_PAUSE(); \
1522 if (KMP_TRY_YIELD) { \
1523 (count) -= 2; \
1524 if (!(count)) { \
1525 __kmp_yield(); \
1526 (count) = __kmp_yield_next; \
1527 } \
1528 } \
1529 }
1530
1531// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1532// (C0.2) state, which improves performance of other SMT threads on the same
1533// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1534// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1535// available, fall back to the regular CPU pause and yield combination.
1536#if KMP_HAVE_UMWAIT
1537#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1538#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1539 { \
1540 if (__kmp_tpause_enabled) { \
1541 if (KMP_OVERSUBSCRIBED) { \
1542 __kmp_tpause(0, (time)); \
1543 } else { \
1544 __kmp_tpause(__kmp_tpause_hint, (time)); \
1545 } \
1546 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1547 } else { \
1548 KMP_CPU_PAUSE(); \
1549 if ((KMP_TRY_YIELD_OVERSUB)) { \
1550 __kmp_yield(); \
1551 } else if (__kmp_use_yield == 1) { \
1552 (count) -= 2; \
1553 if (!(count)) { \
1554 __kmp_yield(); \
1555 (count) = __kmp_yield_next; \
1556 } \
1557 } \
1558 } \
1559 }
1560#else
1561#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1562 { \
1563 KMP_CPU_PAUSE(); \
1564 if ((KMP_TRY_YIELD_OVERSUB)) \
1565 __kmp_yield(); \
1566 else if (__kmp_use_yield == 1) { \
1567 (count) -= 2; \
1568 if (!(count)) { \
1569 __kmp_yield(); \
1570 (count) = __kmp_yield_next; \
1571 } \
1572 } \
1573 }
1574#endif // KMP_HAVE_UMWAIT
1575
1576/* ------------------------------------------------------------------------ */
1577/* Support datatypes for the orphaned construct nesting checks. */
1578/* ------------------------------------------------------------------------ */
1579
1580/* When adding to this enum, add its corresponding string in cons_text_c[]
1581 * array in kmp_error.cpp */
1582enum cons_type {
1583 ct_none,
1584 ct_parallel,
1585 ct_pdo,
1586 ct_pdo_ordered,
1587 ct_psections,
1588 ct_psingle,
1589 ct_critical,
1590 ct_ordered_in_parallel,
1591 ct_ordered_in_pdo,
1592 ct_master,
1593 ct_reduce,
1594 ct_barrier,
1595 ct_masked
1596};
1597
1598#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1599
1600struct cons_data {
1601 ident_t const *ident;
1602 enum cons_type type;
1603 int prev;
1604 kmp_user_lock_p
1605 name; /* address exclusively for critical section name comparison */
1606};
1607
1608struct cons_header {
1609 int p_top, w_top, s_top;
1610 int stack_size, stack_top;
1611 struct cons_data *stack_data;
1612};
1613
1614struct kmp_region_info {
1615 char *text;
1616 int offset[KMP_MAX_FIELDS];
1617 int length[KMP_MAX_FIELDS];
1618};
1619
1620/* ---------------------------------------------------------------------- */
1621/* ---------------------------------------------------------------------- */
1622
1623#if KMP_OS_WINDOWS
1624typedef HANDLE kmp_thread_t;
1625typedef DWORD kmp_key_t;
1626#endif /* KMP_OS_WINDOWS */
1627
1628#if KMP_OS_UNIX
1629typedef pthread_t kmp_thread_t;
1630typedef pthread_key_t kmp_key_t;
1631#endif
1632
1633extern kmp_key_t __kmp_gtid_threadprivate_key;
1634
1635typedef struct kmp_sys_info {
1636 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1637 long minflt; /* the number of page faults serviced without any I/O */
1638 long majflt; /* the number of page faults serviced that required I/O */
1639 long nswap; /* the number of times a process was "swapped" out of memory */
1640 long inblock; /* the number of times the file system had to perform input */
1641 long oublock; /* the number of times the file system had to perform output */
1642 long nvcsw; /* the number of times a context switch was voluntarily */
1643 long nivcsw; /* the number of times a context switch was forced */
1644} kmp_sys_info_t;
1645
1646#if USE_ITT_BUILD
1647// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1648// required type here. Later we will check the type meets requirements.
1649typedef int kmp_itt_mark_t;
1650#define KMP_ITT_DEBUG 0
1651#endif /* USE_ITT_BUILD */
1652
1653typedef kmp_int32 kmp_critical_name[8];
1654
1664typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1665typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1666 ...);
1667
1672/* ---------------------------------------------------------------------------
1673 */
1674/* Threadprivate initialization/finalization function declarations */
1675
1676/* for non-array objects: __kmpc_threadprivate_register() */
1677
1682typedef void *(*kmpc_ctor)(void *);
1683
1688typedef void (*kmpc_dtor)(
1689 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1690 compiler */
1695typedef void *(*kmpc_cctor)(void *, void *);
1696
1697/* for array objects: __kmpc_threadprivate_register_vec() */
1698/* First arg: "this" pointer */
1699/* Last arg: number of array elements */
1705typedef void *(*kmpc_ctor_vec)(void *, size_t);
1711typedef void (*kmpc_dtor_vec)(void *, size_t);
1717typedef void *(*kmpc_cctor_vec)(void *, void *,
1718 size_t); /* function unused by compiler */
1719
1724/* keeps tracked of threadprivate cache allocations for cleanup later */
1725typedef struct kmp_cached_addr {
1726 void **addr; /* address of allocated cache */
1727 void ***compiler_cache; /* pointer to compiler's cache */
1728 void *data; /* pointer to global data */
1729 struct kmp_cached_addr *next; /* pointer to next cached address */
1730} kmp_cached_addr_t;
1731
1732struct private_data {
1733 struct private_data *next; /* The next descriptor in the list */
1734 void *data; /* The data buffer for this descriptor */
1735 int more; /* The repeat count for this descriptor */
1736 size_t size; /* The data size for this descriptor */
1737};
1738
1739struct private_common {
1740 struct private_common *next;
1741 struct private_common *link;
1742 void *gbl_addr;
1743 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1744 size_t cmn_size;
1745};
1746
1747struct shared_common {
1748 struct shared_common *next;
1749 struct private_data *pod_init;
1750 void *obj_init;
1751 void *gbl_addr;
1752 union {
1753 kmpc_ctor ctor;
1754 kmpc_ctor_vec ctorv;
1755 } ct;
1756 union {
1757 kmpc_cctor cctor;
1758 kmpc_cctor_vec cctorv;
1759 } cct;
1760 union {
1761 kmpc_dtor dtor;
1762 kmpc_dtor_vec dtorv;
1763 } dt;
1764 size_t vec_len;
1765 int is_vec;
1766 size_t cmn_size;
1767};
1768
1769#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1770#define KMP_HASH_TABLE_SIZE \
1771 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1772#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1773#define KMP_HASH(x) \
1774 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1775
1776struct common_table {
1777 struct private_common *data[KMP_HASH_TABLE_SIZE];
1778};
1779
1780struct shared_table {
1781 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1782};
1783
1784/* ------------------------------------------------------------------------ */
1785
1786#if KMP_USE_HIER_SCHED
1787// Shared barrier data that exists inside a single unit of the scheduling
1788// hierarchy
1789typedef struct kmp_hier_private_bdata_t {
1790 kmp_int32 num_active;
1791 kmp_uint64 index;
1792 kmp_uint64 wait_val[2];
1793} kmp_hier_private_bdata_t;
1794#endif
1795
1796typedef struct kmp_sched_flags {
1797 unsigned ordered : 1;
1798 unsigned nomerge : 1;
1799 unsigned contains_last : 1;
1800#if KMP_USE_HIER_SCHED
1801 unsigned use_hier : 1;
1802 unsigned unused : 28;
1803#else
1804 unsigned unused : 29;
1805#endif
1806} kmp_sched_flags_t;
1807
1808KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1809
1810#if KMP_STATIC_STEAL_ENABLED
1811typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1812 kmp_int32 count;
1813 kmp_int32 ub;
1814 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1815 kmp_int32 lb;
1816 kmp_int32 st;
1817 kmp_int32 tc;
1818 kmp_lock_t *steal_lock; // lock used for chunk stealing
1819 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1820 // a) parm3 is properly aligned and
1821 // b) all parm1-4 are on the same cache line.
1822 // Because of parm1-4 are used together, performance seems to be better
1823 // if they are on the same cache line (not measured though).
1824
1825 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1826 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1827 kmp_int32 parm2; // make no real change at least while padding is off.
1828 kmp_int32 parm3;
1829 kmp_int32 parm4;
1830 };
1831
1832 kmp_uint32 ordered_lower;
1833 kmp_uint32 ordered_upper;
1834#if KMP_OS_WINDOWS
1835 kmp_int32 last_upper;
1836#endif /* KMP_OS_WINDOWS */
1837} dispatch_private_info32_t;
1838
1839typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1840 kmp_int64 count; // current chunk number for static & static-steal scheduling
1841 kmp_int64 ub; /* upper-bound */
1842 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1843 kmp_int64 lb; /* lower-bound */
1844 kmp_int64 st; /* stride */
1845 kmp_int64 tc; /* trip count (number of iterations) */
1846 kmp_lock_t *steal_lock; // lock used for chunk stealing
1847 /* parm[1-4] are used in different ways by different scheduling algorithms */
1848
1849 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1850 // a) parm3 is properly aligned and
1851 // b) all parm1-4 are in the same cache line.
1852 // Because of parm1-4 are used together, performance seems to be better
1853 // if they are in the same line (not measured though).
1854
1855 struct KMP_ALIGN(32) {
1856 kmp_int64 parm1;
1857 kmp_int64 parm2;
1858 kmp_int64 parm3;
1859 kmp_int64 parm4;
1860 };
1861
1862 kmp_uint64 ordered_lower;
1863 kmp_uint64 ordered_upper;
1864#if KMP_OS_WINDOWS
1865 kmp_int64 last_upper;
1866#endif /* KMP_OS_WINDOWS */
1867} dispatch_private_info64_t;
1868#else /* KMP_STATIC_STEAL_ENABLED */
1869typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1870 kmp_int32 lb;
1871 kmp_int32 ub;
1872 kmp_int32 st;
1873 kmp_int32 tc;
1874
1875 kmp_int32 parm1;
1876 kmp_int32 parm2;
1877 kmp_int32 parm3;
1878 kmp_int32 parm4;
1879
1880 kmp_int32 count;
1881
1882 kmp_uint32 ordered_lower;
1883 kmp_uint32 ordered_upper;
1884#if KMP_OS_WINDOWS
1885 kmp_int32 last_upper;
1886#endif /* KMP_OS_WINDOWS */
1887} dispatch_private_info32_t;
1888
1889typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1890 kmp_int64 lb; /* lower-bound */
1891 kmp_int64 ub; /* upper-bound */
1892 kmp_int64 st; /* stride */
1893 kmp_int64 tc; /* trip count (number of iterations) */
1894
1895 /* parm[1-4] are used in different ways by different scheduling algorithms */
1896 kmp_int64 parm1;
1897 kmp_int64 parm2;
1898 kmp_int64 parm3;
1899 kmp_int64 parm4;
1900
1901 kmp_int64 count; /* current chunk number for static scheduling */
1902
1903 kmp_uint64 ordered_lower;
1904 kmp_uint64 ordered_upper;
1905#if KMP_OS_WINDOWS
1906 kmp_int64 last_upper;
1907#endif /* KMP_OS_WINDOWS */
1908} dispatch_private_info64_t;
1909#endif /* KMP_STATIC_STEAL_ENABLED */
1910
1911typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1912 union private_info {
1913 dispatch_private_info32_t p32;
1914 dispatch_private_info64_t p64;
1915 } u;
1916 enum sched_type schedule; /* scheduling algorithm */
1917 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1918 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1919 kmp_int32 ordered_bumped;
1920 // Stack of buffers for nest of serial regions
1921 struct dispatch_private_info *next;
1922 kmp_int32 type_size; /* the size of types in private_info */
1923#if KMP_USE_HIER_SCHED
1924 kmp_int32 hier_id;
1925 void *parent; /* hierarchical scheduling parent pointer */
1926#endif
1927 enum cons_type pushed_ws;
1928} dispatch_private_info_t;
1929
1930typedef struct dispatch_shared_info32 {
1931 /* chunk index under dynamic, number of idle threads under static-steal;
1932 iteration index otherwise */
1933 volatile kmp_uint32 iteration;
1934 volatile kmp_int32 num_done;
1935 volatile kmp_uint32 ordered_iteration;
1936 // Dummy to retain the structure size after making ordered_iteration scalar
1937 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1938} dispatch_shared_info32_t;
1939
1940typedef struct dispatch_shared_info64 {
1941 /* chunk index under dynamic, number of idle threads under static-steal;
1942 iteration index otherwise */
1943 volatile kmp_uint64 iteration;
1944 volatile kmp_int64 num_done;
1945 volatile kmp_uint64 ordered_iteration;
1946 // Dummy to retain the structure size after making ordered_iteration scalar
1947 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1948} dispatch_shared_info64_t;
1949
1950typedef struct dispatch_shared_info {
1951 union shared_info {
1952 dispatch_shared_info32_t s32;
1953 dispatch_shared_info64_t s64;
1954 } u;
1955 volatile kmp_uint32 buffer_index;
1956 volatile kmp_int32 doacross_buf_idx; // teamwise index
1957 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1958 kmp_int32 doacross_num_done; // count finished threads
1959#if KMP_USE_HIER_SCHED
1960 void *hier;
1961#endif
1962#if KMP_USE_HWLOC
1963 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1964 // machines (> 48 cores). Performance analysis showed that a cache thrash
1965 // was occurring and this padding helps alleviate the problem.
1966 char padding[64];
1967#endif
1968} dispatch_shared_info_t;
1969
1970typedef struct kmp_disp {
1971 /* Vector for ORDERED SECTION */
1972 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1973 /* Vector for END ORDERED SECTION */
1974 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1975
1976 dispatch_shared_info_t *th_dispatch_sh_current;
1977 dispatch_private_info_t *th_dispatch_pr_current;
1978
1979 dispatch_private_info_t *th_disp_buffer;
1980 kmp_uint32 th_disp_index;
1981 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1982 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1983 kmp_int64 *th_doacross_info; // info on loop bounds
1984#if KMP_USE_INTERNODE_ALIGNMENT
1985 char more_padding[INTERNODE_CACHE_LINE];
1986#endif
1987} kmp_disp_t;
1988
1989/* ------------------------------------------------------------------------ */
1990/* Barrier stuff */
1991
1992/* constants for barrier state update */
1993#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1994#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1995#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1996#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1997
1998#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1999#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2000#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2001
2002#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2003#error "Barrier sleep bit must be smaller than barrier bump bit"
2004#endif
2005#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2006#error "Barrier unused bit must be smaller than barrier bump bit"
2007#endif
2008
2009// Constants for release barrier wait state: currently, hierarchical only
2010#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2011#define KMP_BARRIER_OWN_FLAG \
2012 1 // Normal state; worker waiting on own b_go flag in release
2013#define KMP_BARRIER_PARENT_FLAG \
2014 2 // Special state; worker waiting on parent's b_go flag in release
2015#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2016 3 // Special state; tells worker to shift from parent to own b_go
2017#define KMP_BARRIER_SWITCHING \
2018 4 // Special state; worker resets appropriate flag on wake-up
2019
2020#define KMP_NOT_SAFE_TO_REAP \
2021 0 // Thread th_reap_state: not safe to reap (tasking)
2022#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2023
2024// The flag_type describes the storage used for the flag.
2025enum flag_type {
2026 flag32,
2027 flag64,
2028 atomic_flag64,
2029 flag_oncore,
2030 flag_unset
2031};
2032
2033enum barrier_type {
2034 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2035 barriers if enabled) */
2036 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2037#if KMP_FAST_REDUCTION_BARRIER
2038 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2039#endif // KMP_FAST_REDUCTION_BARRIER
2040 bs_last_barrier /* Just a placeholder to mark the end */
2041};
2042
2043// to work with reduction barriers just like with plain barriers
2044#if !KMP_FAST_REDUCTION_BARRIER
2045#define bs_reduction_barrier bs_plain_barrier
2046#endif // KMP_FAST_REDUCTION_BARRIER
2047
2048typedef enum kmp_bar_pat { /* Barrier communication patterns */
2049 bp_linear_bar =
2050 0, /* Single level (degenerate) tree */
2051 bp_tree_bar =
2052 1, /* Balanced tree with branching factor 2^n */
2053 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2054 branching factor 2^n */
2055 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2056 bp_dist_bar = 4, /* Distributed barrier */
2057 bp_last_bar /* Placeholder to mark the end */
2058} kmp_bar_pat_e;
2059
2060#define KMP_BARRIER_ICV_PUSH 1
2061
2062/* Record for holding the values of the internal controls stack records */
2063typedef struct kmp_internal_control {
2064 int serial_nesting_level; /* corresponds to the value of the
2065 th_team_serialized field */
2066 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2067 thread) */
2068 kmp_int8
2069 bt_set; /* internal control for whether blocktime is explicitly set */
2070 int blocktime; /* internal control for blocktime */
2071#if KMP_USE_MONITOR
2072 int bt_intervals; /* internal control for blocktime intervals */
2073#endif
2074 int nproc; /* internal control for #threads for next parallel region (per
2075 thread) */
2076 int thread_limit; /* internal control for thread-limit-var */
2077 int max_active_levels; /* internal control for max_active_levels */
2078 kmp_r_sched_t
2079 sched; /* internal control for runtime schedule {sched,chunk} pair */
2080 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2081 kmp_int32 default_device; /* internal control for default device */
2082 struct kmp_internal_control *next;
2083} kmp_internal_control_t;
2084
2085static inline void copy_icvs(kmp_internal_control_t *dst,
2086 kmp_internal_control_t *src) {
2087 *dst = *src;
2088}
2089
2090/* Thread barrier needs volatile barrier fields */
2091typedef struct KMP_ALIGN_CACHE kmp_bstate {
2092 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2093 // uses of it). It is not explicitly aligned below, because we *don't* want
2094 // it to be padded -- instead, we fit b_go into the same cache line with
2095 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2096 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2097 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2098 // same NGO store
2099 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2100 KMP_ALIGN_CACHE volatile kmp_uint64
2101 b_arrived; // STATE => task reached synch point.
2102 kmp_uint32 *skip_per_level;
2103 kmp_uint32 my_level;
2104 kmp_int32 parent_tid;
2105 kmp_int32 old_tid;
2106 kmp_uint32 depth;
2107 struct kmp_bstate *parent_bar;
2108 kmp_team_t *team;
2109 kmp_uint64 leaf_state;
2110 kmp_uint32 nproc;
2111 kmp_uint8 base_leaf_kids;
2112 kmp_uint8 leaf_kids;
2113 kmp_uint8 offset;
2114 kmp_uint8 wait_flag;
2115 kmp_uint8 use_oncore_barrier;
2116#if USE_DEBUGGER
2117 // The following field is intended for the debugger solely. Only the worker
2118 // thread itself accesses this field: the worker increases it by 1 when it
2119 // arrives to a barrier.
2120 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2121#endif /* USE_DEBUGGER */
2122} kmp_bstate_t;
2123
2124union KMP_ALIGN_CACHE kmp_barrier_union {
2125 double b_align; /* use worst case alignment */
2126 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2127 kmp_bstate_t bb;
2128};
2129
2130typedef union kmp_barrier_union kmp_balign_t;
2131
2132/* Team barrier needs only non-volatile arrived counter */
2133union KMP_ALIGN_CACHE kmp_barrier_team_union {
2134 double b_align; /* use worst case alignment */
2135 char b_pad[CACHE_LINE];
2136 struct {
2137 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2138#if USE_DEBUGGER
2139 // The following two fields are indended for the debugger solely. Only
2140 // primary thread of the team accesses these fields: the first one is
2141 // increased by 1 when the primary thread arrives to a barrier, the second
2142 // one is increased by one when all the threads arrived.
2143 kmp_uint b_master_arrived;
2144 kmp_uint b_team_arrived;
2145#endif
2146 };
2147};
2148
2149typedef union kmp_barrier_team_union kmp_balign_team_t;
2150
2151/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2152 threads when a condition changes. This is to workaround an NPTL bug where
2153 padding was added to pthread_cond_t which caused the initialization routine
2154 to write outside of the structure if compiled on pre-NPTL threads. */
2155#if KMP_OS_WINDOWS
2156typedef struct kmp_win32_mutex {
2157 /* The Lock */
2158 CRITICAL_SECTION cs;
2159} kmp_win32_mutex_t;
2160
2161typedef struct kmp_win32_cond {
2162 /* Count of the number of waiters. */
2163 int waiters_count_;
2164
2165 /* Serialize access to <waiters_count_> */
2166 kmp_win32_mutex_t waiters_count_lock_;
2167
2168 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2169 int release_count_;
2170
2171 /* Keeps track of the current "generation" so that we don't allow */
2172 /* one thread to steal all the "releases" from the broadcast. */
2173 int wait_generation_count_;
2174
2175 /* A manual-reset event that's used to block and release waiting threads. */
2176 HANDLE event_;
2177} kmp_win32_cond_t;
2178#endif
2179
2180#if KMP_OS_UNIX
2181
2182union KMP_ALIGN_CACHE kmp_cond_union {
2183 double c_align;
2184 char c_pad[CACHE_LINE];
2185 pthread_cond_t c_cond;
2186};
2187
2188typedef union kmp_cond_union kmp_cond_align_t;
2189
2190union KMP_ALIGN_CACHE kmp_mutex_union {
2191 double m_align;
2192 char m_pad[CACHE_LINE];
2193 pthread_mutex_t m_mutex;
2194};
2195
2196typedef union kmp_mutex_union kmp_mutex_align_t;
2197
2198#endif /* KMP_OS_UNIX */
2199
2200typedef struct kmp_desc_base {
2201 void *ds_stackbase;
2202 size_t ds_stacksize;
2203 int ds_stackgrow;
2204 kmp_thread_t ds_thread;
2205 volatile int ds_tid;
2206 int ds_gtid;
2207#if KMP_OS_WINDOWS
2208 volatile int ds_alive;
2209 DWORD ds_thread_id;
2210/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2211 However, debugger support (libomp_db) cannot work with handles, because they
2212 uncomparable. For example, debugger requests info about thread with handle h.
2213 h is valid within debugger process, and meaningless within debugee process.
2214 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2215 within debugee process, but it is a *new* handle which does *not* equal to
2216 any other handle in debugee... The only way to compare handles is convert
2217 them to system-wide ids. GetThreadId() function is available only in
2218 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2219 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2220 thread id by call to GetCurrentThreadId() from within the thread and save it
2221 to let libomp_db identify threads. */
2222#endif /* KMP_OS_WINDOWS */
2223} kmp_desc_base_t;
2224
2225typedef union KMP_ALIGN_CACHE kmp_desc {
2226 double ds_align; /* use worst case alignment */
2227 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2228 kmp_desc_base_t ds;
2229} kmp_desc_t;
2230
2231typedef struct kmp_local {
2232 volatile int this_construct; /* count of single's encountered by thread */
2233 void *reduce_data;
2234#if KMP_USE_BGET
2235 void *bget_data;
2236 void *bget_list;
2237#if !USE_CMP_XCHG_FOR_BGET
2238#ifdef USE_QUEUING_LOCK_FOR_BGET
2239 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2240#else
2241 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2242// bootstrap lock so we can use it at library
2243// shutdown.
2244#endif /* USE_LOCK_FOR_BGET */
2245#endif /* ! USE_CMP_XCHG_FOR_BGET */
2246#endif /* KMP_USE_BGET */
2247
2248 PACKED_REDUCTION_METHOD_T
2249 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2250 __kmpc_end_reduce*() */
2251
2252} kmp_local_t;
2253
2254#define KMP_CHECK_UPDATE(a, b) \
2255 if ((a) != (b)) \
2256 (a) = (b)
2257#define KMP_CHECK_UPDATE_SYNC(a, b) \
2258 if ((a) != (b)) \
2259 TCW_SYNC_PTR((a), (b))
2260
2261#define get__blocktime(xteam, xtid) \
2262 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2263#define get__bt_set(xteam, xtid) \
2264 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2265#if KMP_USE_MONITOR
2266#define get__bt_intervals(xteam, xtid) \
2267 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2268#endif
2269
2270#define get__dynamic_2(xteam, xtid) \
2271 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2272#define get__nproc_2(xteam, xtid) \
2273 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2274#define get__sched_2(xteam, xtid) \
2275 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2276
2277#define set__blocktime_team(xteam, xtid, xval) \
2278 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2279 (xval))
2280
2281#if KMP_USE_MONITOR
2282#define set__bt_intervals_team(xteam, xtid, xval) \
2283 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2284 (xval))
2285#endif
2286
2287#define set__bt_set_team(xteam, xtid, xval) \
2288 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2289
2290#define set__dynamic(xthread, xval) \
2291 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2292#define get__dynamic(xthread) \
2293 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2294
2295#define set__nproc(xthread, xval) \
2296 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2297
2298#define set__thread_limit(xthread, xval) \
2299 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2300
2301#define set__max_active_levels(xthread, xval) \
2302 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2303
2304#define get__max_active_levels(xthread) \
2305 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2306
2307#define set__sched(xthread, xval) \
2308 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2309
2310#define set__proc_bind(xthread, xval) \
2311 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2312#define get__proc_bind(xthread) \
2313 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2314
2315// OpenMP tasking data structures
2316
2317typedef enum kmp_tasking_mode {
2318 tskm_immediate_exec = 0,
2319 tskm_extra_barrier = 1,
2320 tskm_task_teams = 2,
2321 tskm_max = 2
2322} kmp_tasking_mode_t;
2323
2324extern kmp_tasking_mode_t
2325 __kmp_tasking_mode; /* determines how/when to execute tasks */
2326extern int __kmp_task_stealing_constraint;
2327extern int __kmp_enable_task_throttling;
2328extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2329// specified, defaults to 0 otherwise
2330// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2331extern kmp_int32 __kmp_max_task_priority;
2332// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2333extern kmp_uint64 __kmp_taskloop_min_tasks;
2334
2335/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2336 taskdata first */
2337#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2338#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2339
2340// The tt_found_tasks flag is a signal to all threads in the team that tasks
2341// were spawned and queued since the previous barrier release.
2342#define KMP_TASKING_ENABLED(task_team) \
2343 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2351typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2352
2353typedef union kmp_cmplrdata {
2354 kmp_int32 priority;
2355 kmp_routine_entry_t
2356 destructors; /* pointer to function to invoke deconstructors of
2357 firstprivate C++ objects */
2358 /* future data */
2359} kmp_cmplrdata_t;
2360
2361/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2364typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2365 void *shareds;
2366 kmp_routine_entry_t
2367 routine;
2368 kmp_int32 part_id;
2369 kmp_cmplrdata_t
2370 data1; /* Two known optional additions: destructors and priority */
2371 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2372 /* future data */
2373 /* private vars */
2374} kmp_task_t;
2375
2380typedef struct kmp_taskgroup {
2381 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2382 std::atomic<kmp_int32>
2383 cancel_request; // request for cancellation of this taskgroup
2384 struct kmp_taskgroup *parent; // parent taskgroup
2385 // Block of data to perform task reduction
2386 void *reduce_data; // reduction related info
2387 kmp_int32 reduce_num_data; // number of data items to reduce
2388 uintptr_t *gomp_data; // gomp reduction data
2389} kmp_taskgroup_t;
2390
2391// forward declarations
2392typedef union kmp_depnode kmp_depnode_t;
2393typedef struct kmp_depnode_list kmp_depnode_list_t;
2394typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2395
2396// macros for checking dep flag as an integer
2397#define KMP_DEP_IN 0x1
2398#define KMP_DEP_OUT 0x2
2399#define KMP_DEP_INOUT 0x3
2400#define KMP_DEP_MTX 0x4
2401#define KMP_DEP_SET 0x8
2402#define KMP_DEP_ALL 0x80
2403// Compiler sends us this info:
2404typedef struct kmp_depend_info {
2405 kmp_intptr_t base_addr;
2406 size_t len;
2407 union {
2408 kmp_uint8 flag; // flag as an unsigned char
2409 struct { // flag as a set of 8 bits
2410 unsigned in : 1;
2411 unsigned out : 1;
2412 unsigned mtx : 1;
2413 unsigned set : 1;
2414 unsigned unused : 3;
2415 unsigned all : 1;
2416 } flags;
2417 };
2418} kmp_depend_info_t;
2419
2420// Internal structures to work with task dependencies:
2421struct kmp_depnode_list {
2422 kmp_depnode_t *node;
2423 kmp_depnode_list_t *next;
2424};
2425
2426// Max number of mutexinoutset dependencies per node
2427#define MAX_MTX_DEPS 4
2428
2429typedef struct kmp_base_depnode {
2430 kmp_depnode_list_t *successors; /* used under lock */
2431 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2432 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2433 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2434 kmp_lock_t lock; /* guards shared fields: task, successors */
2435#if KMP_SUPPORT_GRAPH_OUTPUT
2436 kmp_uint32 id;
2437#endif
2438 std::atomic<kmp_int32> npredecessors;
2439 std::atomic<kmp_int32> nrefs;
2440} kmp_base_depnode_t;
2441
2442union KMP_ALIGN_CACHE kmp_depnode {
2443 double dn_align; /* use worst case alignment */
2444 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2445 kmp_base_depnode_t dn;
2446};
2447
2448struct kmp_dephash_entry {
2449 kmp_intptr_t addr;
2450 kmp_depnode_t *last_out;
2451 kmp_depnode_list_t *last_set;
2452 kmp_depnode_list_t *prev_set;
2453 kmp_uint8 last_flag;
2454 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2455 kmp_dephash_entry_t *next_in_bucket;
2456};
2457
2458typedef struct kmp_dephash {
2459 kmp_dephash_entry_t **buckets;
2460 size_t size;
2461 kmp_depnode_t *last_all;
2462 size_t generation;
2463 kmp_uint32 nelements;
2464 kmp_uint32 nconflicts;
2465} kmp_dephash_t;
2466
2467typedef struct kmp_task_affinity_info {
2468 kmp_intptr_t base_addr;
2469 size_t len;
2470 struct {
2471 bool flag1 : 1;
2472 bool flag2 : 1;
2473 kmp_int32 reserved : 30;
2474 } flags;
2475} kmp_task_affinity_info_t;
2476
2477typedef enum kmp_event_type_t {
2478 KMP_EVENT_UNINITIALIZED = 0,
2479 KMP_EVENT_ALLOW_COMPLETION = 1
2480} kmp_event_type_t;
2481
2482typedef struct {
2483 kmp_event_type_t type;
2484 kmp_tas_lock_t lock;
2485 union {
2486 kmp_task_t *task;
2487 } ed;
2488} kmp_event_t;
2489
2490#if OMPX_TASKGRAPH
2491// Initial number of allocated nodes while recording
2492#define INIT_MAPSIZE 50
2493
2494typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2495 unsigned nowait : 1;
2496 unsigned re_record : 1;
2497 unsigned reserved : 30;
2498} kmp_taskgraph_flags_t;
2499
2501typedef struct kmp_node_info {
2502 kmp_task_t *task; // Pointer to the actual task
2503 kmp_int32 *successors; // Array of the succesors ids
2504 kmp_int32 nsuccessors; // Number of succesors of the node
2505 std::atomic<kmp_int32>
2506 npredecessors_counter; // Number of predessors on the fly
2507 kmp_int32 npredecessors; // Total number of predecessors
2508 kmp_int32 successors_size; // Number of allocated succesors ids
2509 kmp_taskdata_t *parent_task; // Parent implicit task
2510} kmp_node_info_t;
2511
2513typedef enum kmp_tdg_status {
2514 KMP_TDG_NONE = 0,
2515 KMP_TDG_RECORDING = 1,
2516 KMP_TDG_READY = 2
2517} kmp_tdg_status_t;
2518
2520typedef struct kmp_tdg_info {
2521 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2522 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2523 kmp_int32 map_size; // Number of allocated TDG nodes
2524 kmp_int32 num_roots; // Number of roots tasks int the TDG
2525 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2526 kmp_node_info_t *record_map; // Array of TDG nodes
2527 kmp_tdg_status_t tdg_status =
2528 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2529 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2530 kmp_bootstrap_lock_t
2531 graph_lock; // Protect graph attributes when updated via taskloop_recur
2532 // Taskloop reduction related
2533 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2534 // __kmpc_taskred_init
2535 kmp_int32 rec_num_taskred;
2536} kmp_tdg_info_t;
2537
2538extern int __kmp_tdg_dot;
2539extern kmp_int32 __kmp_max_tdgs;
2540extern kmp_tdg_info_t **__kmp_global_tdgs;
2541extern kmp_int32 __kmp_curr_tdg_idx;
2542extern kmp_int32 __kmp_successors_size;
2543extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2544extern kmp_int32 __kmp_num_tdg;
2545#endif
2546
2547#ifdef BUILD_TIED_TASK_STACK
2548
2549/* Tied Task stack definitions */
2550typedef struct kmp_stack_block {
2551 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2552 struct kmp_stack_block *sb_next;
2553 struct kmp_stack_block *sb_prev;
2554} kmp_stack_block_t;
2555
2556typedef struct kmp_task_stack {
2557 kmp_stack_block_t ts_first_block; // first block of stack entries
2558 kmp_taskdata_t **ts_top; // pointer to the top of stack
2559 kmp_int32 ts_entries; // number of entries on the stack
2560} kmp_task_stack_t;
2561
2562#endif // BUILD_TIED_TASK_STACK
2563
2564typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2565 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2566 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2567 unsigned final : 1; /* task is final(1) so execute immediately */
2568 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2569 code path */
2570 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2571 invoke destructors from the runtime */
2572 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2573 context of the RTL) */
2574 unsigned priority_specified : 1; /* set if the compiler provides priority
2575 setting for the task */
2576 unsigned detachable : 1; /* 1 == can detach */
2577 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2578 unsigned reserved : 8; /* reserved for compiler use */
2579
2580 /* Library flags */ /* Total library flags must be 16 bits */
2581 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2582 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2583 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2584 // (1) or may be deferred (0)
2585 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2586 // (0) [>= 2 threads]
2587 /* If either team_serial or tasking_ser is set, task team may be NULL */
2588 /* Task State Flags: */
2589 unsigned started : 1; /* 1==started, 0==not started */
2590 unsigned executing : 1; /* 1==executing, 0==not executing */
2591 unsigned complete : 1; /* 1==complete, 0==not complete */
2592 unsigned freed : 1; /* 1==freed, 0==allocated */
2593 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2594#if OMPX_TASKGRAPH
2595 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2596 unsigned reserved31 : 6; /* reserved for library use */
2597#else
2598 unsigned reserved31 : 7; /* reserved for library use */
2599#endif
2600
2601} kmp_tasking_flags_t;
2602
2603typedef struct kmp_target_data {
2604 void *async_handle; // libomptarget async handle for task completion query
2605} kmp_target_data_t;
2606
2607struct kmp_taskdata { /* aligned during dynamic allocation */
2608 kmp_int32 td_task_id; /* id, assigned by debugger */
2609 kmp_tasking_flags_t td_flags; /* task flags */
2610 kmp_team_t *td_team; /* team for this task */
2611 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2612 /* Currently not used except for perhaps IDB */
2613 kmp_taskdata_t *td_parent; /* parent task */
2614 kmp_int32 td_level; /* task nesting level */
2615 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2616 ident_t *td_ident; /* task identifier */
2617 // Taskwait data.
2618 ident_t *td_taskwait_ident;
2619 kmp_uint32 td_taskwait_counter;
2620 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2621 KMP_ALIGN_CACHE kmp_internal_control_t
2622 td_icvs; /* Internal control variables for the task */
2623 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2624 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2625 deallocated */
2626 std::atomic<kmp_int32>
2627 td_incomplete_child_tasks; /* Child tasks not yet complete */
2628 kmp_taskgroup_t
2629 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2630 kmp_dephash_t
2631 *td_dephash; // Dependencies for children tasks are tracked from here
2632 kmp_depnode_t
2633 *td_depnode; // Pointer to graph node if this task has dependencies
2634 kmp_task_team_t *td_task_team;
2635 size_t td_size_alloc; // Size of task structure, including shareds etc.
2636#if defined(KMP_GOMP_COMPAT)
2637 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2638 kmp_int32 td_size_loop_bounds;
2639#endif
2640 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2641#if defined(KMP_GOMP_COMPAT)
2642 // GOMP sends in a copy function for copy constructors
2643 void (*td_copy_func)(void *, void *);
2644#endif
2645 kmp_event_t td_allow_completion_event;
2646#if OMPT_SUPPORT
2647 ompt_task_info_t ompt_task_info;
2648#endif
2649#if OMPX_TASKGRAPH
2650 bool is_taskgraph = 0; // whether the task is within a TDG
2651 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2652#endif
2653 kmp_target_data_t td_target_data;
2654}; // struct kmp_taskdata
2655
2656// Make sure padding above worked
2657KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2658
2659// Data for task team but per thread
2660typedef struct kmp_base_thread_data {
2661 kmp_info_p *td_thr; // Pointer back to thread info
2662 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2663 // queued?
2664 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2665 kmp_taskdata_t *
2666 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2667 kmp_int32 td_deque_size; // Size of deck
2668 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2669 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2670 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2671 // GEH: shouldn't this be volatile since used in while-spin?
2672 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2673#ifdef BUILD_TIED_TASK_STACK
2674 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2675// scheduling constraint
2676#endif // BUILD_TIED_TASK_STACK
2677} kmp_base_thread_data_t;
2678
2679#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2680#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2681
2682#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2683#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2684
2685typedef union KMP_ALIGN_CACHE kmp_thread_data {
2686 kmp_base_thread_data_t td;
2687 double td_align; /* use worst case alignment */
2688 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2689} kmp_thread_data_t;
2690
2691typedef struct kmp_task_pri {
2692 kmp_thread_data_t td;
2693 kmp_int32 priority;
2694 kmp_task_pri *next;
2695} kmp_task_pri_t;
2696
2697// Data for task teams which are used when tasking is enabled for the team
2698typedef struct kmp_base_task_team {
2699 kmp_bootstrap_lock_t
2700 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2701 /* must be bootstrap lock since used at library shutdown*/
2702
2703 // TODO: check performance vs kmp_tas_lock_t
2704 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2705 kmp_task_pri_t *tt_task_pri_list;
2706
2707 kmp_task_team_t *tt_next; /* For linking the task team free list */
2708 kmp_thread_data_t
2709 *tt_threads_data; /* Array of per-thread structures for task team */
2710 /* Data survives task team deallocation */
2711 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2712 executing this team? */
2713 /* TRUE means tt_threads_data is set up and initialized */
2714 kmp_int32 tt_nproc; /* #threads in team */
2715 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2716 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2717 kmp_int32 tt_untied_task_encountered;
2718 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2719 // There is hidden helper thread encountered in this task team so that we must
2720 // wait when waiting on task team
2721 kmp_int32 tt_hidden_helper_task_encountered;
2722
2723 KMP_ALIGN_CACHE
2724 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2725
2726 KMP_ALIGN_CACHE
2727 volatile kmp_uint32
2728 tt_active; /* is the team still actively executing tasks */
2729} kmp_base_task_team_t;
2730
2731union KMP_ALIGN_CACHE kmp_task_team {
2732 kmp_base_task_team_t tt;
2733 double tt_align; /* use worst case alignment */
2734 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2735};
2736
2737#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2738// Free lists keep same-size free memory slots for fast memory allocation
2739// routines
2740typedef struct kmp_free_list {
2741 void *th_free_list_self; // Self-allocated tasks free list
2742 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2743 // threads
2744 void *th_free_list_other; // Non-self free list (to be returned to owner's
2745 // sync list)
2746} kmp_free_list_t;
2747#endif
2748#if KMP_NESTED_HOT_TEAMS
2749// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2750// are not put in teams pool, and they don't put threads in threads pool.
2751typedef struct kmp_hot_team_ptr {
2752 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2753 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2754} kmp_hot_team_ptr_t;
2755#endif
2756typedef struct kmp_teams_size {
2757 kmp_int32 nteams; // number of teams in a league
2758 kmp_int32 nth; // number of threads in each team of the league
2759} kmp_teams_size_t;
2760
2761// This struct stores a thread that acts as a "root" for a contention
2762// group. Contention groups are rooted at kmp_root threads, but also at
2763// each primary thread of each team created in the teams construct.
2764// This struct therefore also stores a thread_limit associated with
2765// that contention group, and a counter to track the number of threads
2766// active in that contention group. Each thread has a list of these: CG
2767// root threads have an entry in their list in which cg_root refers to
2768// the thread itself, whereas other workers in the CG will have a
2769// single entry where cg_root is same as the entry containing their CG
2770// root. When a thread encounters a teams construct, it will add a new
2771// entry to the front of its list, because it now roots a new CG.
2772typedef struct kmp_cg_root {
2773 kmp_info_p *cg_root; // "root" thread for a contention group
2774 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2775 // thread_limit clause for teams primary threads
2776 kmp_int32 cg_thread_limit;
2777 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2778 struct kmp_cg_root *up; // pointer to higher level CG root in list
2779} kmp_cg_root_t;
2780
2781// OpenMP thread data structures
2782
2783typedef struct KMP_ALIGN_CACHE kmp_base_info {
2784 /* Start with the readonly data which is cache aligned and padded. This is
2785 written before the thread starts working by the primary thread. Uber
2786 masters may update themselves later. Usage does not consider serialized
2787 regions. */
2788 kmp_desc_t th_info;
2789 kmp_team_p *th_team; /* team we belong to */
2790 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2791 kmp_info_p *th_next_pool; /* next available thread in the pool */
2792 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2793 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2794
2795 /* The following are cached from the team info structure */
2796 /* TODO use these in more places as determined to be needed via profiling */
2797 int th_team_nproc; /* number of threads in a team */
2798 kmp_info_p *th_team_master; /* the team's primary thread */
2799 int th_team_serialized; /* team is serialized */
2800 microtask_t th_teams_microtask; /* save entry address for teams construct */
2801 int th_teams_level; /* save initial level of teams construct */
2802/* it is 0 on device but may be any on host */
2803
2804/* The blocktime info is copied from the team struct to the thread struct */
2805/* at the start of a barrier, and the values stored in the team are used */
2806/* at points in the code where the team struct is no longer guaranteed */
2807/* to exist (from the POV of worker threads). */
2808#if KMP_USE_MONITOR
2809 int th_team_bt_intervals;
2810 int th_team_bt_set;
2811#else
2812 kmp_uint64 th_team_bt_intervals;
2813#endif
2814
2815#if KMP_AFFINITY_SUPPORTED
2816 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2817 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2818 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2819#endif
2820 omp_allocator_handle_t th_def_allocator; /* default allocator */
2821 /* The data set by the primary thread at reinit, then R/W by the worker */
2822 KMP_ALIGN_CACHE int
2823 th_set_nproc; /* if > 0, then only use this request for the next fork */
2824#if KMP_NESTED_HOT_TEAMS
2825 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2826#endif
2827 kmp_proc_bind_t
2828 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2829 kmp_teams_size_t
2830 th_teams_size; /* number of teams/threads in teams construct */
2831#if KMP_AFFINITY_SUPPORTED
2832 int th_current_place; /* place currently bound to */
2833 int th_new_place; /* place to bind to in par reg */
2834 int th_first_place; /* first place in partition */
2835 int th_last_place; /* last place in partition */
2836#endif
2837 int th_prev_level; /* previous level for affinity format */
2838 int th_prev_num_threads; /* previous num_threads for affinity format */
2839#if USE_ITT_BUILD
2840 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2841 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2842 kmp_uint64 th_frame_time; /* frame timestamp */
2843#endif /* USE_ITT_BUILD */
2844 kmp_local_t th_local;
2845 struct private_common *th_pri_head;
2846
2847 /* Now the data only used by the worker (after initial allocation) */
2848 /* TODO the first serial team should actually be stored in the info_t
2849 structure. this will help reduce initial allocation overhead */
2850 KMP_ALIGN_CACHE kmp_team_p
2851 *th_serial_team; /*serialized team held in reserve*/
2852
2853#if OMPT_SUPPORT
2854 ompt_thread_info_t ompt_thread_info;
2855#endif
2856
2857 /* The following are also read by the primary thread during reinit */
2858 struct common_table *th_pri_common;
2859
2860 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2861 /* while awaiting queuing lock acquire */
2862
2863 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2864 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2865
2866 ident_t *th_ident;
2867 unsigned th_x; // Random number generator data
2868 unsigned th_a; // Random number generator data
2869
2870 /* Tasking-related data for the thread */
2871 kmp_task_team_t *th_task_team; // Task team struct
2872 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2873 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2874 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2875 // at nested levels
2876 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2877 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2878 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2879 // tasking, thus safe to reap
2880
2881 /* More stuff for keeping track of active/sleeping threads (this part is
2882 written by the worker thread) */
2883 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2884 int th_active; // ! sleeping; 32 bits for TCR/TCW
2885 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2886 // 0 = not used in team; 1 = used in team;
2887 // 2 = transitioning to not used in team; 3 = transitioning to used in team
2888 struct cons_header *th_cons; // used for consistency check
2889#if KMP_USE_HIER_SCHED
2890 // used for hierarchical scheduling
2891 kmp_hier_private_bdata_t *th_hier_bar_data;
2892#endif
2893
2894 /* Add the syncronizing data which is cache aligned and padded. */
2895 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2896
2897 KMP_ALIGN_CACHE volatile kmp_int32
2898 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2899
2900#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2901#define NUM_LISTS 4
2902 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2903// allocation routines
2904#endif
2905
2906#if KMP_OS_WINDOWS
2907 kmp_win32_cond_t th_suspend_cv;
2908 kmp_win32_mutex_t th_suspend_mx;
2909 std::atomic<int> th_suspend_init;
2910#endif
2911#if KMP_OS_UNIX
2912 kmp_cond_align_t th_suspend_cv;
2913 kmp_mutex_align_t th_suspend_mx;
2914 std::atomic<int> th_suspend_init_count;
2915#endif
2916
2917#if USE_ITT_BUILD
2918 kmp_itt_mark_t th_itt_mark_single;
2919// alignment ???
2920#endif /* USE_ITT_BUILD */
2921#if KMP_STATS_ENABLED
2922 kmp_stats_list *th_stats;
2923#endif
2924#if KMP_OS_UNIX
2925 std::atomic<bool> th_blocking;
2926#endif
2927 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2928} kmp_base_info_t;
2929
2930typedef union KMP_ALIGN_CACHE kmp_info {
2931 double th_align; /* use worst case alignment */
2932 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2933 kmp_base_info_t th;
2934} kmp_info_t;
2935
2936// OpenMP thread team data structures
2937
2938typedef struct kmp_base_data {
2939 volatile kmp_uint32 t_value;
2940} kmp_base_data_t;
2941
2942typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2943 double dt_align; /* use worst case alignment */
2944 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2945 kmp_base_data_t dt;
2946} kmp_sleep_team_t;
2947
2948typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2949 double dt_align; /* use worst case alignment */
2950 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2951 kmp_base_data_t dt;
2952} kmp_ordered_team_t;
2953
2954typedef int (*launch_t)(int gtid);
2955
2956/* Minimum number of ARGV entries to malloc if necessary */
2957#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2958
2959// Set up how many argv pointers will fit in cache lines containing
2960// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2961// larger value for more space between the primary write/worker read section and
2962// read/write by all section seems to buy more performance on EPCC PARALLEL.
2963#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2964#define KMP_INLINE_ARGV_BYTES \
2965 (4 * CACHE_LINE - \
2966 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2967 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2968 CACHE_LINE))
2969#else
2970#define KMP_INLINE_ARGV_BYTES \
2971 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2972#endif
2973#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2974
2975typedef struct KMP_ALIGN_CACHE kmp_base_team {
2976 // Synchronization Data
2977 // ---------------------------------------------------------------------------
2978 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2979 kmp_balign_team_t t_bar[bs_last_barrier];
2980 std::atomic<int> t_construct; // count of single directive encountered by team
2981 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2982
2983 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2984 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2985 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2986
2987 // Primary thread only
2988 // ---------------------------------------------------------------------------
2989 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2990 int t_master_this_cons; // "this_construct" single counter of primary thread
2991 // in parent team
2992 ident_t *t_ident; // if volatile, have to change too much other crud to
2993 // volatile too
2994 kmp_team_p *t_parent; // parent team
2995 kmp_team_p *t_next_pool; // next free team in the team pool
2996 kmp_disp_t *t_dispatch; // thread's dispatch data
2997 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2998 kmp_proc_bind_t t_proc_bind; // bind type for par region
2999#if USE_ITT_BUILD
3000 kmp_uint64 t_region_time; // region begin timestamp
3001#endif /* USE_ITT_BUILD */
3002
3003 // Primary thread write, workers read
3004 // --------------------------------------------------------------------------
3005 KMP_ALIGN_CACHE void **t_argv;
3006 int t_argc;
3007 int t_nproc; // number of threads in team
3008 microtask_t t_pkfn;
3009 launch_t t_invoke; // procedure to launch the microtask
3010
3011#if OMPT_SUPPORT
3012 ompt_team_info_t ompt_team_info;
3013 ompt_lw_taskteam_t *ompt_serialized_team_info;
3014#endif
3015
3016#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3017 kmp_int8 t_fp_control_saved;
3018 kmp_int8 t_pad2b;
3019 kmp_int16 t_x87_fpu_control_word; // FP control regs
3020 kmp_uint32 t_mxcsr;
3021#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3022
3023 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3024
3025 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3026 kmp_taskdata_t
3027 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3028 int t_level; // nested parallel level
3029
3030 KMP_ALIGN_CACHE int t_max_argc;
3031 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3032 int t_serialized; // levels deep of serialized teams
3033 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3034 int t_id; // team's id, assigned by debugger.
3035 int t_active_level; // nested active parallel level
3036 kmp_r_sched_t t_sched; // run-time schedule for the team
3037#if KMP_AFFINITY_SUPPORTED
3038 int t_first_place; // first & last place in parent thread's partition.
3039 int t_last_place; // Restore these values to primary thread after par region.
3040#endif // KMP_AFFINITY_SUPPORTED
3041 int t_display_affinity;
3042 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3043 // omp_set_num_threads() call
3044 omp_allocator_handle_t t_def_allocator; /* default allocator */
3045
3046// Read/write by workers as well
3047#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3048 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3049 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3050 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3051 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3052 char dummy_padding[1024];
3053#endif
3054 // Internal control stack for additional nested teams.
3055 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3056 // for SERIALIZED teams nested 2 or more levels deep
3057 // typed flag to store request state of cancellation
3058 std::atomic<kmp_int32> t_cancel_request;
3059 int t_master_active; // save on fork, restore on join
3060 void *t_copypriv_data; // team specific pointer to copyprivate data array
3061#if KMP_OS_WINDOWS
3062 std::atomic<kmp_uint32> t_copyin_counter;
3063#endif
3064#if USE_ITT_BUILD
3065 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3066#endif /* USE_ITT_BUILD */
3067 distributedBarrier *b; // Distributed barrier data associated with team
3068} kmp_base_team_t;
3069
3070union KMP_ALIGN_CACHE kmp_team {
3071 kmp_base_team_t t;
3072 double t_align; /* use worst case alignment */
3073 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3074};
3075
3076typedef union KMP_ALIGN_CACHE kmp_time_global {
3077 double dt_align; /* use worst case alignment */
3078 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3079 kmp_base_data_t dt;
3080} kmp_time_global_t;
3081
3082typedef struct kmp_base_global {
3083 /* cache-aligned */
3084 kmp_time_global_t g_time;
3085
3086 /* non cache-aligned */
3087 volatile int g_abort;
3088 volatile int g_done;
3089
3090 int g_dynamic;
3091 enum dynamic_mode g_dynamic_mode;
3092} kmp_base_global_t;
3093
3094typedef union KMP_ALIGN_CACHE kmp_global {
3095 kmp_base_global_t g;
3096 double g_align; /* use worst case alignment */
3097 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3098} kmp_global_t;
3099
3100typedef struct kmp_base_root {
3101 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3102 // (r_in_parallel>= 0)
3103 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3104 // the synch overhead or keeping r_active
3105 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3106 // keeps a count of active parallel regions per root
3107 std::atomic<int> r_in_parallel;
3108 // GEH: This is misnamed, should be r_active_levels
3109 kmp_team_t *r_root_team;
3110 kmp_team_t *r_hot_team;
3111 kmp_info_t *r_uber_thread;
3112 kmp_lock_t r_begin_lock;
3113 volatile int r_begin;
3114 int r_blocktime; /* blocktime for this root and descendants */
3115#if KMP_AFFINITY_SUPPORTED
3116 int r_affinity_assigned;
3117#endif // KMP_AFFINITY_SUPPORTED
3118} kmp_base_root_t;
3119
3120typedef union KMP_ALIGN_CACHE kmp_root {
3121 kmp_base_root_t r;
3122 double r_align; /* use worst case alignment */
3123 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3124} kmp_root_t;
3125
3126struct fortran_inx_info {
3127 kmp_int32 data;
3128};
3129
3130// This list type exists to hold old __kmp_threads arrays so that
3131// old references to them may complete while reallocation takes place when
3132// expanding the array. The items in this list are kept alive until library
3133// shutdown.
3134typedef struct kmp_old_threads_list_t {
3135 kmp_info_t **threads;
3136 struct kmp_old_threads_list_t *next;
3137} kmp_old_threads_list_t;
3138
3139/* ------------------------------------------------------------------------ */
3140
3141extern int __kmp_settings;
3142extern int __kmp_duplicate_library_ok;
3143#if USE_ITT_BUILD
3144extern int __kmp_forkjoin_frames;
3145extern int __kmp_forkjoin_frames_mode;
3146#endif
3147extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3148extern int __kmp_determ_red;
3149
3150#ifdef KMP_DEBUG
3151extern int kmp_a_debug;
3152extern int kmp_b_debug;
3153extern int kmp_c_debug;
3154extern int kmp_d_debug;
3155extern int kmp_e_debug;
3156extern int kmp_f_debug;
3157#endif /* KMP_DEBUG */
3158
3159/* For debug information logging using rotating buffer */
3160#define KMP_DEBUG_BUF_LINES_INIT 512
3161#define KMP_DEBUG_BUF_LINES_MIN 1
3162
3163#define KMP_DEBUG_BUF_CHARS_INIT 128
3164#define KMP_DEBUG_BUF_CHARS_MIN 2
3165
3166extern int
3167 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3168extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3169extern int
3170 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3171extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3172 entry pointer */
3173
3174extern char *__kmp_debug_buffer; /* Debug buffer itself */
3175extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3176 printed in buffer so far */
3177extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3178 recommended in warnings */
3179/* end rotating debug buffer */
3180
3181#ifdef KMP_DEBUG
3182extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3183
3184#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3185extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3186#define KMP_PAR_RANGE_FILENAME_LEN 1024
3187extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3188extern int __kmp_par_range_lb;
3189extern int __kmp_par_range_ub;
3190#endif
3191
3192/* For printing out dynamic storage map for threads and teams */
3193extern int
3194 __kmp_storage_map; /* True means print storage map for threads and teams */
3195extern int __kmp_storage_map_verbose; /* True means storage map includes
3196 placement info */
3197extern int __kmp_storage_map_verbose_specified;
3198
3199#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3200extern kmp_cpuinfo_t __kmp_cpuinfo;
3201static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3202#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3203static inline bool __kmp_is_hybrid_cpu() { return true; }
3204#else
3205static inline bool __kmp_is_hybrid_cpu() { return false; }
3206#endif
3207
3208extern volatile int __kmp_init_serial;
3209extern volatile int __kmp_init_gtid;
3210extern volatile int __kmp_init_common;
3211extern volatile int __kmp_need_register_serial;
3212extern volatile int __kmp_init_middle;
3213extern volatile int __kmp_init_parallel;
3214#if KMP_USE_MONITOR
3215extern volatile int __kmp_init_monitor;
3216#endif
3217extern volatile int __kmp_init_user_locks;
3218extern volatile int __kmp_init_hidden_helper_threads;
3219extern int __kmp_init_counter;
3220extern int __kmp_root_counter;
3221extern int __kmp_version;
3222
3223/* list of address of allocated caches for commons */
3224extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3225
3226/* Barrier algorithm types and options */
3227extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3228extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3229extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3230extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3231extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3232extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3233extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3234extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3235extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3236extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3237extern char const *__kmp_barrier_type_name[bs_last_barrier];
3238extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3239
3240/* Global Locks */
3241extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3242extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3243extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3244extern kmp_bootstrap_lock_t
3245 __kmp_exit_lock; /* exit() is not always thread-safe */
3246#if KMP_USE_MONITOR
3247extern kmp_bootstrap_lock_t
3248 __kmp_monitor_lock; /* control monitor thread creation */
3249#endif
3250extern kmp_bootstrap_lock_t
3251 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3252 __kmp_threads expansion to co-exist */
3253
3254extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3255extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3256extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3257
3258extern enum library_type __kmp_library;
3259
3260extern enum sched_type __kmp_sched; /* default runtime scheduling */
3261extern enum sched_type __kmp_static; /* default static scheduling method */
3262extern enum sched_type __kmp_guided; /* default guided scheduling method */
3263extern enum sched_type __kmp_auto; /* default auto scheduling method */
3264extern int __kmp_chunk; /* default runtime chunk size */
3265extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3266
3267extern size_t __kmp_stksize; /* stack size per thread */
3268#if KMP_USE_MONITOR
3269extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3270#endif
3271extern size_t __kmp_stkoffset; /* stack offset per thread */
3272extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3273
3274extern size_t
3275 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3276extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3277extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3278extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3279extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3280extern int __kmp_generate_warnings; /* should we issue warnings? */
3281extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3282
3283#ifdef DEBUG_SUSPEND
3284extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3285#endif
3286
3287extern kmp_int32 __kmp_use_yield;
3288extern kmp_int32 __kmp_use_yield_exp_set;
3289extern kmp_uint32 __kmp_yield_init;
3290extern kmp_uint32 __kmp_yield_next;
3291extern kmp_uint64 __kmp_pause_init;
3292
3293/* ------------------------------------------------------------------------- */
3294extern int __kmp_allThreadsSpecified;
3295
3296extern size_t __kmp_align_alloc;
3297/* following data protected by initialization routines */
3298extern int __kmp_xproc; /* number of processors in the system */
3299extern int __kmp_avail_proc; /* number of processors available to the process */
3300extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3301extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3302// maximum total number of concurrently-existing threads on device
3303extern int __kmp_max_nth;
3304// maximum total number of concurrently-existing threads in a contention group
3305extern int __kmp_cg_max_nth;
3306extern int __kmp_teams_max_nth; // max threads used in a teams construct
3307extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3308 __kmp_root */
3309extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3310 region a la OMP_NUM_THREADS */
3311extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3312 initialization */
3313extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3314 used (fixed) */
3315extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3316 (__kmpc_threadprivate_cached()) */
3317extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3318 blocking (env setting) */
3319extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3320#if KMP_USE_MONITOR
3321extern int
3322 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3323extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3324 blocking */
3325#endif
3326#ifdef KMP_ADJUST_BLOCKTIME
3327extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3328#endif /* KMP_ADJUST_BLOCKTIME */
3329#ifdef KMP_DFLT_NTH_CORES
3330extern int __kmp_ncores; /* Total number of cores for threads placement */
3331#endif
3332/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3333extern int __kmp_abort_delay;
3334
3335extern int __kmp_need_register_atfork_specified;
3336extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3337 to install fork handler */
3338extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3339 0 - not set, will be set at runtime
3340 1 - using stack search
3341 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3342 X*) or TlsGetValue(Windows* OS))
3343 3 - static TLS (__declspec(thread) __kmp_gtid),
3344 Linux* OS .so only. */
3345extern int
3346 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3347#ifdef KMP_TDATA_GTID
3348extern KMP_THREAD_LOCAL int __kmp_gtid;
3349#endif
3350extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3351extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3352#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3353extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3354extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3355extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3356#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3357
3358// max_active_levels for nested parallelism enabled by default via
3359// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3360extern int __kmp_dflt_max_active_levels;
3361// Indicates whether value of __kmp_dflt_max_active_levels was already
3362// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3363extern bool __kmp_dflt_max_active_levels_set;
3364extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3365 concurrent execution per team */
3366#if KMP_NESTED_HOT_TEAMS
3367extern int __kmp_hot_teams_mode;
3368extern int __kmp_hot_teams_max_level;
3369#endif
3370
3371#if KMP_OS_LINUX
3372extern enum clock_function_type __kmp_clock_function;
3373extern int __kmp_clock_function_param;
3374#endif /* KMP_OS_LINUX */
3375
3376#if KMP_MIC_SUPPORTED
3377extern enum mic_type __kmp_mic_type;
3378#endif
3379
3380#ifdef USE_LOAD_BALANCE
3381extern double __kmp_load_balance_interval; // load balance algorithm interval
3382#endif /* USE_LOAD_BALANCE */
3383
3384// OpenMP 3.1 - Nested num threads array
3385typedef struct kmp_nested_nthreads_t {
3386 int *nth;
3387 int size;
3388 int used;
3389} kmp_nested_nthreads_t;
3390
3391extern kmp_nested_nthreads_t __kmp_nested_nth;
3392
3393#if KMP_USE_ADAPTIVE_LOCKS
3394
3395// Parameters for the speculative lock backoff system.
3396struct kmp_adaptive_backoff_params_t {
3397 // Number of soft retries before it counts as a hard retry.
3398 kmp_uint32 max_soft_retries;
3399 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3400 // the right
3401 kmp_uint32 max_badness;
3402};
3403
3404extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3405
3406#if KMP_DEBUG_ADAPTIVE_LOCKS
3407extern const char *__kmp_speculative_statsfile;
3408#endif
3409
3410#endif // KMP_USE_ADAPTIVE_LOCKS
3411
3412extern int __kmp_display_env; /* TRUE or FALSE */
3413extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3414extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3415extern int __kmp_nteams;
3416extern int __kmp_teams_thread_limit;
3417
3418/* ------------------------------------------------------------------------- */
3419
3420/* the following are protected by the fork/join lock */
3421/* write: lock read: anytime */
3422extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3423/* Holds old arrays of __kmp_threads until library shutdown */
3424extern kmp_old_threads_list_t *__kmp_old_threads_list;
3425/* read/write: lock */
3426extern volatile kmp_team_t *__kmp_team_pool;
3427extern volatile kmp_info_t *__kmp_thread_pool;
3428extern kmp_info_t *__kmp_thread_pool_insert_pt;
3429
3430// total num threads reachable from some root thread including all root threads
3431extern volatile int __kmp_nth;
3432/* total number of threads reachable from some root thread including all root
3433 threads, and those in the thread pool */
3434extern volatile int __kmp_all_nth;
3435extern std::atomic<int> __kmp_thread_pool_active_nth;
3436
3437extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3438/* end data protected by fork/join lock */
3439/* ------------------------------------------------------------------------- */
3440
3441#define __kmp_get_gtid() __kmp_get_global_thread_id()
3442#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3443#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3444#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3445#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3446
3447// AT: Which way is correct?
3448// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3449// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3450#define __kmp_get_team_num_threads(gtid) \
3451 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3452
3453static inline bool KMP_UBER_GTID(int gtid) {
3454 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3455 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3456 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3457 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3458}
3459
3460static inline int __kmp_tid_from_gtid(int gtid) {
3461 KMP_DEBUG_ASSERT(gtid >= 0);
3462 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3463}
3464
3465static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3466 KMP_DEBUG_ASSERT(tid >= 0 && team);
3467 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3468}
3469
3470static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3471 KMP_DEBUG_ASSERT(thr);
3472 return thr->th.th_info.ds.ds_gtid;
3473}
3474
3475static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3476 KMP_DEBUG_ASSERT(gtid >= 0);
3477 return __kmp_threads[gtid];
3478}
3479
3480static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3481 KMP_DEBUG_ASSERT(gtid >= 0);
3482 return __kmp_threads[gtid]->th.th_team;
3483}
3484
3485static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3486 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3487 KMP_FATAL(ThreadIdentInvalid);
3488}
3489
3490#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3491extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3492extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3493extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3494extern int __kmp_mwait_hints; // Hints to pass in to mwait
3495#endif
3496
3497#if KMP_HAVE_UMWAIT
3498extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3499extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3500extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3501extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3502#endif
3503
3504/* ------------------------------------------------------------------------- */
3505
3506extern kmp_global_t __kmp_global; /* global status */
3507
3508extern kmp_info_t __kmp_monitor;
3509// For Debugging Support Library
3510extern std::atomic<kmp_int32> __kmp_team_counter;
3511// For Debugging Support Library
3512extern std::atomic<kmp_int32> __kmp_task_counter;
3513
3514#if USE_DEBUGGER
3515#define _KMP_GEN_ID(counter) \
3516 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3517#else
3518#define _KMP_GEN_ID(counter) (~0)
3519#endif /* USE_DEBUGGER */
3520
3521#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3522#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3523
3524/* ------------------------------------------------------------------------ */
3525
3526extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3527 size_t size, char const *format, ...);
3528
3529extern void __kmp_serial_initialize(void);
3530extern void __kmp_middle_initialize(void);
3531extern void __kmp_parallel_initialize(void);
3532
3533extern void __kmp_internal_begin(void);
3534extern void __kmp_internal_end_library(int gtid);
3535extern void __kmp_internal_end_thread(int gtid);
3536extern void __kmp_internal_end_atexit(void);
3537extern void __kmp_internal_end_dtor(void);
3538extern void __kmp_internal_end_dest(void *);
3539
3540extern int __kmp_register_root(int initial_thread);
3541extern void __kmp_unregister_root(int gtid);
3542extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3543
3544extern int __kmp_ignore_mppbeg(void);
3545extern int __kmp_ignore_mppend(void);
3546
3547extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3548extern void __kmp_exit_single(int gtid);
3549
3550extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3551extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3552
3553#ifdef USE_LOAD_BALANCE
3554extern int __kmp_get_load_balance(int);
3555#endif
3556
3557extern int __kmp_get_global_thread_id(void);
3558extern int __kmp_get_global_thread_id_reg(void);
3559extern void __kmp_exit_thread(int exit_status);
3560extern void __kmp_abort(char const *format, ...);
3561extern void __kmp_abort_thread(void);
3562KMP_NORETURN extern void __kmp_abort_process(void);
3563extern void __kmp_warn(char const *format, ...);
3564
3565extern void __kmp_set_num_threads(int new_nth, int gtid);
3566
3567// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3568// registered.
3569static inline kmp_info_t *__kmp_entry_thread() {
3570 int gtid = __kmp_entry_gtid();
3571
3572 return __kmp_threads[gtid];
3573}
3574
3575extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3576extern int __kmp_get_max_active_levels(int gtid);
3577extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3578extern int __kmp_get_team_size(int gtid, int level);
3579extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3580extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3581
3582extern unsigned short __kmp_get_random(kmp_info_t *thread);
3583extern void __kmp_init_random(kmp_info_t *thread);
3584
3585extern kmp_r_sched_t __kmp_get_schedule_global(void);
3586extern void __kmp_adjust_num_threads(int new_nproc);
3587extern void __kmp_check_stksize(size_t *val);
3588
3589extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3590extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3591extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3592#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3593#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3594#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3595
3596#if USE_FAST_MEMORY
3597extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3598 size_t size KMP_SRC_LOC_DECL);
3599extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3600extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3601extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3602#define __kmp_fast_allocate(this_thr, size) \
3603 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3604#define __kmp_fast_free(this_thr, ptr) \
3605 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3606#endif
3607
3608extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3609extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3610 size_t elsize KMP_SRC_LOC_DECL);
3611extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3612 size_t size KMP_SRC_LOC_DECL);
3613extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3614#define __kmp_thread_malloc(th, size) \
3615 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3616#define __kmp_thread_calloc(th, nelem, elsize) \
3617 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3618#define __kmp_thread_realloc(th, ptr, size) \
3619 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3620#define __kmp_thread_free(th, ptr) \
3621 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3622
3623extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3624
3625extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3626 kmp_proc_bind_t proc_bind);
3627extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3628 int num_threads);
3629extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3630 int num_teams_ub, int num_threads);
3631
3632extern void __kmp_yield();
3633
3634extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3635 enum sched_type schedule, kmp_int32 lb,
3636 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3637extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3638 enum sched_type schedule, kmp_uint32 lb,
3639 kmp_uint32 ub, kmp_int32 st,
3640 kmp_int32 chunk);
3641extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3642 enum sched_type schedule, kmp_int64 lb,
3643 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3644extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3645 enum sched_type schedule, kmp_uint64 lb,
3646 kmp_uint64 ub, kmp_int64 st,
3647 kmp_int64 chunk);
3648
3649extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3650 kmp_int32 *p_last, kmp_int32 *p_lb,
3651 kmp_int32 *p_ub, kmp_int32 *p_st);
3652extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3653 kmp_int32 *p_last, kmp_uint32 *p_lb,
3654 kmp_uint32 *p_ub, kmp_int32 *p_st);
3655extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3656 kmp_int32 *p_last, kmp_int64 *p_lb,
3657 kmp_int64 *p_ub, kmp_int64 *p_st);
3658extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3659 kmp_int32 *p_last, kmp_uint64 *p_lb,
3660 kmp_uint64 *p_ub, kmp_int64 *p_st);
3661
3662extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3663extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3664extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3665extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3666
3667#ifdef KMP_GOMP_COMPAT
3668
3669extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3670 enum sched_type schedule, kmp_int32 lb,
3671 kmp_int32 ub, kmp_int32 st,
3672 kmp_int32 chunk, int push_ws);
3673extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3674 enum sched_type schedule, kmp_uint32 lb,
3675 kmp_uint32 ub, kmp_int32 st,
3676 kmp_int32 chunk, int push_ws);
3677extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3678 enum sched_type schedule, kmp_int64 lb,
3679 kmp_int64 ub, kmp_int64 st,
3680 kmp_int64 chunk, int push_ws);
3681extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3682 enum sched_type schedule, kmp_uint64 lb,
3683 kmp_uint64 ub, kmp_int64 st,
3684 kmp_int64 chunk, int push_ws);
3685extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3686extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3687extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3688extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3689
3690#endif /* KMP_GOMP_COMPAT */
3691
3692extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3693extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3694extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3695extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3696extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3697extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3698 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3699 void *obj);
3700extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3701 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3702
3703extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3704 int final_spin
3705#if USE_ITT_BUILD
3706 ,
3707 void *itt_sync_obj
3708#endif
3709);
3710extern void __kmp_release_64(kmp_flag_64<> *flag);
3711
3712extern void __kmp_infinite_loop(void);
3713
3714extern void __kmp_cleanup(void);
3715
3716#if KMP_HANDLE_SIGNALS
3717extern int __kmp_handle_signals;
3718extern void __kmp_install_signals(int parallel_init);
3719extern void __kmp_remove_signals(void);
3720#endif
3721
3722extern void __kmp_clear_system_time(void);
3723extern void __kmp_read_system_time(double *delta);
3724
3725extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3726
3727extern void __kmp_expand_host_name(char *buffer, size_t size);
3728extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3729
3730#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3731extern void
3732__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3733#endif
3734
3735extern void
3736__kmp_runtime_initialize(void); /* machine specific initialization */
3737extern void __kmp_runtime_destroy(void);
3738
3739#if KMP_AFFINITY_SUPPORTED
3740extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3741 kmp_affin_mask_t *mask);
3742extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3743 kmp_affin_mask_t *mask);
3744extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3745extern void __kmp_affinity_uninitialize(void);
3746extern void __kmp_affinity_set_init_mask(
3747 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3748extern void __kmp_affinity_set_place(int gtid);
3749extern void __kmp_affinity_determine_capable(const char *env_var);
3750extern int __kmp_aux_set_affinity(void **mask);
3751extern int __kmp_aux_get_affinity(void **mask);
3752extern int __kmp_aux_get_affinity_max_proc();
3753extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3754extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3755extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3756extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3757#if KMP_OS_LINUX || KMP_OS_FREEBSD
3758extern int kmp_set_thread_affinity_mask_initial(void);
3759#endif
3760static inline void __kmp_assign_root_init_mask() {
3761 int gtid = __kmp_entry_gtid();
3762 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3763 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3764 __kmp_affinity_set_init_mask(gtid, TRUE);
3765 r->r.r_affinity_assigned = TRUE;
3766 }
3767}
3768static inline void __kmp_reset_root_init_mask(int gtid) {
3769 if (!KMP_AFFINITY_CAPABLE())
3770 return;
3771 kmp_info_t *th = __kmp_threads[gtid];
3772 kmp_root_t *r = th->th.th_root;
3773 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3774 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3775 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3776 r->r.r_affinity_assigned = FALSE;
3777 }
3778}
3779#else /* KMP_AFFINITY_SUPPORTED */
3780#define __kmp_assign_root_init_mask() /* Nothing */
3781static inline void __kmp_reset_root_init_mask(int gtid) {}
3782#endif /* KMP_AFFINITY_SUPPORTED */
3783// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3784// format string is for affinity, so platforms that do not support
3785// affinity can still use the other fields, e.g., %n for num_threads
3786extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3787 kmp_str_buf_t *buffer);
3788extern void __kmp_aux_display_affinity(int gtid, const char *format);
3789
3790extern void __kmp_cleanup_hierarchy();
3791extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3792
3793#if KMP_USE_FUTEX
3794
3795extern int __kmp_futex_determine_capable(void);
3796
3797#endif // KMP_USE_FUTEX
3798
3799extern void __kmp_gtid_set_specific(int gtid);
3800extern int __kmp_gtid_get_specific(void);
3801
3802extern double __kmp_read_cpu_time(void);
3803
3804extern int __kmp_read_system_info(struct kmp_sys_info *info);
3805
3806#if KMP_USE_MONITOR
3807extern void __kmp_create_monitor(kmp_info_t *th);
3808#endif
3809
3810extern void *__kmp_launch_thread(kmp_info_t *thr);
3811
3812extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3813
3814#if KMP_OS_WINDOWS
3815extern int __kmp_still_running(kmp_info_t *th);
3816extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3817extern void __kmp_free_handle(kmp_thread_t tHandle);
3818#endif
3819
3820#if KMP_USE_MONITOR
3821extern void __kmp_reap_monitor(kmp_info_t *th);
3822#endif
3823extern void __kmp_reap_worker(kmp_info_t *th);
3824extern void __kmp_terminate_thread(int gtid);
3825
3826extern int __kmp_try_suspend_mx(kmp_info_t *th);
3827extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3828extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3829
3830extern void __kmp_elapsed(double *);
3831extern void __kmp_elapsed_tick(double *);
3832
3833extern void __kmp_enable(int old_state);
3834extern void __kmp_disable(int *old_state);
3835
3836extern void __kmp_thread_sleep(int millis);
3837
3838extern void __kmp_common_initialize(void);
3839extern void __kmp_common_destroy(void);
3840extern void __kmp_common_destroy_gtid(int gtid);
3841
3842#if KMP_OS_UNIX
3843extern void __kmp_register_atfork(void);
3844#endif
3845extern void __kmp_suspend_initialize(void);
3846extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3847extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3848
3849extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3850 int tid);
3851extern kmp_team_t *
3852__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3853#if OMPT_SUPPORT
3854 ompt_data_t ompt_parallel_data,
3855#endif
3856 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3857 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3858extern void __kmp_free_thread(kmp_info_t *);
3859extern void __kmp_free_team(kmp_root_t *,
3860 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3861extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3862
3863/* ------------------------------------------------------------------------ */
3864
3865extern void __kmp_initialize_bget(kmp_info_t *th);
3866extern void __kmp_finalize_bget(kmp_info_t *th);
3867
3868KMP_EXPORT void *kmpc_malloc(size_t size);
3869KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3870KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3871KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3872KMP_EXPORT void kmpc_free(void *ptr);
3873
3874/* declarations for internal use */
3875
3876extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3877 size_t reduce_size, void *reduce_data,
3878 void (*reduce)(void *, void *));
3879extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3880extern int __kmp_barrier_gomp_cancel(int gtid);
3881
3886enum fork_context_e {
3887 fork_context_gnu,
3889 fork_context_intel,
3890 fork_context_last
3891};
3892extern int __kmp_fork_call(ident_t *loc, int gtid,
3893 enum fork_context_e fork_context, kmp_int32 argc,
3894 microtask_t microtask, launch_t invoker,
3895 kmp_va_list ap);
3896
3897extern void __kmp_join_call(ident_t *loc, int gtid
3898#if OMPT_SUPPORT
3899 ,
3900 enum fork_context_e fork_context
3901#endif
3902 ,
3903 int exit_teams = 0);
3904
3905extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3906extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3907extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3908extern int __kmp_invoke_task_func(int gtid);
3909extern void __kmp_run_before_invoked_task(int gtid, int tid,
3910 kmp_info_t *this_thr,
3911 kmp_team_t *team);
3912extern void __kmp_run_after_invoked_task(int gtid, int tid,
3913 kmp_info_t *this_thr,
3914 kmp_team_t *team);
3915
3916// should never have been exported
3917KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3918extern int __kmp_invoke_teams_master(int gtid);
3919extern void __kmp_teams_master(int gtid);
3920extern int __kmp_aux_get_team_num();
3921extern int __kmp_aux_get_num_teams();
3922extern void __kmp_save_internal_controls(kmp_info_t *thread);
3923extern void __kmp_user_set_library(enum library_type arg);
3924extern void __kmp_aux_set_library(enum library_type arg);
3925extern void __kmp_aux_set_stacksize(size_t arg);
3926extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3927extern void __kmp_aux_set_defaults(char const *str, size_t len);
3928
3929/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3930void kmpc_set_blocktime(int arg);
3931void ompc_set_nested(int flag);
3932void ompc_set_dynamic(int flag);
3933void ompc_set_num_threads(int arg);
3934
3935extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3936 kmp_team_t *team, int tid);
3937extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3938extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3939 kmp_tasking_flags_t *flags,
3940 size_t sizeof_kmp_task_t,
3941 size_t sizeof_shareds,
3942 kmp_routine_entry_t task_entry);
3943extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3944 kmp_team_t *team, int tid,
3945 int set_curr_task);
3946extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3947extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3948
3949extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3950 int gtid,
3951 kmp_task_t *task);
3952extern void __kmp_fulfill_event(kmp_event_t *event);
3953
3954extern void __kmp_free_task_team(kmp_info_t *thread,
3955 kmp_task_team_t *task_team);
3956extern void __kmp_reap_task_teams(void);
3957extern void __kmp_wait_to_unref_task_teams(void);
3958extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3959 int always);
3960extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3961extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3962#if USE_ITT_BUILD
3963 ,
3964 void *itt_sync_obj
3965#endif /* USE_ITT_BUILD */
3966 ,
3967 int wait = 1);
3968extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3969 int gtid);
3970
3971extern int __kmp_is_address_mapped(void *addr);
3972extern kmp_uint64 __kmp_hardware_timestamp(void);
3973
3974#if KMP_OS_UNIX
3975extern int __kmp_read_from_file(char const *path, char const *format, ...);
3976#endif
3977
3978/* ------------------------------------------------------------------------ */
3979//
3980// Assembly routines that have no compiler intrinsic replacement
3981//
3982
3983extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3984 void *argv[]
3985#if OMPT_SUPPORT
3986 ,
3987 void **exit_frame_ptr
3988#endif
3989);
3990
3991/* ------------------------------------------------------------------------ */
3992
3993KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3994KMP_EXPORT void __kmpc_end(ident_t *);
3995
3996KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3997 kmpc_ctor_vec ctor,
3998 kmpc_cctor_vec cctor,
3999 kmpc_dtor_vec dtor,
4000 size_t vector_length);
4001KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4002 kmpc_ctor ctor, kmpc_cctor cctor,
4003 kmpc_dtor dtor);
4004KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4005 void *data, size_t size);
4006
4007KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4008KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4009KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4010KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4011
4012KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4013KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4014 kmpc_micro microtask, ...);
4015KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4016 kmpc_micro microtask, kmp_int32 cond,
4017 void *args);
4018
4019KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4020KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4021
4022KMP_EXPORT void __kmpc_flush(ident_t *);
4023KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4024KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4025KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4026KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4027 kmp_int32 filter);
4028KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4029KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4030KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4031KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4032 kmp_critical_name *);
4033KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4034 kmp_critical_name *);
4035KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4036 kmp_critical_name *, uint32_t hint);
4037
4038KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4039KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4040
4041KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4042 kmp_int32 global_tid);
4043
4044KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4045KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4046
4047KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4048KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4049 kmp_int32 numberOfSections);
4050KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4051
4052KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4053 kmp_int32 schedtype, kmp_int32 *plastiter,
4054 kmp_int *plower, kmp_int *pupper,
4055 kmp_int *pstride, kmp_int incr,
4056 kmp_int chunk);
4057
4058KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4059
4060KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4061 size_t cpy_size, void *cpy_data,
4062 void (*cpy_func)(void *, void *),
4063 kmp_int32 didit);
4064
4065KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4066 void *cpy_data);
4067
4068extern void KMPC_SET_NUM_THREADS(int arg);
4069extern void KMPC_SET_DYNAMIC(int flag);
4070extern void KMPC_SET_NESTED(int flag);
4071
4072/* OMP 3.0 tasking interface routines */
4073KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4074 kmp_task_t *new_task);
4075KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4076 kmp_int32 flags,
4077 size_t sizeof_kmp_task_t,
4078 size_t sizeof_shareds,
4079 kmp_routine_entry_t task_entry);
4080KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4081 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4082 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4083KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4084 kmp_task_t *task);
4085KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4086 kmp_task_t *task);
4087KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4088 kmp_task_t *new_task);
4089KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4090KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4091 int end_part);
4092
4093#if TASK_UNUSED
4094void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4095void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4096 kmp_task_t *task);
4097#endif // TASK_UNUSED
4098
4099/* ------------------------------------------------------------------------ */
4100
4101KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4102KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4103
4104KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4105 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4106 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4107 kmp_depend_info_t *noalias_dep_list);
4108KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4109 kmp_int32 ndeps,
4110 kmp_depend_info_t *dep_list,
4111 kmp_int32 ndeps_noalias,
4112 kmp_depend_info_t *noalias_dep_list);
4113/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4114 * Placeholder for taskwait with nowait clause.*/
4115KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4116 kmp_int32 ndeps,
4117 kmp_depend_info_t *dep_list,
4118 kmp_int32 ndeps_noalias,
4119 kmp_depend_info_t *noalias_dep_list,
4120 kmp_int32 has_no_wait);
4121
4122extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4123 bool serialize_immediate);
4124
4125KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4126 kmp_int32 cncl_kind);
4127KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4128 kmp_int32 cncl_kind);
4129KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4130KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4131
4132KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4133KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4134KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4135 kmp_int32 if_val, kmp_uint64 *lb,
4136 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4137 kmp_int32 sched, kmp_uint64 grainsize,
4138 void *task_dup);
4139KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4140 kmp_task_t *task, kmp_int32 if_val,
4141 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4142 kmp_int32 nogroup, kmp_int32 sched,
4143 kmp_uint64 grainsize, kmp_int32 modifier,
4144 void *task_dup);
4145KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4146KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4147KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4148KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4149 int is_ws, int num,
4150 void *data);
4151KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4152 int num, void *data);
4153KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4154 int is_ws);
4155KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4156 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4157 kmp_task_affinity_info_t *affin_list);
4158KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4159KMP_EXPORT int __kmp_get_max_teams(void);
4160KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4161KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4162
4163/* Interface target task integration */
4164KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4165KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4166
4167/* Lock interface routines (fast versions with gtid passed in) */
4168KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4169 void **user_lock);
4170KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4171 void **user_lock);
4172KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4173 void **user_lock);
4174KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4175 void **user_lock);
4176KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4177KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4178 void **user_lock);
4179KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4180 void **user_lock);
4181KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4182 void **user_lock);
4183KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4184KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4185 void **user_lock);
4186
4187KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4188 void **user_lock, uintptr_t hint);
4189KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4190 void **user_lock,
4191 uintptr_t hint);
4192
4193#if OMPX_TASKGRAPH
4194// Taskgraph's Record & Replay mechanism
4195// __kmp_tdg_is_recording: check whether a given TDG is recording
4196// status: the tdg's current status
4197static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4198 return status == KMP_TDG_RECORDING;
4199}
4200
4201KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4202 kmp_int32 input_flags,
4203 kmp_int32 tdg_id);
4204KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4205 kmp_int32 input_flags, kmp_int32 tdg_id);
4206#endif
4207/* Interface to fast scalable reduce methods routines */
4208
4209KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4210 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4211 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4212 kmp_critical_name *lck);
4213KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4214 kmp_critical_name *lck);
4215KMP_EXPORT kmp_int32 __kmpc_reduce(
4216 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4217 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4218 kmp_critical_name *lck);
4219KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4220 kmp_critical_name *lck);
4221
4222/* Internal fast reduction routines */
4223
4224extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4225 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4226 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4227 kmp_critical_name *lck);
4228
4229// this function is for testing set/get/determine reduce method
4230KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4231
4232KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4233KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4234
4235// C++ port
4236// missing 'extern "C"' declarations
4237
4238KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4239KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4240KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4241 kmp_int32 num_threads);
4242
4243KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4244 int proc_bind);
4245KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4246 kmp_int32 num_teams,
4247 kmp_int32 num_threads);
4248/* Function for OpenMP 5.1 num_teams clause */
4249KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4250 kmp_int32 num_teams_lb,
4251 kmp_int32 num_teams_ub,
4252 kmp_int32 num_threads);
4253KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4254 kmpc_micro microtask, ...);
4255struct kmp_dim { // loop bounds info casted to kmp_int64
4256 kmp_int64 lo; // lower
4257 kmp_int64 up; // upper
4258 kmp_int64 st; // stride
4259};
4260KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4261 kmp_int32 num_dims,
4262 const struct kmp_dim *dims);
4263KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4264 const kmp_int64 *vec);
4265KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4266 const kmp_int64 *vec);
4267KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4268
4269KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4270 void *data, size_t size,
4271 void ***cache);
4272
4273// The routines below are not exported.
4274// Consider making them 'static' in corresponding source files.
4275void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4276 void *data_addr, size_t pc_size);
4277struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4278 void *data_addr,
4279 size_t pc_size);
4280void __kmp_threadprivate_resize_cache(int newCapacity);
4281void __kmp_cleanup_threadprivate_caches();
4282
4283// ompc_, kmpc_ entries moved from omp.h.
4284#if KMP_OS_WINDOWS
4285#define KMPC_CONVENTION __cdecl
4286#else
4287#define KMPC_CONVENTION
4288#endif
4289
4290#ifndef __OMP_H
4291typedef enum omp_sched_t {
4292 omp_sched_static = 1,
4293 omp_sched_dynamic = 2,
4294 omp_sched_guided = 3,
4295 omp_sched_auto = 4
4296} omp_sched_t;
4297typedef void *kmp_affinity_mask_t;
4298#endif
4299
4300KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4301KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4302KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4303KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4304KMP_EXPORT int KMPC_CONVENTION
4305kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4306KMP_EXPORT int KMPC_CONVENTION
4307kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4308KMP_EXPORT int KMPC_CONVENTION
4309kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4310
4311KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4312KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4313KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4314KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4315KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4316void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4317size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4318void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4319size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4320 char const *format);
4321
4322enum kmp_target_offload_kind {
4323 tgt_disabled = 0,
4324 tgt_default = 1,
4325 tgt_mandatory = 2
4326};
4327typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4328// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4329extern kmp_target_offload_kind_t __kmp_target_offload;
4330extern int __kmpc_get_target_offload();
4331
4332// Constants used in libomptarget
4333#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4334#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4335
4336// OMP Pause Resource
4337
4338// The following enum is used both to set the status in __kmp_pause_status, and
4339// as the internal equivalent of the externally-visible omp_pause_resource_t.
4340typedef enum kmp_pause_status_t {
4341 kmp_not_paused = 0, // status is not paused, or, requesting resume
4342 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4343 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4344} kmp_pause_status_t;
4345
4346// This stores the pause state of the runtime
4347extern kmp_pause_status_t __kmp_pause_status;
4348extern int __kmpc_pause_resource(kmp_pause_status_t level);
4349extern int __kmp_pause_resource(kmp_pause_status_t level);
4350// Soft resume sets __kmp_pause_status, and wakes up all threads.
4351extern void __kmp_resume_if_soft_paused();
4352// Hard resume simply resets the status to not paused. Library will appear to
4353// be uninitialized after hard pause. Let OMP constructs trigger required
4354// initializations.
4355static inline void __kmp_resume_if_hard_paused() {
4356 if (__kmp_pause_status == kmp_hard_paused) {
4357 __kmp_pause_status = kmp_not_paused;
4358 }
4359}
4360
4361extern void __kmp_omp_display_env(int verbose);
4362
4363// 1: it is initializing hidden helper team
4364extern volatile int __kmp_init_hidden_helper;
4365// 1: the hidden helper team is done
4366extern volatile int __kmp_hidden_helper_team_done;
4367// 1: enable hidden helper task
4368extern kmp_int32 __kmp_enable_hidden_helper;
4369// Main thread of hidden helper team
4370extern kmp_info_t *__kmp_hidden_helper_main_thread;
4371// Descriptors for the hidden helper threads
4372extern kmp_info_t **__kmp_hidden_helper_threads;
4373// Number of hidden helper threads
4374extern kmp_int32 __kmp_hidden_helper_threads_num;
4375// Number of hidden helper tasks that have not been executed yet
4376extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4377
4378extern void __kmp_hidden_helper_initialize();
4379extern void __kmp_hidden_helper_threads_initz_routine();
4380extern void __kmp_do_initialize_hidden_helper_threads();
4381extern void __kmp_hidden_helper_threads_initz_wait();
4382extern void __kmp_hidden_helper_initz_release();
4383extern void __kmp_hidden_helper_threads_deinitz_wait();
4384extern void __kmp_hidden_helper_threads_deinitz_release();
4385extern void __kmp_hidden_helper_main_thread_wait();
4386extern void __kmp_hidden_helper_worker_thread_wait();
4387extern void __kmp_hidden_helper_worker_thread_signal();
4388extern void __kmp_hidden_helper_main_thread_release();
4389
4390// Check whether a given thread is a hidden helper thread
4391#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4392 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4393
4394#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4395 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4396
4397#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4398 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4399
4400#define KMP_HIDDEN_HELPER_TEAM(team) \
4401 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4402
4403// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4404// main thread, is skipped.
4405#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4406 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4407
4408// Return the adjusted gtid value by subtracting from gtid the number
4409// of hidden helper threads. This adjusted value is the gtid the thread would
4410// have received if there were no hidden helper threads.
4411static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4412 int adjusted_gtid = gtid;
4413 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4414 gtid - __kmp_hidden_helper_threads_num >= 0) {
4415 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4416 }
4417 return adjusted_gtid;
4418}
4419
4420// Support for error directive
4421typedef enum kmp_severity_t {
4422 severity_warning = 1,
4423 severity_fatal = 2
4424} kmp_severity_t;
4425extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4426
4427// Support for scope directive
4428KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4429KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4430
4431#ifdef __cplusplus
4432}
4433#endif
4434
4435template <bool C, bool S>
4436extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4437template <bool C, bool S>
4438extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4439template <bool C, bool S>
4440extern void __kmp_atomic_suspend_64(int th_gtid,
4441 kmp_atomic_flag_64<C, S> *flag);
4442extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4443#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4444template <bool C, bool S>
4445extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4446template <bool C, bool S>
4447extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4448template <bool C, bool S>
4449extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4450extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4451#endif
4452template <bool C, bool S>
4453extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4454template <bool C, bool S>
4455extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4456template <bool C, bool S>
4457extern void __kmp_atomic_resume_64(int target_gtid,
4458 kmp_atomic_flag_64<C, S> *flag);
4459extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4460
4461template <bool C, bool S>
4462int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4463 kmp_flag_32<C, S> *flag, int final_spin,
4464 int *thread_finished,
4465#if USE_ITT_BUILD
4466 void *itt_sync_obj,
4467#endif /* USE_ITT_BUILD */
4468 kmp_int32 is_constrained);
4469template <bool C, bool S>
4470int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4471 kmp_flag_64<C, S> *flag, int final_spin,
4472 int *thread_finished,
4473#if USE_ITT_BUILD
4474 void *itt_sync_obj,
4475#endif /* USE_ITT_BUILD */
4476 kmp_int32 is_constrained);
4477template <bool C, bool S>
4478int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4479 kmp_atomic_flag_64<C, S> *flag,
4480 int final_spin, int *thread_finished,
4481#if USE_ITT_BUILD
4482 void *itt_sync_obj,
4483#endif /* USE_ITT_BUILD */
4484 kmp_int32 is_constrained);
4485int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4486 kmp_flag_oncore *flag, int final_spin,
4487 int *thread_finished,
4488#if USE_ITT_BUILD
4489 void *itt_sync_obj,
4490#endif /* USE_ITT_BUILD */
4491 kmp_int32 is_constrained);
4492
4493extern int __kmp_nesting_mode;
4494extern int __kmp_nesting_mode_nlevels;
4495extern int *__kmp_nesting_nth_level;
4496extern void __kmp_init_nesting_mode();
4497extern void __kmp_set_nesting_mode_threads();
4498
4506 FILE *f;
4507
4508 void close() {
4509 if (f && f != stdout && f != stderr) {
4510 fclose(f);
4511 f = nullptr;
4512 }
4513 }
4514
4515public:
4516 kmp_safe_raii_file_t() : f(nullptr) {}
4517 kmp_safe_raii_file_t(const char *filename, const char *mode,
4518 const char *env_var = nullptr)
4519 : f(nullptr) {
4520 open(filename, mode, env_var);
4521 }
4522 ~kmp_safe_raii_file_t() { close(); }
4523
4527 void open(const char *filename, const char *mode,
4528 const char *env_var = nullptr) {
4529 KMP_ASSERT(!f);
4530 f = fopen(filename, mode);
4531 if (!f) {
4532 int code = errno;
4533 if (env_var) {
4534 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4535 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4536 } else {
4537 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4538 __kmp_msg_null);
4539 }
4540 }
4541 }
4544 int try_open(const char *filename, const char *mode) {
4545 KMP_ASSERT(!f);
4546 f = fopen(filename, mode);
4547 if (!f)
4548 return errno;
4549 return 0;
4550 }
4553 void set_stdout() {
4554 KMP_ASSERT(!f);
4555 f = stdout;
4556 }
4559 void set_stderr() {
4560 KMP_ASSERT(!f);
4561 f = stderr;
4562 }
4563 operator bool() { return bool(f); }
4564 operator FILE *() { return f; }
4565};
4566
4567template <typename SourceType, typename TargetType,
4568 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4569 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4570 bool isSourceSigned = std::is_signed<SourceType>::value,
4571 bool isTargetSigned = std::is_signed<TargetType>::value>
4572struct kmp_convert {};
4573
4574// Both types are signed; Source smaller
4575template <typename SourceType, typename TargetType>
4576struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4577 static TargetType to(SourceType src) { return (TargetType)src; }
4578};
4579// Source equal
4580template <typename SourceType, typename TargetType>
4581struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4582 static TargetType to(SourceType src) { return src; }
4583};
4584// Source bigger
4585template <typename SourceType, typename TargetType>
4586struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4587 static TargetType to(SourceType src) {
4588 KMP_ASSERT(src <= static_cast<SourceType>(
4589 (std::numeric_limits<TargetType>::max)()));
4590 KMP_ASSERT(src >= static_cast<SourceType>(
4591 (std::numeric_limits<TargetType>::min)()));
4592 return (TargetType)src;
4593 }
4594};
4595
4596// Source signed, Target unsigned
4597// Source smaller
4598template <typename SourceType, typename TargetType>
4599struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4600 static TargetType to(SourceType src) {
4601 KMP_ASSERT(src >= 0);
4602 return (TargetType)src;
4603 }
4604};
4605// Source equal
4606template <typename SourceType, typename TargetType>
4607struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4608 static TargetType to(SourceType src) {
4609 KMP_ASSERT(src >= 0);
4610 return (TargetType)src;
4611 }
4612};
4613// Source bigger
4614template <typename SourceType, typename TargetType>
4615struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4616 static TargetType to(SourceType src) {
4617 KMP_ASSERT(src >= 0);
4618 KMP_ASSERT(src <= static_cast<SourceType>(
4619 (std::numeric_limits<TargetType>::max)()));
4620 return (TargetType)src;
4621 }
4622};
4623
4624// Source unsigned, Target signed
4625// Source smaller
4626template <typename SourceType, typename TargetType>
4627struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4628 static TargetType to(SourceType src) { return (TargetType)src; }
4629};
4630// Source equal
4631template <typename SourceType, typename TargetType>
4632struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4633 static TargetType to(SourceType src) {
4634 KMP_ASSERT(src <= static_cast<SourceType>(
4635 (std::numeric_limits<TargetType>::max)()));
4636 return (TargetType)src;
4637 }
4638};
4639// Source bigger
4640template <typename SourceType, typename TargetType>
4641struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4642 static TargetType to(SourceType src) {
4643 KMP_ASSERT(src <= static_cast<SourceType>(
4644 (std::numeric_limits<TargetType>::max)()));
4645 return (TargetType)src;
4646 }
4647};
4648
4649// Source unsigned, Target unsigned
4650// Source smaller
4651template <typename SourceType, typename TargetType>
4652struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4653 static TargetType to(SourceType src) { return (TargetType)src; }
4654};
4655// Source equal
4656template <typename SourceType, typename TargetType>
4657struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4658 static TargetType to(SourceType src) { return src; }
4659};
4660// Source bigger
4661template <typename SourceType, typename TargetType>
4662struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4663 static TargetType to(SourceType src) {
4664 KMP_ASSERT(src <= static_cast<SourceType>(
4665 (std::numeric_limits<TargetType>::max)()));
4666 return (TargetType)src;
4667 }
4668};
4669
4670template <typename T1, typename T2>
4671static inline void __kmp_type_convert(T1 src, T2 *dest) {
4672 *dest = kmp_convert<T1, T2>::to(src);
4673}
4674
4675#endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4553
void set_stderr()
Definition: kmp.h:4559
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4544
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4527
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1664
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1688
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1695
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1717
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1682
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1705
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1711
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236