LLVM OpenMP* Runtime Library
kmp_affinity.cpp
1/*
2 * kmp_affinity.cpp -- affinity management
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_affinity.h"
15#include "kmp_i18n.h"
16#include "kmp_io.h"
17#include "kmp_str.h"
18#include "kmp_wrapper_getpid.h"
19#if KMP_USE_HIER_SCHED
20#include "kmp_dispatch_hier.h"
21#endif
22#if KMP_USE_HWLOC
23// Copied from hwloc
24#define HWLOC_GROUP_KIND_INTEL_MODULE 102
25#define HWLOC_GROUP_KIND_INTEL_TILE 103
26#define HWLOC_GROUP_KIND_INTEL_DIE 104
27#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28#endif
29#include <ctype.h>
30
31// The machine topology
32kmp_topology_t *__kmp_topology = nullptr;
33// KMP_HW_SUBSET environment variable
34kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35
36// Store the real or imagined machine hierarchy here
37static hierarchy_info machine_hierarchy;
38
39void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40
41void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
42 kmp_uint32 depth;
43 // The test below is true if affinity is available, but set to "none". Need to
44 // init on first use of hierarchical barrier.
45 if (TCR_1(machine_hierarchy.uninitialized))
46 machine_hierarchy.init(nproc);
47
48 // Adjust the hierarchy in case num threads exceeds original
49 if (nproc > machine_hierarchy.base_num_threads)
50 machine_hierarchy.resize(nproc);
51
52 depth = machine_hierarchy.depth;
53 KMP_DEBUG_ASSERT(depth > 0);
54
55 thr_bar->depth = depth;
56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
57 &(thr_bar->base_leaf_kids));
58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
59}
60
61static int nCoresPerPkg, nPackages;
62static int __kmp_nThreadsPerCore;
63#ifndef KMP_DFLT_NTH_CORES
64static int __kmp_ncores;
65#endif
66
67const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
68 switch (type) {
69 case KMP_HW_SOCKET:
70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
71 case KMP_HW_DIE:
72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
73 case KMP_HW_MODULE:
74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
75 case KMP_HW_TILE:
76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
77 case KMP_HW_NUMA:
78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
79 case KMP_HW_L3:
80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
81 case KMP_HW_L2:
82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
83 case KMP_HW_L1:
84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
85 case KMP_HW_LLC:
86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
87 case KMP_HW_CORE:
88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
89 case KMP_HW_THREAD:
90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
91 case KMP_HW_PROC_GROUP:
92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
93 }
94 return KMP_I18N_STR(Unknown);
95}
96
97const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
98 switch (type) {
99 case KMP_HW_SOCKET:
100 return ((plural) ? "sockets" : "socket");
101 case KMP_HW_DIE:
102 return ((plural) ? "dice" : "die");
103 case KMP_HW_MODULE:
104 return ((plural) ? "modules" : "module");
105 case KMP_HW_TILE:
106 return ((plural) ? "tiles" : "tile");
107 case KMP_HW_NUMA:
108 return ((plural) ? "numa_domains" : "numa_domain");
109 case KMP_HW_L3:
110 return ((plural) ? "l3_caches" : "l3_cache");
111 case KMP_HW_L2:
112 return ((plural) ? "l2_caches" : "l2_cache");
113 case KMP_HW_L1:
114 return ((plural) ? "l1_caches" : "l1_cache");
115 case KMP_HW_LLC:
116 return ((plural) ? "ll_caches" : "ll_cache");
117 case KMP_HW_CORE:
118 return ((plural) ? "cores" : "core");
119 case KMP_HW_THREAD:
120 return ((plural) ? "threads" : "thread");
121 case KMP_HW_PROC_GROUP:
122 return ((plural) ? "proc_groups" : "proc_group");
123 }
124 return ((plural) ? "unknowns" : "unknown");
125}
126
127const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
128 switch (type) {
129 case KMP_HW_CORE_TYPE_UNKNOWN:
130 return "unknown";
131#if KMP_ARCH_X86 || KMP_ARCH_X86_64
132 case KMP_HW_CORE_TYPE_ATOM:
133 return "Intel Atom(R) processor";
134 case KMP_HW_CORE_TYPE_CORE:
135 return "Intel(R) Core(TM) processor";
136#endif
137 }
138 return "unknown";
139}
140
142// kmp_hw_thread_t methods
143int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
144 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
145 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
146 int depth = __kmp_topology->get_depth();
147 for (int level = 0; level < depth; ++level) {
148 if (ahwthread->ids[level] < bhwthread->ids[level])
149 return -1;
150 else if (ahwthread->ids[level] > bhwthread->ids[level])
151 return 1;
152 }
153 if (ahwthread->os_id < bhwthread->os_id)
154 return -1;
155 else if (ahwthread->os_id > bhwthread->os_id)
156 return 1;
157 return 0;
158}
159
160#if KMP_AFFINITY_SUPPORTED
161int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
162 int i;
163 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
164 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
165 int depth = __kmp_topology->get_depth();
166 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
167 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
168 for (i = 0; i < __kmp_affinity_compact; i++) {
169 int j = depth - i - 1;
170 if (aa->sub_ids[j] < bb->sub_ids[j])
171 return -1;
172 if (aa->sub_ids[j] > bb->sub_ids[j])
173 return 1;
174 }
175 for (; i < depth; i++) {
176 int j = i - __kmp_affinity_compact;
177 if (aa->sub_ids[j] < bb->sub_ids[j])
178 return -1;
179 if (aa->sub_ids[j] > bb->sub_ids[j])
180 return 1;
181 }
182 return 0;
183}
184#endif
185
186void kmp_hw_thread_t::print() const {
187 int depth = __kmp_topology->get_depth();
188 printf("%4d ", os_id);
189 for (int i = 0; i < depth; ++i) {
190 printf("%4d ", ids[i]);
191 }
192 if (attrs) {
193 if (attrs.is_core_type_valid())
194 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
195 if (attrs.is_core_eff_valid())
196 printf(" (eff=%d)", attrs.get_core_eff());
197 }
198 printf("\n");
199}
200
202// kmp_topology_t methods
203
204// Add a layer to the topology based on the ids. Assume the topology
205// is perfectly nested (i.e., so no object has more than one parent)
206void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
207 // Figure out where the layer should go by comparing the ids of the current
208 // layers with the new ids
209 int target_layer;
210 int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
211 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
212
213 // Start from the highest layer and work down to find target layer
214 // If new layer is equal to another layer then put the new layer above
215 for (target_layer = 0; target_layer < depth; ++target_layer) {
216 bool layers_equal = true;
217 bool strictly_above_target_layer = false;
218 for (int i = 0; i < num_hw_threads; ++i) {
219 int id = hw_threads[i].ids[target_layer];
220 int new_id = ids[i];
221 if (id != previous_id && new_id == previous_new_id) {
222 // Found the layer we are strictly above
223 strictly_above_target_layer = true;
224 layers_equal = false;
225 break;
226 } else if (id == previous_id && new_id != previous_new_id) {
227 // Found a layer we are below. Move to next layer and check.
228 layers_equal = false;
229 break;
230 }
231 previous_id = id;
232 previous_new_id = new_id;
233 }
234 if (strictly_above_target_layer || layers_equal)
235 break;
236 }
237
238 // Found the layer we are above. Now move everything to accommodate the new
239 // layer. And put the new ids and type into the topology.
240 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
241 types[j] = types[i];
242 types[target_layer] = type;
243 for (int k = 0; k < num_hw_threads; ++k) {
244 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
245 hw_threads[k].ids[j] = hw_threads[k].ids[i];
246 hw_threads[k].ids[target_layer] = ids[k];
247 }
248 equivalent[type] = type;
249 depth++;
250}
251
252#if KMP_GROUP_AFFINITY
253// Insert the Windows Processor Group structure into the topology
254void kmp_topology_t::_insert_windows_proc_groups() {
255 // Do not insert the processor group structure for a single group
256 if (__kmp_num_proc_groups == 1)
257 return;
258 kmp_affin_mask_t *mask;
259 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
260 KMP_CPU_ALLOC(mask);
261 for (int i = 0; i < num_hw_threads; ++i) {
262 KMP_CPU_ZERO(mask);
263 KMP_CPU_SET(hw_threads[i].os_id, mask);
264 ids[i] = __kmp_get_proc_group(mask);
265 }
266 KMP_CPU_FREE(mask);
267 _insert_layer(KMP_HW_PROC_GROUP, ids);
268 __kmp_free(ids);
269}
270#endif
271
272// Remove layers that don't add information to the topology.
273// This is done by having the layer take on the id = UNKNOWN_ID (-1)
274void kmp_topology_t::_remove_radix1_layers() {
275 int preference[KMP_HW_LAST];
276 int top_index1, top_index2;
277 // Set up preference associative array
278 preference[KMP_HW_SOCKET] = 110;
279 preference[KMP_HW_PROC_GROUP] = 100;
280 preference[KMP_HW_CORE] = 95;
281 preference[KMP_HW_THREAD] = 90;
282 preference[KMP_HW_NUMA] = 85;
283 preference[KMP_HW_DIE] = 80;
284 preference[KMP_HW_TILE] = 75;
285 preference[KMP_HW_MODULE] = 73;
286 preference[KMP_HW_L3] = 70;
287 preference[KMP_HW_L2] = 65;
288 preference[KMP_HW_L1] = 60;
289 preference[KMP_HW_LLC] = 5;
290 top_index1 = 0;
291 top_index2 = 1;
292 while (top_index1 < depth - 1 && top_index2 < depth) {
293 kmp_hw_t type1 = types[top_index1];
294 kmp_hw_t type2 = types[top_index2];
295 KMP_ASSERT_VALID_HW_TYPE(type1);
296 KMP_ASSERT_VALID_HW_TYPE(type2);
297 // Do not allow the three main topology levels (sockets, cores, threads) to
298 // be compacted down
299 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
300 type1 == KMP_HW_SOCKET) &&
301 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
302 type2 == KMP_HW_SOCKET)) {
303 top_index1 = top_index2++;
304 continue;
305 }
306 bool radix1 = true;
307 bool all_same = true;
308 int id1 = hw_threads[0].ids[top_index1];
309 int id2 = hw_threads[0].ids[top_index2];
310 int pref1 = preference[type1];
311 int pref2 = preference[type2];
312 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
313 if (hw_threads[hwidx].ids[top_index1] == id1 &&
314 hw_threads[hwidx].ids[top_index2] != id2) {
315 radix1 = false;
316 break;
317 }
318 if (hw_threads[hwidx].ids[top_index2] != id2)
319 all_same = false;
320 id1 = hw_threads[hwidx].ids[top_index1];
321 id2 = hw_threads[hwidx].ids[top_index2];
322 }
323 if (radix1) {
324 // Select the layer to remove based on preference
325 kmp_hw_t remove_type, keep_type;
326 int remove_layer, remove_layer_ids;
327 if (pref1 > pref2) {
328 remove_type = type2;
329 remove_layer = remove_layer_ids = top_index2;
330 keep_type = type1;
331 } else {
332 remove_type = type1;
333 remove_layer = remove_layer_ids = top_index1;
334 keep_type = type2;
335 }
336 // If all the indexes for the second (deeper) layer are the same.
337 // e.g., all are zero, then make sure to keep the first layer's ids
338 if (all_same)
339 remove_layer_ids = top_index2;
340 // Remove radix one type by setting the equivalence, removing the id from
341 // the hw threads and removing the layer from types and depth
342 set_equivalent_type(remove_type, keep_type);
343 for (int idx = 0; idx < num_hw_threads; ++idx) {
344 kmp_hw_thread_t &hw_thread = hw_threads[idx];
345 for (int d = remove_layer_ids; d < depth - 1; ++d)
346 hw_thread.ids[d] = hw_thread.ids[d + 1];
347 }
348 for (int idx = remove_layer; idx < depth - 1; ++idx)
349 types[idx] = types[idx + 1];
350 depth--;
351 } else {
352 top_index1 = top_index2++;
353 }
354 }
355 KMP_ASSERT(depth > 0);
356}
357
358void kmp_topology_t::_set_last_level_cache() {
359 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
360 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
361 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
362 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
363#if KMP_MIC_SUPPORTED
364 else if (__kmp_mic_type == mic3) {
365 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
366 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
367 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
368 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
369 // L2/Tile wasn't detected so just say L1
370 else
371 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
372 }
373#endif
374 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
375 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
376 // Fallback is to set last level cache to socket or core
377 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
378 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
379 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
380 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
381 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
382 }
383 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
384}
385
386// Gather the count of each topology layer and the ratio
387void kmp_topology_t::_gather_enumeration_information() {
388 int previous_id[KMP_HW_LAST];
389 int max[KMP_HW_LAST];
390
391 for (int i = 0; i < depth; ++i) {
392 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
393 max[i] = 0;
394 count[i] = 0;
395 ratio[i] = 0;
396 }
397 int core_level = get_level(KMP_HW_CORE);
398 for (int i = 0; i < num_hw_threads; ++i) {
399 kmp_hw_thread_t &hw_thread = hw_threads[i];
400 for (int layer = 0; layer < depth; ++layer) {
401 int id = hw_thread.ids[layer];
402 if (id != previous_id[layer]) {
403 // Add an additional increment to each count
404 for (int l = layer; l < depth; ++l)
405 count[l]++;
406 // Keep track of topology layer ratio statistics
407 max[layer]++;
408 for (int l = layer + 1; l < depth; ++l) {
409 if (max[l] > ratio[l])
410 ratio[l] = max[l];
411 max[l] = 1;
412 }
413 // Figure out the number of different core types
414 // and efficiencies for hybrid CPUs
415 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
416 if (hw_thread.attrs.is_core_eff_valid() &&
417 hw_thread.attrs.core_eff >= num_core_efficiencies) {
418 // Because efficiencies can range from 0 to max efficiency - 1,
419 // the number of efficiencies is max efficiency + 1
420 num_core_efficiencies = hw_thread.attrs.core_eff + 1;
421 }
422 if (hw_thread.attrs.is_core_type_valid()) {
423 bool found = false;
424 for (int j = 0; j < num_core_types; ++j) {
425 if (hw_thread.attrs.get_core_type() == core_types[j]) {
426 found = true;
427 break;
428 }
429 }
430 if (!found) {
431 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
432 core_types[num_core_types++] = hw_thread.attrs.get_core_type();
433 }
434 }
435 }
436 break;
437 }
438 }
439 for (int layer = 0; layer < depth; ++layer) {
440 previous_id[layer] = hw_thread.ids[layer];
441 }
442 }
443 for (int layer = 0; layer < depth; ++layer) {
444 if (max[layer] > ratio[layer])
445 ratio[layer] = max[layer];
446 }
447}
448
449int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
450 int above_level,
451 bool find_all) const {
452 int current, current_max;
453 int previous_id[KMP_HW_LAST];
454 for (int i = 0; i < depth; ++i)
455 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
456 int core_level = get_level(KMP_HW_CORE);
457 if (find_all)
458 above_level = -1;
459 KMP_ASSERT(above_level < core_level);
460 current_max = 0;
461 current = 0;
462 for (int i = 0; i < num_hw_threads; ++i) {
463 kmp_hw_thread_t &hw_thread = hw_threads[i];
464 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
465 if (current > current_max)
466 current_max = current;
467 current = hw_thread.attrs.contains(attr);
468 } else {
469 for (int level = above_level + 1; level <= core_level; ++level) {
470 if (hw_thread.ids[level] != previous_id[level]) {
471 if (hw_thread.attrs.contains(attr))
472 current++;
473 break;
474 }
475 }
476 }
477 for (int level = 0; level < depth; ++level)
478 previous_id[level] = hw_thread.ids[level];
479 }
480 if (current > current_max)
481 current_max = current;
482 return current_max;
483}
484
485// Find out if the topology is uniform
486void kmp_topology_t::_discover_uniformity() {
487 int num = 1;
488 for (int level = 0; level < depth; ++level)
489 num *= ratio[level];
490 flags.uniform = (num == count[depth - 1]);
491}
492
493// Set all the sub_ids for each hardware thread
494void kmp_topology_t::_set_sub_ids() {
495 int previous_id[KMP_HW_LAST];
496 int sub_id[KMP_HW_LAST];
497
498 for (int i = 0; i < depth; ++i) {
499 previous_id[i] = -1;
500 sub_id[i] = -1;
501 }
502 for (int i = 0; i < num_hw_threads; ++i) {
503 kmp_hw_thread_t &hw_thread = hw_threads[i];
504 // Setup the sub_id
505 for (int j = 0; j < depth; ++j) {
506 if (hw_thread.ids[j] != previous_id[j]) {
507 sub_id[j]++;
508 for (int k = j + 1; k < depth; ++k) {
509 sub_id[k] = 0;
510 }
511 break;
512 }
513 }
514 // Set previous_id
515 for (int j = 0; j < depth; ++j) {
516 previous_id[j] = hw_thread.ids[j];
517 }
518 // Set the sub_ids field
519 for (int j = 0; j < depth; ++j) {
520 hw_thread.sub_ids[j] = sub_id[j];
521 }
522 }
523}
524
525void kmp_topology_t::_set_globals() {
526 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
527 int core_level, thread_level, package_level;
528 package_level = get_level(KMP_HW_SOCKET);
529#if KMP_GROUP_AFFINITY
530 if (package_level == -1)
531 package_level = get_level(KMP_HW_PROC_GROUP);
532#endif
533 core_level = get_level(KMP_HW_CORE);
534 thread_level = get_level(KMP_HW_THREAD);
535
536 KMP_ASSERT(core_level != -1);
537 KMP_ASSERT(thread_level != -1);
538
539 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
540 if (package_level != -1) {
541 nCoresPerPkg = calculate_ratio(core_level, package_level);
542 nPackages = get_count(package_level);
543 } else {
544 // assume one socket
545 nCoresPerPkg = get_count(core_level);
546 nPackages = 1;
547 }
548#ifndef KMP_DFLT_NTH_CORES
549 __kmp_ncores = get_count(core_level);
550#endif
551}
552
553kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
554 const kmp_hw_t *types) {
555 kmp_topology_t *retval;
556 // Allocate all data in one large allocation
557 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
558 sizeof(int) * (size_t)KMP_HW_LAST * 3;
559 char *bytes = (char *)__kmp_allocate(size);
560 retval = (kmp_topology_t *)bytes;
561 if (nproc > 0) {
562 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
563 } else {
564 retval->hw_threads = nullptr;
565 }
566 retval->num_hw_threads = nproc;
567 retval->depth = ndepth;
568 int *arr =
569 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
570 retval->types = (kmp_hw_t *)arr;
571 retval->ratio = arr + (size_t)KMP_HW_LAST;
572 retval->count = arr + 2 * (size_t)KMP_HW_LAST;
573 retval->num_core_efficiencies = 0;
574 retval->num_core_types = 0;
575 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
576 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
577 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
578 for (int i = 0; i < ndepth; ++i) {
579 retval->types[i] = types[i];
580 retval->equivalent[types[i]] = types[i];
581 }
582 return retval;
583}
584
585void kmp_topology_t::deallocate(kmp_topology_t *topology) {
586 if (topology)
587 __kmp_free(topology);
588}
589
590bool kmp_topology_t::check_ids() const {
591 // Assume ids have been sorted
592 if (num_hw_threads == 0)
593 return true;
594 for (int i = 1; i < num_hw_threads; ++i) {
595 kmp_hw_thread_t &current_thread = hw_threads[i];
596 kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
597 bool unique = false;
598 for (int j = 0; j < depth; ++j) {
599 if (previous_thread.ids[j] != current_thread.ids[j]) {
600 unique = true;
601 break;
602 }
603 }
604 if (unique)
605 continue;
606 return false;
607 }
608 return true;
609}
610
611void kmp_topology_t::dump() const {
612 printf("***********************\n");
613 printf("*** __kmp_topology: ***\n");
614 printf("***********************\n");
615 printf("* depth: %d\n", depth);
616
617 printf("* types: ");
618 for (int i = 0; i < depth; ++i)
619 printf("%15s ", __kmp_hw_get_keyword(types[i]));
620 printf("\n");
621
622 printf("* ratio: ");
623 for (int i = 0; i < depth; ++i) {
624 printf("%15d ", ratio[i]);
625 }
626 printf("\n");
627
628 printf("* count: ");
629 for (int i = 0; i < depth; ++i) {
630 printf("%15d ", count[i]);
631 }
632 printf("\n");
633
634 printf("* num_core_eff: %d\n", num_core_efficiencies);
635 printf("* num_core_types: %d\n", num_core_types);
636 printf("* core_types: ");
637 for (int i = 0; i < num_core_types; ++i)
638 printf("%3d ", core_types[i]);
639 printf("\n");
640
641 printf("* equivalent map:\n");
642 KMP_FOREACH_HW_TYPE(i) {
643 const char *key = __kmp_hw_get_keyword(i);
644 const char *value = __kmp_hw_get_keyword(equivalent[i]);
645 printf("%-15s -> %-15s\n", key, value);
646 }
647
648 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
649
650 printf("* num_hw_threads: %d\n", num_hw_threads);
651 printf("* hw_threads:\n");
652 for (int i = 0; i < num_hw_threads; ++i) {
653 hw_threads[i].print();
654 }
655 printf("***********************\n");
656}
657
658void kmp_topology_t::print(const char *env_var) const {
659 kmp_str_buf_t buf;
660 int print_types_depth;
661 __kmp_str_buf_init(&buf);
662 kmp_hw_t print_types[KMP_HW_LAST + 2];
663
664 // Num Available Threads
665 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
666
667 // Uniform or not
668 if (is_uniform()) {
669 KMP_INFORM(Uniform, env_var);
670 } else {
671 KMP_INFORM(NonUniform, env_var);
672 }
673
674 // Equivalent types
675 KMP_FOREACH_HW_TYPE(type) {
676 kmp_hw_t eq_type = equivalent[type];
677 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
678 KMP_INFORM(AffEqualTopologyTypes, env_var,
679 __kmp_hw_get_catalog_string(type),
680 __kmp_hw_get_catalog_string(eq_type));
681 }
682 }
683
684 // Quick topology
685 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
686 // Create a print types array that always guarantees printing
687 // the core and thread level
688 print_types_depth = 0;
689 for (int level = 0; level < depth; ++level)
690 print_types[print_types_depth++] = types[level];
691 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
692 // Force in the core level for quick topology
693 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
694 // Force core before thread e.g., 1 socket X 2 threads/socket
695 // becomes 1 socket X 1 core/socket X 2 threads/socket
696 print_types[print_types_depth - 1] = KMP_HW_CORE;
697 print_types[print_types_depth++] = KMP_HW_THREAD;
698 } else {
699 print_types[print_types_depth++] = KMP_HW_CORE;
700 }
701 }
702 // Always put threads at very end of quick topology
703 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
704 print_types[print_types_depth++] = KMP_HW_THREAD;
705
706 __kmp_str_buf_clear(&buf);
707 kmp_hw_t numerator_type;
708 kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
709 int core_level = get_level(KMP_HW_CORE);
710 int ncores = get_count(core_level);
711
712 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
713 int c;
714 bool plural;
715 numerator_type = print_types[plevel];
716 KMP_ASSERT_VALID_HW_TYPE(numerator_type);
717 if (equivalent[numerator_type] != numerator_type)
718 c = 1;
719 else
720 c = get_ratio(level++);
721 plural = (c > 1);
722 if (plevel == 0) {
723 __kmp_str_buf_print(&buf, "%d %s", c,
724 __kmp_hw_get_catalog_string(numerator_type, plural));
725 } else {
726 __kmp_str_buf_print(&buf, " x %d %s/%s", c,
727 __kmp_hw_get_catalog_string(numerator_type, plural),
728 __kmp_hw_get_catalog_string(denominator_type));
729 }
730 denominator_type = numerator_type;
731 }
732 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
733
734 // Hybrid topology information
735 if (__kmp_is_hybrid_cpu()) {
736 for (int i = 0; i < num_core_types; ++i) {
737 kmp_hw_core_type_t core_type = core_types[i];
738 kmp_hw_attr_t attr;
739 attr.clear();
740 attr.set_core_type(core_type);
741 int ncores = get_ncores_with_attr(attr);
742 if (ncores > 0) {
743 KMP_INFORM(TopologyHybrid, env_var, ncores,
744 __kmp_hw_get_core_type_string(core_type));
745 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
746 for (int eff = 0; eff < num_core_efficiencies; ++eff) {
747 attr.set_core_eff(eff);
748 int ncores_with_eff = get_ncores_with_attr(attr);
749 if (ncores_with_eff > 0) {
750 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
751 }
752 }
753 }
754 }
755 }
756
757 if (num_hw_threads <= 0) {
758 __kmp_str_buf_free(&buf);
759 return;
760 }
761
762 // Full OS proc to hardware thread map
763 KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
764 for (int i = 0; i < num_hw_threads; i++) {
765 __kmp_str_buf_clear(&buf);
766 for (int level = 0; level < depth; ++level) {
767 kmp_hw_t type = types[level];
768 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
769 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
770 }
771 if (__kmp_is_hybrid_cpu())
772 __kmp_str_buf_print(
773 &buf, "(%s)",
774 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
775 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
776 }
777
778 __kmp_str_buf_free(&buf);
779}
780
781void kmp_topology_t::canonicalize() {
782#if KMP_GROUP_AFFINITY
783 _insert_windows_proc_groups();
784#endif
785 _remove_radix1_layers();
786 _gather_enumeration_information();
787 _discover_uniformity();
788 _set_sub_ids();
789 _set_globals();
790 _set_last_level_cache();
791
792#if KMP_MIC_SUPPORTED
793 // Manually Add L2 = Tile equivalence
794 if (__kmp_mic_type == mic3) {
795 if (get_level(KMP_HW_L2) != -1)
796 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
797 else if (get_level(KMP_HW_TILE) != -1)
798 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
799 }
800#endif
801
802 // Perform post canonicalization checking
803 KMP_ASSERT(depth > 0);
804 for (int level = 0; level < depth; ++level) {
805 // All counts, ratios, and types must be valid
806 KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
807 KMP_ASSERT_VALID_HW_TYPE(types[level]);
808 // Detected types must point to themselves
809 KMP_ASSERT(equivalent[types[level]] == types[level]);
810 }
811
812#if KMP_AFFINITY_SUPPORTED
813 // Set the number of affinity granularity levels
814 if (__kmp_affinity_gran_levels < 0) {
815 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
816 // Check if user's granularity request is valid
817 if (gran_type == KMP_HW_UNKNOWN) {
818 // First try core, then thread, then package
819 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
820 for (auto g : gran_types) {
821 if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
822 gran_type = g;
823 break;
824 }
825 }
826 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
827 // Warn user what granularity setting will be used instead
828 KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
829 __kmp_hw_get_catalog_string(__kmp_affinity_gran),
830 __kmp_hw_get_catalog_string(gran_type));
831 __kmp_affinity_gran = gran_type;
832 }
833#if KMP_GROUP_AFFINITY
834 // If more than one processor group exists, and the level of
835 // granularity specified by the user is too coarse, then the
836 // granularity must be adjusted "down" to processor group affinity
837 // because threads can only exist within one processor group.
838 // For example, if a user sets granularity=socket and there are two
839 // processor groups that cover a socket, then the runtime must
840 // restrict the granularity down to the processor group level.
841 if (__kmp_num_proc_groups > 1) {
842 int gran_depth = __kmp_topology->get_level(gran_type);
843 int proc_group_depth = __kmp_topology->get_level(KMP_HW_PROC_GROUP);
844 if (gran_depth >= 0 && proc_group_depth >= 0 &&
845 gran_depth < proc_group_depth) {
846 KMP_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY",
847 __kmp_hw_get_catalog_string(__kmp_affinity_gran));
848 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP;
849 }
850 }
851#endif
852 __kmp_affinity_gran_levels = 0;
853 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
854 __kmp_affinity_gran_levels++;
855 }
856#endif // KMP_AFFINITY_SUPPORTED
857}
858
859// Canonicalize an explicit packages X cores/pkg X threads/core topology
860void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
861 int nthreads_per_core, int ncores) {
862 int ndepth = 3;
863 depth = ndepth;
864 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
865 for (int level = 0; level < depth; ++level) {
866 count[level] = 0;
867 ratio[level] = 0;
868 }
869 count[0] = npackages;
870 count[1] = ncores;
871 count[2] = __kmp_xproc;
872 ratio[0] = npackages;
873 ratio[1] = ncores_per_pkg;
874 ratio[2] = nthreads_per_core;
875 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
876 equivalent[KMP_HW_CORE] = KMP_HW_CORE;
877 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
878 types[0] = KMP_HW_SOCKET;
879 types[1] = KMP_HW_CORE;
880 types[2] = KMP_HW_THREAD;
881 //__kmp_avail_proc = __kmp_xproc;
882 _discover_uniformity();
883}
884
885// Represents running sub IDs for a single core attribute where
886// attribute values have SIZE possibilities.
887template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
888 int last_level; // last level in topology to consider for sub_ids
889 int sub_id[SIZE]; // The sub ID for a given attribute value
890 int prev_sub_id[KMP_HW_LAST];
891 IndexFunc indexer;
892
893public:
894 kmp_sub_ids_t(int last_level) : last_level(last_level) {
895 KMP_ASSERT(last_level < KMP_HW_LAST);
896 for (size_t i = 0; i < SIZE; ++i)
897 sub_id[i] = -1;
898 for (size_t i = 0; i < KMP_HW_LAST; ++i)
899 prev_sub_id[i] = -1;
900 }
901 void update(const kmp_hw_thread_t &hw_thread) {
902 int idx = indexer(hw_thread);
903 KMP_ASSERT(idx < (int)SIZE);
904 for (int level = 0; level <= last_level; ++level) {
905 if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
906 if (level < last_level)
907 sub_id[idx] = -1;
908 sub_id[idx]++;
909 break;
910 }
911 }
912 for (int level = 0; level <= last_level; ++level)
913 prev_sub_id[level] = hw_thread.sub_ids[level];
914 }
915 int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
916 return sub_id[indexer(hw_thread)];
917 }
918};
919
920static kmp_str_buf_t *
921__kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
922 bool plural) {
923 __kmp_str_buf_init(buf);
924 if (attr.is_core_type_valid())
925 __kmp_str_buf_print(buf, "%s %s",
926 __kmp_hw_get_core_type_string(attr.get_core_type()),
927 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
928 else
929 __kmp_str_buf_print(buf, "%s eff=%d",
930 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
931 attr.get_core_eff());
932 return buf;
933}
934
935// Apply the KMP_HW_SUBSET envirable to the topology
936// Returns true if KMP_HW_SUBSET filtered any processors
937// otherwise, returns false
938bool kmp_topology_t::filter_hw_subset() {
939 // If KMP_HW_SUBSET wasn't requested, then do nothing.
940 if (!__kmp_hw_subset)
941 return false;
942
943 // First, sort the KMP_HW_SUBSET items by the machine topology
944 __kmp_hw_subset->sort();
945
946 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
947 bool using_core_types = false;
948 bool using_core_effs = false;
949 int hw_subset_depth = __kmp_hw_subset->get_depth();
950 kmp_hw_t specified[KMP_HW_LAST];
951 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
952 KMP_ASSERT(hw_subset_depth > 0);
953 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
954 int core_level = get_level(KMP_HW_CORE);
955 for (int i = 0; i < hw_subset_depth; ++i) {
956 int max_count;
957 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
958 int num = item.num[0];
959 int offset = item.offset[0];
960 kmp_hw_t type = item.type;
961 kmp_hw_t equivalent_type = equivalent[type];
962 int level = get_level(type);
963 topology_levels[i] = level;
964
965 // Check to see if current layer is in detected machine topology
966 if (equivalent_type != KMP_HW_UNKNOWN) {
967 __kmp_hw_subset->at(i).type = equivalent_type;
968 } else {
969 KMP_WARNING(AffHWSubsetNotExistGeneric,
970 __kmp_hw_get_catalog_string(type));
971 return false;
972 }
973
974 // Check to see if current layer has already been
975 // specified either directly or through an equivalent type
976 if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
977 KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
978 __kmp_hw_get_catalog_string(specified[equivalent_type]));
979 return false;
980 }
981 specified[equivalent_type] = type;
982
983 // Check to see if each layer's num & offset parameters are valid
984 max_count = get_ratio(level);
985 if (max_count < 0 ||
986 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
987 bool plural = (num > 1);
988 KMP_WARNING(AffHWSubsetManyGeneric,
989 __kmp_hw_get_catalog_string(type, plural));
990 return false;
991 }
992
993 // Check to see if core attributes are consistent
994 if (core_level == level) {
995 // Determine which core attributes are specified
996 for (int j = 0; j < item.num_attrs; ++j) {
997 if (item.attr[j].is_core_type_valid())
998 using_core_types = true;
999 if (item.attr[j].is_core_eff_valid())
1000 using_core_effs = true;
1001 }
1002
1003 // Check if using a single core attribute on non-hybrid arch.
1004 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1005 //
1006 // Check if using multiple core attributes on non-hyrbid arch.
1007 // Ignore all of KMP_HW_SUBSET if this is the case.
1008 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1009 if (item.num_attrs == 1) {
1010 if (using_core_effs) {
1011 KMP_WARNING(AffHWSubsetIgnoringAttr, "efficiency");
1012 } else {
1013 KMP_WARNING(AffHWSubsetIgnoringAttr, "core_type");
1014 }
1015 using_core_effs = false;
1016 using_core_types = false;
1017 } else {
1018 KMP_WARNING(AffHWSubsetAttrsNonHybrid);
1019 return false;
1020 }
1021 }
1022
1023 // Check if using both core types and core efficiencies together
1024 if (using_core_types && using_core_effs) {
1025 KMP_WARNING(AffHWSubsetIncompat, "core_type", "efficiency");
1026 return false;
1027 }
1028
1029 // Check that core efficiency values are valid
1030 if (using_core_effs) {
1031 for (int j = 0; j < item.num_attrs; ++j) {
1032 if (item.attr[j].is_core_eff_valid()) {
1033 int core_eff = item.attr[j].get_core_eff();
1034 if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1035 kmp_str_buf_t buf;
1036 __kmp_str_buf_init(&buf);
1037 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1038 __kmp_msg(kmp_ms_warning,
1039 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1040 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1041 __kmp_msg_null);
1042 __kmp_str_buf_free(&buf);
1043 return false;
1044 }
1045 }
1046 }
1047 }
1048
1049 // Check that the number of requested cores with attributes is valid
1050 if (using_core_types || using_core_effs) {
1051 for (int j = 0; j < item.num_attrs; ++j) {
1052 int num = item.num[j];
1053 int offset = item.offset[j];
1054 int level_above = core_level - 1;
1055 if (level_above >= 0) {
1056 max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1057 if (max_count <= 0 ||
1058 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1059 kmp_str_buf_t buf;
1060 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1061 KMP_WARNING(AffHWSubsetManyGeneric, buf.str);
1062 __kmp_str_buf_free(&buf);
1063 return false;
1064 }
1065 }
1066 }
1067 }
1068
1069 if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1070 for (int j = 0; j < item.num_attrs; ++j) {
1071 // Ambiguous use of specific core attribute + generic core
1072 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1073 if (!item.attr[j]) {
1074 kmp_hw_attr_t other_attr;
1075 for (int k = 0; k < item.num_attrs; ++k) {
1076 if (item.attr[k] != item.attr[j]) {
1077 other_attr = item.attr[k];
1078 break;
1079 }
1080 }
1081 kmp_str_buf_t buf;
1082 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1083 KMP_WARNING(AffHWSubsetIncompat,
1084 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1085 __kmp_str_buf_free(&buf);
1086 return false;
1087 }
1088 // Allow specifying a specific core type or core eff exactly once
1089 for (int k = 0; k < j; ++k) {
1090 if (!item.attr[j] || !item.attr[k])
1091 continue;
1092 if (item.attr[k] == item.attr[j]) {
1093 kmp_str_buf_t buf;
1094 __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1095 item.num[j] > 0);
1096 KMP_WARNING(AffHWSubsetAttrRepeat, buf.str);
1097 __kmp_str_buf_free(&buf);
1098 return false;
1099 }
1100 }
1101 }
1102 }
1103 }
1104 }
1105
1106 struct core_type_indexer {
1107 int operator()(const kmp_hw_thread_t &t) const {
1108 switch (t.attrs.get_core_type()) {
1109#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1110 case KMP_HW_CORE_TYPE_ATOM:
1111 return 1;
1112 case KMP_HW_CORE_TYPE_CORE:
1113 return 2;
1114#endif
1115 case KMP_HW_CORE_TYPE_UNKNOWN:
1116 return 0;
1117 }
1118 KMP_ASSERT(0);
1119 return 0;
1120 }
1121 };
1122 struct core_eff_indexer {
1123 int operator()(const kmp_hw_thread_t &t) const {
1124 return t.attrs.get_core_eff();
1125 }
1126 };
1127
1128 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1129 core_level);
1130 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1131 core_level);
1132
1133 // Determine which hardware threads should be filtered.
1134 int num_filtered = 0;
1135 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads);
1136 for (int i = 0; i < num_hw_threads; ++i) {
1137 kmp_hw_thread_t &hw_thread = hw_threads[i];
1138 // Update type_sub_id
1139 if (using_core_types)
1140 core_type_sub_ids.update(hw_thread);
1141 if (using_core_effs)
1142 core_eff_sub_ids.update(hw_thread);
1143
1144 // Check to see if this hardware thread should be filtered
1145 bool should_be_filtered = false;
1146 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1147 ++hw_subset_index) {
1148 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1149 int level = topology_levels[hw_subset_index];
1150 if (level == -1)
1151 continue;
1152 if ((using_core_effs || using_core_types) && level == core_level) {
1153 // Look for the core attribute in KMP_HW_SUBSET which corresponds
1154 // to this hardware thread's core attribute. Use this num,offset plus
1155 // the running sub_id for the particular core attribute of this hardware
1156 // thread to determine if the hardware thread should be filtered or not.
1157 int attr_idx;
1158 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1159 int core_eff = hw_thread.attrs.get_core_eff();
1160 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1161 if (using_core_types &&
1162 hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1163 break;
1164 if (using_core_effs &&
1165 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1166 break;
1167 }
1168 // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1169 if (attr_idx == hw_subset_item.num_attrs) {
1170 should_be_filtered = true;
1171 break;
1172 }
1173 int sub_id;
1174 int num = hw_subset_item.num[attr_idx];
1175 int offset = hw_subset_item.offset[attr_idx];
1176 if (using_core_types)
1177 sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1178 else
1179 sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1180 if (sub_id < offset ||
1181 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1182 should_be_filtered = true;
1183 break;
1184 }
1185 } else {
1186 int num = hw_subset_item.num[0];
1187 int offset = hw_subset_item.offset[0];
1188 if (hw_thread.sub_ids[level] < offset ||
1189 (num != kmp_hw_subset_t::USE_ALL &&
1190 hw_thread.sub_ids[level] >= offset + num)) {
1191 should_be_filtered = true;
1192 break;
1193 }
1194 }
1195 }
1196 // Collect filtering information
1197 filtered[i] = should_be_filtered;
1198 if (should_be_filtered)
1199 num_filtered++;
1200 }
1201
1202 // One last check that we shouldn't allow filtering entire machine
1203 if (num_filtered == num_hw_threads) {
1204 KMP_WARNING(AffHWSubsetAllFiltered);
1205 __kmp_free(filtered);
1206 return false;
1207 }
1208
1209 // Apply the filter
1210 int new_index = 0;
1211 for (int i = 0; i < num_hw_threads; ++i) {
1212 if (!filtered[i]) {
1213 if (i != new_index)
1214 hw_threads[new_index] = hw_threads[i];
1215 new_index++;
1216 } else {
1217#if KMP_AFFINITY_SUPPORTED
1218 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask);
1219#endif
1220 __kmp_avail_proc--;
1221 }
1222 }
1223
1224 KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1225 num_hw_threads = new_index;
1226
1227 // Post hardware subset canonicalization
1228 _gather_enumeration_information();
1229 _discover_uniformity();
1230 _set_globals();
1231 _set_last_level_cache();
1232 __kmp_free(filtered);
1233 return true;
1234}
1235
1236bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
1237 if (hw_level >= depth)
1238 return true;
1239 bool retval = true;
1240 const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1241 const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1242 for (int i = 0; i < (depth - hw_level); ++i) {
1243 if (t1.ids[i] != t2.ids[i])
1244 return false;
1245 }
1246 return retval;
1247}
1248
1250
1251#if KMP_AFFINITY_SUPPORTED
1252class kmp_affinity_raii_t {
1253 kmp_affin_mask_t *mask;
1254 bool restored;
1255
1256public:
1257 kmp_affinity_raii_t() : restored(false) {
1258 KMP_CPU_ALLOC(mask);
1259 KMP_ASSERT(mask != NULL);
1260 __kmp_get_system_affinity(mask, TRUE);
1261 }
1262 void restore() {
1263 __kmp_set_system_affinity(mask, TRUE);
1264 KMP_CPU_FREE(mask);
1265 restored = true;
1266 }
1267 ~kmp_affinity_raii_t() {
1268 if (!restored) {
1269 __kmp_set_system_affinity(mask, TRUE);
1270 KMP_CPU_FREE(mask);
1271 }
1272 }
1273};
1274
1275bool KMPAffinity::picked_api = false;
1276
1277void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1278void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1279void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1280void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1281void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1282void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1283
1284void KMPAffinity::pick_api() {
1285 KMPAffinity *affinity_dispatch;
1286 if (picked_api)
1287 return;
1288#if KMP_USE_HWLOC
1289 // Only use Hwloc if affinity isn't explicitly disabled and
1290 // user requests Hwloc topology method
1291 if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1292 __kmp_affinity_type != affinity_disabled) {
1293 affinity_dispatch = new KMPHwlocAffinity();
1294 } else
1295#endif
1296 {
1297 affinity_dispatch = new KMPNativeAffinity();
1298 }
1299 __kmp_affinity_dispatch = affinity_dispatch;
1300 picked_api = true;
1301}
1302
1303void KMPAffinity::destroy_api() {
1304 if (__kmp_affinity_dispatch != NULL) {
1305 delete __kmp_affinity_dispatch;
1306 __kmp_affinity_dispatch = NULL;
1307 picked_api = false;
1308 }
1309}
1310
1311#define KMP_ADVANCE_SCAN(scan) \
1312 while (*scan != '\0') { \
1313 scan++; \
1314 }
1315
1316// Print the affinity mask to the character array in a pretty format.
1317// The format is a comma separated list of non-negative integers or integer
1318// ranges: e.g., 1,2,3-5,7,9-15
1319// The format can also be the string "{<empty>}" if no bits are set in mask
1320char *__kmp_affinity_print_mask(char *buf, int buf_len,
1321 kmp_affin_mask_t *mask) {
1322 int start = 0, finish = 0, previous = 0;
1323 bool first_range;
1324 KMP_ASSERT(buf);
1325 KMP_ASSERT(buf_len >= 40);
1326 KMP_ASSERT(mask);
1327 char *scan = buf;
1328 char *end = buf + buf_len - 1;
1329
1330 // Check for empty set.
1331 if (mask->begin() == mask->end()) {
1332 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1333 KMP_ADVANCE_SCAN(scan);
1334 KMP_ASSERT(scan <= end);
1335 return buf;
1336 }
1337
1338 first_range = true;
1339 start = mask->begin();
1340 while (1) {
1341 // Find next range
1342 // [start, previous] is inclusive range of contiguous bits in mask
1343 for (finish = mask->next(start), previous = start;
1344 finish == previous + 1 && finish != mask->end();
1345 finish = mask->next(finish)) {
1346 previous = finish;
1347 }
1348
1349 // The first range does not need a comma printed before it, but the rest
1350 // of the ranges do need a comma beforehand
1351 if (!first_range) {
1352 KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1353 KMP_ADVANCE_SCAN(scan);
1354 } else {
1355 first_range = false;
1356 }
1357 // Range with three or more contiguous bits in the affinity mask
1358 if (previous - start > 1) {
1359 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1360 } else {
1361 // Range with one or two contiguous bits in the affinity mask
1362 KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1363 KMP_ADVANCE_SCAN(scan);
1364 if (previous - start > 0) {
1365 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1366 }
1367 }
1368 KMP_ADVANCE_SCAN(scan);
1369 // Start over with new start point
1370 start = finish;
1371 if (start == mask->end())
1372 break;
1373 // Check for overflow
1374 if (end - scan < 2)
1375 break;
1376 }
1377
1378 // Check for overflow
1379 KMP_ASSERT(scan <= end);
1380 return buf;
1381}
1382#undef KMP_ADVANCE_SCAN
1383
1384// Print the affinity mask to the string buffer object in a pretty format
1385// The format is a comma separated list of non-negative integers or integer
1386// ranges: e.g., 1,2,3-5,7,9-15
1387// The format can also be the string "{<empty>}" if no bits are set in mask
1388kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1389 kmp_affin_mask_t *mask) {
1390 int start = 0, finish = 0, previous = 0;
1391 bool first_range;
1392 KMP_ASSERT(buf);
1393 KMP_ASSERT(mask);
1394
1395 __kmp_str_buf_clear(buf);
1396
1397 // Check for empty set.
1398 if (mask->begin() == mask->end()) {
1399 __kmp_str_buf_print(buf, "%s", "{<empty>}");
1400 return buf;
1401 }
1402
1403 first_range = true;
1404 start = mask->begin();
1405 while (1) {
1406 // Find next range
1407 // [start, previous] is inclusive range of contiguous bits in mask
1408 for (finish = mask->next(start), previous = start;
1409 finish == previous + 1 && finish != mask->end();
1410 finish = mask->next(finish)) {
1411 previous = finish;
1412 }
1413
1414 // The first range does not need a comma printed before it, but the rest
1415 // of the ranges do need a comma beforehand
1416 if (!first_range) {
1417 __kmp_str_buf_print(buf, "%s", ",");
1418 } else {
1419 first_range = false;
1420 }
1421 // Range with three or more contiguous bits in the affinity mask
1422 if (previous - start > 1) {
1423 __kmp_str_buf_print(buf, "%u-%u", start, previous);
1424 } else {
1425 // Range with one or two contiguous bits in the affinity mask
1426 __kmp_str_buf_print(buf, "%u", start);
1427 if (previous - start > 0) {
1428 __kmp_str_buf_print(buf, ",%u", previous);
1429 }
1430 }
1431 // Start over with new start point
1432 start = finish;
1433 if (start == mask->end())
1434 break;
1435 }
1436 return buf;
1437}
1438
1439// Return (possibly empty) affinity mask representing the offline CPUs
1440// Caller must free the mask
1441kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1442 kmp_affin_mask_t *offline;
1443 KMP_CPU_ALLOC(offline);
1444 KMP_CPU_ZERO(offline);
1445#if KMP_OS_LINUX
1446 int n, begin_cpu, end_cpu;
1447 kmp_safe_raii_file_t offline_file;
1448 auto skip_ws = [](FILE *f) {
1449 int c;
1450 do {
1451 c = fgetc(f);
1452 } while (isspace(c));
1453 if (c != EOF)
1454 ungetc(c, f);
1455 };
1456 // File contains CSV of integer ranges representing the offline CPUs
1457 // e.g., 1,2,4-7,9,11-15
1458 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1459 if (status != 0)
1460 return offline;
1461 while (!feof(offline_file)) {
1462 skip_ws(offline_file);
1463 n = fscanf(offline_file, "%d", &begin_cpu);
1464 if (n != 1)
1465 break;
1466 skip_ws(offline_file);
1467 int c = fgetc(offline_file);
1468 if (c == EOF || c == ',') {
1469 // Just single CPU
1470 end_cpu = begin_cpu;
1471 } else if (c == '-') {
1472 // Range of CPUs
1473 skip_ws(offline_file);
1474 n = fscanf(offline_file, "%d", &end_cpu);
1475 if (n != 1)
1476 break;
1477 skip_ws(offline_file);
1478 c = fgetc(offline_file); // skip ','
1479 } else {
1480 // Syntax problem
1481 break;
1482 }
1483 // Ensure a valid range of CPUs
1484 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1485 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1486 continue;
1487 }
1488 // Insert [begin_cpu, end_cpu] into offline mask
1489 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1490 KMP_CPU_SET(cpu, offline);
1491 }
1492 }
1493#endif
1494 return offline;
1495}
1496
1497// Return the number of available procs
1498int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1499 int avail_proc = 0;
1500 KMP_CPU_ZERO(mask);
1501
1502#if KMP_GROUP_AFFINITY
1503
1504 if (__kmp_num_proc_groups > 1) {
1505 int group;
1506 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1507 for (group = 0; group < __kmp_num_proc_groups; group++) {
1508 int i;
1509 int num = __kmp_GetActiveProcessorCount(group);
1510 for (i = 0; i < num; i++) {
1511 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1512 avail_proc++;
1513 }
1514 }
1515 } else
1516
1517#endif /* KMP_GROUP_AFFINITY */
1518
1519 {
1520 int proc;
1521 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1522 for (proc = 0; proc < __kmp_xproc; proc++) {
1523 // Skip offline CPUs
1524 if (KMP_CPU_ISSET(proc, offline_cpus))
1525 continue;
1526 KMP_CPU_SET(proc, mask);
1527 avail_proc++;
1528 }
1529 KMP_CPU_FREE(offline_cpus);
1530 }
1531
1532 return avail_proc;
1533}
1534
1535// All of the __kmp_affinity_create_*_map() routines should allocate the
1536// internal topology object and set the layer ids for it. Each routine
1537// returns a boolean on whether it was successful at doing so.
1538kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1539
1540#if KMP_USE_HWLOC
1541static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1542#if HWLOC_API_VERSION >= 0x00020000
1543 return hwloc_obj_type_is_cache(obj->type);
1544#else
1545 return obj->type == HWLOC_OBJ_CACHE;
1546#endif
1547}
1548
1549// Returns KMP_HW_* type derived from HWLOC_* type
1550static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1551
1552 if (__kmp_hwloc_is_cache_type(obj)) {
1553 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1554 return KMP_HW_UNKNOWN;
1555 switch (obj->attr->cache.depth) {
1556 case 1:
1557 return KMP_HW_L1;
1558 case 2:
1559#if KMP_MIC_SUPPORTED
1560 if (__kmp_mic_type == mic3) {
1561 return KMP_HW_TILE;
1562 }
1563#endif
1564 return KMP_HW_L2;
1565 case 3:
1566 return KMP_HW_L3;
1567 }
1568 return KMP_HW_UNKNOWN;
1569 }
1570
1571 switch (obj->type) {
1572 case HWLOC_OBJ_PACKAGE:
1573 return KMP_HW_SOCKET;
1574 case HWLOC_OBJ_NUMANODE:
1575 return KMP_HW_NUMA;
1576 case HWLOC_OBJ_CORE:
1577 return KMP_HW_CORE;
1578 case HWLOC_OBJ_PU:
1579 return KMP_HW_THREAD;
1580 case HWLOC_OBJ_GROUP:
1581 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1582 return KMP_HW_DIE;
1583 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1584 return KMP_HW_TILE;
1585 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1586 return KMP_HW_MODULE;
1587 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1588 return KMP_HW_PROC_GROUP;
1589 return KMP_HW_UNKNOWN;
1590#if HWLOC_API_VERSION >= 0x00020100
1591 case HWLOC_OBJ_DIE:
1592 return KMP_HW_DIE;
1593#endif
1594 }
1595 return KMP_HW_UNKNOWN;
1596}
1597
1598// Returns the number of objects of type 'type' below 'obj' within the topology
1599// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1600// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1601// object.
1602static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1603 hwloc_obj_type_t type) {
1604 int retval = 0;
1605 hwloc_obj_t first;
1606 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1607 obj->logical_index, type, 0);
1608 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1609 obj->type, first) == obj;
1610 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1611 first)) {
1612 ++retval;
1613 }
1614 return retval;
1615}
1616
1617// This gets the sub_id for a lower object under a higher object in the
1618// topology tree
1619static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1620 hwloc_obj_t lower) {
1621 hwloc_obj_t obj;
1622 hwloc_obj_type_t ltype = lower->type;
1623 int lindex = lower->logical_index - 1;
1624 int sub_id = 0;
1625 // Get the previous lower object
1626 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1627 while (obj && lindex >= 0 &&
1628 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1629 if (obj->userdata) {
1630 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1631 break;
1632 }
1633 sub_id++;
1634 lindex--;
1635 obj = hwloc_get_obj_by_type(t, ltype, lindex);
1636 }
1637 // store sub_id + 1 so that 0 is differed from NULL
1638 lower->userdata = RCAST(void *, sub_id + 1);
1639 return sub_id;
1640}
1641
1642static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1643 kmp_hw_t type;
1644 int hw_thread_index, sub_id;
1645 int depth;
1646 hwloc_obj_t pu, obj, root, prev;
1647 kmp_hw_t types[KMP_HW_LAST];
1648 hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1649
1650 hwloc_topology_t tp = __kmp_hwloc_topology;
1651 *msg_id = kmp_i18n_null;
1652 if (__kmp_affinity_verbose) {
1653 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1654 }
1655
1656 if (!KMP_AFFINITY_CAPABLE()) {
1657 // Hack to try and infer the machine topology using only the data
1658 // available from hwloc on the current thread, and __kmp_xproc.
1659 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1660 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1661 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1662 if (o != NULL)
1663 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1664 else
1665 nCoresPerPkg = 1; // no PACKAGE found
1666 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1667 if (o != NULL)
1668 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1669 else
1670 __kmp_nThreadsPerCore = 1; // no CORE found
1671 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1672 if (nCoresPerPkg == 0)
1673 nCoresPerPkg = 1; // to prevent possible division by 0
1674 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1675 return true;
1676 }
1677
1678 // Handle multiple types of cores if they exist on the system
1679 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1680
1681 typedef struct kmp_hwloc_cpukinds_info_t {
1682 int efficiency;
1683 kmp_hw_core_type_t core_type;
1684 hwloc_bitmap_t mask;
1685 } kmp_hwloc_cpukinds_info_t;
1686 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1687
1688 if (nr_cpu_kinds > 0) {
1689 unsigned nr_infos;
1690 struct hwloc_info_s *infos;
1691 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1692 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1693 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1694 cpukinds[idx].efficiency = -1;
1695 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1696 cpukinds[idx].mask = hwloc_bitmap_alloc();
1697 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1698 &cpukinds[idx].efficiency, &nr_infos, &infos,
1699 0) == 0) {
1700 for (unsigned i = 0; i < nr_infos; ++i) {
1701 if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1702#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1703 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1704 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1705 break;
1706 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1707 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1708 break;
1709 }
1710#endif
1711 }
1712 }
1713 }
1714 }
1715 }
1716
1717 root = hwloc_get_root_obj(tp);
1718
1719 // Figure out the depth and types in the topology
1720 depth = 0;
1721 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1722 KMP_ASSERT(pu);
1723 obj = pu;
1724 types[depth] = KMP_HW_THREAD;
1725 hwloc_types[depth] = obj->type;
1726 depth++;
1727 while (obj != root && obj != NULL) {
1728 obj = obj->parent;
1729#if HWLOC_API_VERSION >= 0x00020000
1730 if (obj->memory_arity) {
1731 hwloc_obj_t memory;
1732 for (memory = obj->memory_first_child; memory;
1733 memory = hwloc_get_next_child(tp, obj, memory)) {
1734 if (memory->type == HWLOC_OBJ_NUMANODE)
1735 break;
1736 }
1737 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1738 types[depth] = KMP_HW_NUMA;
1739 hwloc_types[depth] = memory->type;
1740 depth++;
1741 }
1742 }
1743#endif
1744 type = __kmp_hwloc_type_2_topology_type(obj);
1745 if (type != KMP_HW_UNKNOWN) {
1746 types[depth] = type;
1747 hwloc_types[depth] = obj->type;
1748 depth++;
1749 }
1750 }
1751 KMP_ASSERT(depth > 0);
1752
1753 // Get the order for the types correct
1754 for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1755 hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1756 kmp_hw_t temp = types[i];
1757 types[i] = types[j];
1758 types[j] = temp;
1759 hwloc_types[i] = hwloc_types[j];
1760 hwloc_types[j] = hwloc_temp;
1761 }
1762
1763 // Allocate the data structure to be returned.
1764 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1765
1766 hw_thread_index = 0;
1767 pu = NULL;
1768 while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
1769 int index = depth - 1;
1770 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1771 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1772 if (included) {
1773 hw_thread.clear();
1774 hw_thread.ids[index] = pu->logical_index;
1775 hw_thread.os_id = pu->os_index;
1776 // If multiple core types, then set that attribute for the hardware thread
1777 if (cpukinds) {
1778 int cpukind_index = -1;
1779 for (int i = 0; i < nr_cpu_kinds; ++i) {
1780 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1781 cpukind_index = i;
1782 break;
1783 }
1784 }
1785 if (cpukind_index >= 0) {
1786 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1787 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1788 }
1789 }
1790 index--;
1791 }
1792 obj = pu;
1793 prev = obj;
1794 while (obj != root && obj != NULL) {
1795 obj = obj->parent;
1796#if HWLOC_API_VERSION >= 0x00020000
1797 // NUMA Nodes are handled differently since they are not within the
1798 // parent/child structure anymore. They are separate children
1799 // of obj (memory_first_child points to first memory child)
1800 if (obj->memory_arity) {
1801 hwloc_obj_t memory;
1802 for (memory = obj->memory_first_child; memory;
1803 memory = hwloc_get_next_child(tp, obj, memory)) {
1804 if (memory->type == HWLOC_OBJ_NUMANODE)
1805 break;
1806 }
1807 if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1808 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1809 if (included) {
1810 hw_thread.ids[index] = memory->logical_index;
1811 hw_thread.ids[index + 1] = sub_id;
1812 index--;
1813 }
1814 prev = memory;
1815 }
1816 prev = obj;
1817 }
1818#endif
1819 type = __kmp_hwloc_type_2_topology_type(obj);
1820 if (type != KMP_HW_UNKNOWN) {
1821 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1822 if (included) {
1823 hw_thread.ids[index] = obj->logical_index;
1824 hw_thread.ids[index + 1] = sub_id;
1825 index--;
1826 }
1827 prev = obj;
1828 }
1829 }
1830 if (included)
1831 hw_thread_index++;
1832 }
1833
1834 // Free the core types information
1835 if (cpukinds) {
1836 for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1837 hwloc_bitmap_free(cpukinds[idx].mask);
1838 __kmp_free(cpukinds);
1839 }
1840 __kmp_topology->sort_ids();
1841 return true;
1842}
1843#endif // KMP_USE_HWLOC
1844
1845// If we don't know how to retrieve the machine's processor topology, or
1846// encounter an error in doing so, this routine is called to form a "flat"
1847// mapping of os thread id's <-> processor id's.
1848static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1849 *msg_id = kmp_i18n_null;
1850 int depth = 3;
1851 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1852
1853 if (__kmp_affinity_verbose) {
1854 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1855 }
1856
1857 // Even if __kmp_affinity_type == affinity_none, this routine might still
1858 // called to set __kmp_ncores, as well as
1859 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1860 if (!KMP_AFFINITY_CAPABLE()) {
1861 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1862 __kmp_ncores = nPackages = __kmp_xproc;
1863 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1864 return true;
1865 }
1866
1867 // When affinity is off, this routine will still be called to set
1868 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1869 // Make sure all these vars are set correctly, and return now if affinity is
1870 // not enabled.
1871 __kmp_ncores = nPackages = __kmp_avail_proc;
1872 __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1873
1874 // Construct the data structure to be returned.
1875 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1876 int avail_ct = 0;
1877 int i;
1878 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1879 // Skip this proc if it is not included in the machine model.
1880 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1881 continue;
1882 }
1883 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1884 hw_thread.clear();
1885 hw_thread.os_id = i;
1886 hw_thread.ids[0] = i;
1887 hw_thread.ids[1] = 0;
1888 hw_thread.ids[2] = 0;
1889 avail_ct++;
1890 }
1891 if (__kmp_affinity_verbose) {
1892 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1893 }
1894 return true;
1895}
1896
1897#if KMP_GROUP_AFFINITY
1898// If multiple Windows* OS processor groups exist, we can create a 2-level
1899// topology map with the groups at level 0 and the individual procs at level 1.
1900// This facilitates letting the threads float among all procs in a group,
1901// if granularity=group (the default when there are multiple groups).
1902static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1903 *msg_id = kmp_i18n_null;
1904 int depth = 3;
1905 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1906 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1907
1908 if (__kmp_affinity_verbose) {
1909 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1910 }
1911
1912 // If we aren't affinity capable, then use flat topology
1913 if (!KMP_AFFINITY_CAPABLE()) {
1914 KMP_ASSERT(__kmp_affinity_type == affinity_none);
1915 nPackages = __kmp_num_proc_groups;
1916 __kmp_nThreadsPerCore = 1;
1917 __kmp_ncores = __kmp_xproc;
1918 nCoresPerPkg = nPackages / __kmp_ncores;
1919 return true;
1920 }
1921
1922 // Construct the data structure to be returned.
1923 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1924 int avail_ct = 0;
1925 int i;
1926 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1927 // Skip this proc if it is not included in the machine model.
1928 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1929 continue;
1930 }
1931 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1932 hw_thread.clear();
1933 hw_thread.os_id = i;
1934 hw_thread.ids[0] = i / BITS_PER_GROUP;
1935 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1936 }
1937 return true;
1938}
1939#endif /* KMP_GROUP_AFFINITY */
1940
1941#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1942
1943template <kmp_uint32 LSB, kmp_uint32 MSB>
1944static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1945 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1946 const kmp_uint32 SHIFT_RIGHT = LSB;
1947 kmp_uint32 retval = v;
1948 retval <<= SHIFT_LEFT;
1949 retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1950 return retval;
1951}
1952
1953static int __kmp_cpuid_mask_width(int count) {
1954 int r = 0;
1955
1956 while ((1 << r) < count)
1957 ++r;
1958 return r;
1959}
1960
1961class apicThreadInfo {
1962public:
1963 unsigned osId; // param to __kmp_affinity_bind_thread
1964 unsigned apicId; // from cpuid after binding
1965 unsigned maxCoresPerPkg; // ""
1966 unsigned maxThreadsPerPkg; // ""
1967 unsigned pkgId; // inferred from above values
1968 unsigned coreId; // ""
1969 unsigned threadId; // ""
1970};
1971
1972static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1973 const void *b) {
1974 const apicThreadInfo *aa = (const apicThreadInfo *)a;
1975 const apicThreadInfo *bb = (const apicThreadInfo *)b;
1976 if (aa->pkgId < bb->pkgId)
1977 return -1;
1978 if (aa->pkgId > bb->pkgId)
1979 return 1;
1980 if (aa->coreId < bb->coreId)
1981 return -1;
1982 if (aa->coreId > bb->coreId)
1983 return 1;
1984 if (aa->threadId < bb->threadId)
1985 return -1;
1986 if (aa->threadId > bb->threadId)
1987 return 1;
1988 return 0;
1989}
1990
1991class kmp_cache_info_t {
1992public:
1993 struct info_t {
1994 unsigned level, mask;
1995 };
1996 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
1997 size_t get_depth() const { return depth; }
1998 info_t &operator[](size_t index) { return table[index]; }
1999 const info_t &operator[](size_t index) const { return table[index]; }
2000
2001 static kmp_hw_t get_topology_type(unsigned level) {
2002 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2003 switch (level) {
2004 case 1:
2005 return KMP_HW_L1;
2006 case 2:
2007 return KMP_HW_L2;
2008 case 3:
2009 return KMP_HW_L3;
2010 }
2011 return KMP_HW_UNKNOWN;
2012 }
2013
2014private:
2015 static const int MAX_CACHE_LEVEL = 3;
2016
2017 size_t depth;
2018 info_t table[MAX_CACHE_LEVEL];
2019
2020 void get_leaf4_levels() {
2021 unsigned level = 0;
2022 while (depth < MAX_CACHE_LEVEL) {
2023 unsigned cache_type, max_threads_sharing;
2024 unsigned cache_level, cache_mask_width;
2025 kmp_cpuid buf2;
2026 __kmp_x86_cpuid(4, level, &buf2);
2027 cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2028 if (!cache_type)
2029 break;
2030 // Skip instruction caches
2031 if (cache_type == 2) {
2032 level++;
2033 continue;
2034 }
2035 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2036 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2037 cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2038 table[depth].level = cache_level;
2039 table[depth].mask = ((-1) << cache_mask_width);
2040 depth++;
2041 level++;
2042 }
2043 }
2044};
2045
2046// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2047// an algorithm which cycles through the available os threads, setting
2048// the current thread's affinity mask to that thread, and then retrieves
2049// the Apic Id for each thread context using the cpuid instruction.
2050static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2051 kmp_cpuid buf;
2052 *msg_id = kmp_i18n_null;
2053
2054 if (__kmp_affinity_verbose) {
2055 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2056 }
2057
2058 // Check if cpuid leaf 4 is supported.
2059 __kmp_x86_cpuid(0, 0, &buf);
2060 if (buf.eax < 4) {
2061 *msg_id = kmp_i18n_str_NoLeaf4Support;
2062 return false;
2063 }
2064
2065 // The algorithm used starts by setting the affinity to each available thread
2066 // and retrieving info from the cpuid instruction, so if we are not capable of
2067 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2068 // need to do something else - use the defaults that we calculated from
2069 // issuing cpuid without binding to each proc.
2070 if (!KMP_AFFINITY_CAPABLE()) {
2071 // Hack to try and infer the machine topology using only the data
2072 // available from cpuid on the current thread, and __kmp_xproc.
2073 KMP_ASSERT(__kmp_affinity_type == affinity_none);
2074
2075 // Get an upper bound on the number of threads per package using cpuid(1).
2076 // On some OS/chps combinations where HT is supported by the chip but is
2077 // disabled, this value will be 2 on a single core chip. Usually, it will be
2078 // 2 if HT is enabled and 1 if HT is disabled.
2079 __kmp_x86_cpuid(1, 0, &buf);
2080 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2081 if (maxThreadsPerPkg == 0) {
2082 maxThreadsPerPkg = 1;
2083 }
2084
2085 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2086 // value.
2087 //
2088 // The author of cpu_count.cpp treated this only an upper bound on the
2089 // number of cores, but I haven't seen any cases where it was greater than
2090 // the actual number of cores, so we will treat it as exact in this block of
2091 // code.
2092 //
2093 // First, we need to check if cpuid(4) is supported on this chip. To see if
2094 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2095 // greater.
2096 __kmp_x86_cpuid(0, 0, &buf);
2097 if (buf.eax >= 4) {
2098 __kmp_x86_cpuid(4, 0, &buf);
2099 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2100 } else {
2101 nCoresPerPkg = 1;
2102 }
2103
2104 // There is no way to reliably tell if HT is enabled without issuing the
2105 // cpuid instruction from every thread, can correlating the cpuid info, so
2106 // if the machine is not affinity capable, we assume that HT is off. We have
2107 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2108 // does not support HT.
2109 //
2110 // - Older OSes are usually found on machines with older chips, which do not
2111 // support HT.
2112 // - The performance penalty for mistakenly identifying a machine as HT when
2113 // it isn't (which results in blocktime being incorrectly set to 0) is
2114 // greater than the penalty when for mistakenly identifying a machine as
2115 // being 1 thread/core when it is really HT enabled (which results in
2116 // blocktime being incorrectly set to a positive value).
2117 __kmp_ncores = __kmp_xproc;
2118 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2119 __kmp_nThreadsPerCore = 1;
2120 return true;
2121 }
2122
2123 // From here on, we can assume that it is safe to call
2124 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2125 // __kmp_affinity_type = affinity_none.
2126
2127 // Save the affinity mask for the current thread.
2128 kmp_affinity_raii_t previous_affinity;
2129
2130 // Run through each of the available contexts, binding the current thread
2131 // to it, and obtaining the pertinent information using the cpuid instr.
2132 //
2133 // The relevant information is:
2134 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2135 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2136 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2137 // of this field determines the width of the core# + thread# fields in the
2138 // Apic Id. It is also an upper bound on the number of threads per
2139 // package, but it has been verified that situations happen were it is not
2140 // exact. In particular, on certain OS/chip combinations where Intel(R)
2141 // Hyper-Threading Technology is supported by the chip but has been
2142 // disabled, the value of this field will be 2 (for a single core chip).
2143 // On other OS/chip combinations supporting Intel(R) Hyper-Threading
2144 // Technology, the value of this field will be 1 when Intel(R)
2145 // Hyper-Threading Technology is disabled and 2 when it is enabled.
2146 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
2147 // of this field (+1) determines the width of the core# field in the Apic
2148 // Id. The comments in "cpucount.cpp" say that this value is an upper
2149 // bound, but the IA-32 architecture manual says that it is exactly the
2150 // number of cores per package, and I haven't seen any case where it
2151 // wasn't.
2152 //
2153 // From this information, deduce the package Id, core Id, and thread Id,
2154 // and set the corresponding fields in the apicThreadInfo struct.
2155 unsigned i;
2156 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2157 __kmp_avail_proc * sizeof(apicThreadInfo));
2158 unsigned nApics = 0;
2159 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2160 // Skip this proc if it is not included in the machine model.
2161 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2162 continue;
2163 }
2164 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2165
2166 __kmp_affinity_dispatch->bind_thread(i);
2167 threadInfo[nApics].osId = i;
2168
2169 // The apic id and max threads per pkg come from cpuid(1).
2170 __kmp_x86_cpuid(1, 0, &buf);
2171 if (((buf.edx >> 9) & 1) == 0) {
2172 __kmp_free(threadInfo);
2173 *msg_id = kmp_i18n_str_ApicNotPresent;
2174 return false;
2175 }
2176 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2177 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2178 if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2179 threadInfo[nApics].maxThreadsPerPkg = 1;
2180 }
2181
2182 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2183 // value.
2184 //
2185 // First, we need to check if cpuid(4) is supported on this chip. To see if
2186 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2187 // or greater.
2188 __kmp_x86_cpuid(0, 0, &buf);
2189 if (buf.eax >= 4) {
2190 __kmp_x86_cpuid(4, 0, &buf);
2191 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2192 } else {
2193 threadInfo[nApics].maxCoresPerPkg = 1;
2194 }
2195
2196 // Infer the pkgId / coreId / threadId using only the info obtained locally.
2197 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2198 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2199
2200 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2201 int widthT = widthCT - widthC;
2202 if (widthT < 0) {
2203 // I've never seen this one happen, but I suppose it could, if the cpuid
2204 // instruction on a chip was really screwed up. Make sure to restore the
2205 // affinity mask before the tail call.
2206 __kmp_free(threadInfo);
2207 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2208 return false;
2209 }
2210
2211 int maskC = (1 << widthC) - 1;
2212 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2213
2214 int maskT = (1 << widthT) - 1;
2215 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2216
2217 nApics++;
2218 }
2219
2220 // We've collected all the info we need.
2221 // Restore the old affinity mask for this thread.
2222 previous_affinity.restore();
2223
2224 // Sort the threadInfo table by physical Id.
2225 qsort(threadInfo, nApics, sizeof(*threadInfo),
2226 __kmp_affinity_cmp_apicThreadInfo_phys_id);
2227
2228 // The table is now sorted by pkgId / coreId / threadId, but we really don't
2229 // know the radix of any of the fields. pkgId's may be sparsely assigned among
2230 // the chips on a system. Although coreId's are usually assigned
2231 // [0 .. coresPerPkg-1] and threadId's are usually assigned
2232 // [0..threadsPerCore-1], we don't want to make any such assumptions.
2233 //
2234 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2235 // total # packages) are at this point - we want to determine that now. We
2236 // only have an upper bound on the first two figures.
2237 //
2238 // We also perform a consistency check at this point: the values returned by
2239 // the cpuid instruction for any thread bound to a given package had better
2240 // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2241 nPackages = 1;
2242 nCoresPerPkg = 1;
2243 __kmp_nThreadsPerCore = 1;
2244 unsigned nCores = 1;
2245
2246 unsigned pkgCt = 1; // to determine radii
2247 unsigned lastPkgId = threadInfo[0].pkgId;
2248 unsigned coreCt = 1;
2249 unsigned lastCoreId = threadInfo[0].coreId;
2250 unsigned threadCt = 1;
2251 unsigned lastThreadId = threadInfo[0].threadId;
2252
2253 // intra-pkg consist checks
2254 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2255 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2256
2257 for (i = 1; i < nApics; i++) {
2258 if (threadInfo[i].pkgId != lastPkgId) {
2259 nCores++;
2260 pkgCt++;
2261 lastPkgId = threadInfo[i].pkgId;
2262 if ((int)coreCt > nCoresPerPkg)
2263 nCoresPerPkg = coreCt;
2264 coreCt = 1;
2265 lastCoreId = threadInfo[i].coreId;
2266 if ((int)threadCt > __kmp_nThreadsPerCore)
2267 __kmp_nThreadsPerCore = threadCt;
2268 threadCt = 1;
2269 lastThreadId = threadInfo[i].threadId;
2270
2271 // This is a different package, so go on to the next iteration without
2272 // doing any consistency checks. Reset the consistency check vars, though.
2273 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2274 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2275 continue;
2276 }
2277
2278 if (threadInfo[i].coreId != lastCoreId) {
2279 nCores++;
2280 coreCt++;
2281 lastCoreId = threadInfo[i].coreId;
2282 if ((int)threadCt > __kmp_nThreadsPerCore)
2283 __kmp_nThreadsPerCore = threadCt;
2284 threadCt = 1;
2285 lastThreadId = threadInfo[i].threadId;
2286 } else if (threadInfo[i].threadId != lastThreadId) {
2287 threadCt++;
2288 lastThreadId = threadInfo[i].threadId;
2289 } else {
2290 __kmp_free(threadInfo);
2291 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2292 return false;
2293 }
2294
2295 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2296 // fields agree between all the threads bounds to a given package.
2297 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2298 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2299 __kmp_free(threadInfo);
2300 *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2301 return false;
2302 }
2303 }
2304 // When affinity is off, this routine will still be called to set
2305 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2306 // Make sure all these vars are set correctly
2307 nPackages = pkgCt;
2308 if ((int)coreCt > nCoresPerPkg)
2309 nCoresPerPkg = coreCt;
2310 if ((int)threadCt > __kmp_nThreadsPerCore)
2311 __kmp_nThreadsPerCore = threadCt;
2312 __kmp_ncores = nCores;
2313 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2314
2315 // Now that we've determined the number of packages, the number of cores per
2316 // package, and the number of threads per core, we can construct the data
2317 // structure that is to be returned.
2318 int idx = 0;
2319 int pkgLevel = 0;
2320 int coreLevel = 1;
2321 int threadLevel = 2;
2322 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2323 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2324 kmp_hw_t types[3];
2325 if (pkgLevel >= 0)
2326 types[idx++] = KMP_HW_SOCKET;
2327 if (coreLevel >= 0)
2328 types[idx++] = KMP_HW_CORE;
2329 if (threadLevel >= 0)
2330 types[idx++] = KMP_HW_THREAD;
2331
2332 KMP_ASSERT(depth > 0);
2333 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2334
2335 for (i = 0; i < nApics; ++i) {
2336 idx = 0;
2337 unsigned os = threadInfo[i].osId;
2338 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2339 hw_thread.clear();
2340
2341 if (pkgLevel >= 0) {
2342 hw_thread.ids[idx++] = threadInfo[i].pkgId;
2343 }
2344 if (coreLevel >= 0) {
2345 hw_thread.ids[idx++] = threadInfo[i].coreId;
2346 }
2347 if (threadLevel >= 0) {
2348 hw_thread.ids[idx++] = threadInfo[i].threadId;
2349 }
2350 hw_thread.os_id = os;
2351 }
2352
2353 __kmp_free(threadInfo);
2354 __kmp_topology->sort_ids();
2355 if (!__kmp_topology->check_ids()) {
2356 kmp_topology_t::deallocate(__kmp_topology);
2357 __kmp_topology = nullptr;
2358 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2359 return false;
2360 }
2361 return true;
2362}
2363
2364// Hybrid cpu detection using CPUID.1A
2365// Thread should be pinned to processor already
2366static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2367 unsigned *native_model_id) {
2368 kmp_cpuid buf;
2369 __kmp_x86_cpuid(0x1a, 0, &buf);
2370 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2371 switch (*type) {
2372 case KMP_HW_CORE_TYPE_ATOM:
2373 *efficiency = 0;
2374 break;
2375 case KMP_HW_CORE_TYPE_CORE:
2376 *efficiency = 1;
2377 break;
2378 default:
2379 *efficiency = 0;
2380 }
2381 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2382}
2383
2384// Intel(R) microarchitecture code name Nehalem, Dunnington and later
2385// architectures support a newer interface for specifying the x2APIC Ids,
2386// based on CPUID.B or CPUID.1F
2387/*
2388 * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2389 Bits Bits Bits Bits
2390 31-16 15-8 7-4 4-0
2391---+-----------+--------------+-------------+-----------------+
2392EAX| reserved | reserved | reserved | Bits to Shift |
2393---+-----------|--------------+-------------+-----------------|
2394EBX| reserved | Num logical processors at level (16 bits) |
2395---+-----------|--------------+-------------------------------|
2396ECX| reserved | Level Type | Level Number (8 bits) |
2397---+-----------+--------------+-------------------------------|
2398EDX| X2APIC ID (32 bits) |
2399---+----------------------------------------------------------+
2400*/
2401
2402enum {
2403 INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2404 INTEL_LEVEL_TYPE_SMT = 1,
2405 INTEL_LEVEL_TYPE_CORE = 2,
2406 INTEL_LEVEL_TYPE_TILE = 3,
2407 INTEL_LEVEL_TYPE_MODULE = 4,
2408 INTEL_LEVEL_TYPE_DIE = 5,
2409 INTEL_LEVEL_TYPE_LAST = 6,
2410};
2411
2412struct cpuid_level_info_t {
2413 unsigned level_type, mask, mask_width, nitems, cache_mask;
2414};
2415
2416static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2417 switch (intel_type) {
2418 case INTEL_LEVEL_TYPE_INVALID:
2419 return KMP_HW_SOCKET;
2420 case INTEL_LEVEL_TYPE_SMT:
2421 return KMP_HW_THREAD;
2422 case INTEL_LEVEL_TYPE_CORE:
2423 return KMP_HW_CORE;
2424 case INTEL_LEVEL_TYPE_TILE:
2425 return KMP_HW_TILE;
2426 case INTEL_LEVEL_TYPE_MODULE:
2427 return KMP_HW_MODULE;
2428 case INTEL_LEVEL_TYPE_DIE:
2429 return KMP_HW_DIE;
2430 }
2431 return KMP_HW_UNKNOWN;
2432}
2433
2434// This function takes the topology leaf, a levels array to store the levels
2435// detected and a bitmap of the known levels.
2436// Returns the number of levels in the topology
2437static unsigned
2438__kmp_x2apicid_get_levels(int leaf,
2439 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2440 kmp_uint64 known_levels) {
2441 unsigned level, levels_index;
2442 unsigned level_type, mask_width, nitems;
2443 kmp_cpuid buf;
2444
2445 // New algorithm has known topology layers act as highest unknown topology
2446 // layers when unknown topology layers exist.
2447 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2448 // are unknown topology layers, Then SMT will take the characteristics of
2449 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2450 // This eliminates unknown portions of the topology while still keeping the
2451 // correct structure.
2452 level = levels_index = 0;
2453 do {
2454 __kmp_x86_cpuid(leaf, level, &buf);
2455 level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2456 mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2457 nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2458 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2459 return 0;
2460
2461 if (known_levels & (1ull << level_type)) {
2462 // Add a new level to the topology
2463 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2464 levels[levels_index].level_type = level_type;
2465 levels[levels_index].mask_width = mask_width;
2466 levels[levels_index].nitems = nitems;
2467 levels_index++;
2468 } else {
2469 // If it is an unknown level, then logically move the previous layer up
2470 if (levels_index > 0) {
2471 levels[levels_index - 1].mask_width = mask_width;
2472 levels[levels_index - 1].nitems = nitems;
2473 }
2474 }
2475 level++;
2476 } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2477
2478 // Set the masks to & with apicid
2479 for (unsigned i = 0; i < levels_index; ++i) {
2480 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2481 levels[i].mask = ~((-1) << levels[i].mask_width);
2482 levels[i].cache_mask = (-1) << levels[i].mask_width;
2483 for (unsigned j = 0; j < i; ++j)
2484 levels[i].mask ^= levels[j].mask;
2485 } else {
2486 KMP_DEBUG_ASSERT(levels_index > 0);
2487 levels[i].mask = (-1) << levels[i - 1].mask_width;
2488 levels[i].cache_mask = 0;
2489 }
2490 }
2491 return levels_index;
2492}
2493
2494static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2495
2496 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2497 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2498 unsigned levels_index;
2499 kmp_cpuid buf;
2500 kmp_uint64 known_levels;
2501 int topology_leaf, highest_leaf, apic_id;
2502 int num_leaves;
2503 static int leaves[] = {0, 0};
2504
2505 kmp_i18n_id_t leaf_message_id;
2506
2507 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2508
2509 *msg_id = kmp_i18n_null;
2510 if (__kmp_affinity_verbose) {
2511 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2512 }
2513
2514 // Figure out the known topology levels
2515 known_levels = 0ull;
2516 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2517 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2518 known_levels |= (1ull << i);
2519 }
2520 }
2521
2522 // Get the highest cpuid leaf supported
2523 __kmp_x86_cpuid(0, 0, &buf);
2524 highest_leaf = buf.eax;
2525
2526 // If a specific topology method was requested, only allow that specific leaf
2527 // otherwise, try both leaves 31 and 11 in that order
2528 num_leaves = 0;
2529 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2530 num_leaves = 1;
2531 leaves[0] = 11;
2532 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2533 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2534 num_leaves = 1;
2535 leaves[0] = 31;
2536 leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2537 } else {
2538 num_leaves = 2;
2539 leaves[0] = 31;
2540 leaves[1] = 11;
2541 leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2542 }
2543
2544 // Check to see if cpuid leaf 31 or 11 is supported.
2545 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2546 topology_leaf = -1;
2547 for (int i = 0; i < num_leaves; ++i) {
2548 int leaf = leaves[i];
2549 if (highest_leaf < leaf)
2550 continue;
2551 __kmp_x86_cpuid(leaf, 0, &buf);
2552 if (buf.ebx == 0)
2553 continue;
2554 topology_leaf = leaf;
2555 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2556 if (levels_index == 0)
2557 continue;
2558 break;
2559 }
2560 if (topology_leaf == -1 || levels_index == 0) {
2561 *msg_id = leaf_message_id;
2562 return false;
2563 }
2564 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2565
2566 // The algorithm used starts by setting the affinity to each available thread
2567 // and retrieving info from the cpuid instruction, so if we are not capable of
2568 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2569 // we need to do something else - use the defaults that we calculated from
2570 // issuing cpuid without binding to each proc.
2571 if (!KMP_AFFINITY_CAPABLE()) {
2572 // Hack to try and infer the machine topology using only the data
2573 // available from cpuid on the current thread, and __kmp_xproc.
2574 KMP_ASSERT(__kmp_affinity_type == affinity_none);
2575 for (unsigned i = 0; i < levels_index; ++i) {
2576 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2577 __kmp_nThreadsPerCore = levels[i].nitems;
2578 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2579 nCoresPerPkg = levels[i].nitems;
2580 }
2581 }
2582 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2583 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2584 return true;
2585 }
2586
2587 // Allocate the data structure to be returned.
2588 int depth = levels_index;
2589 for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2590 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2591 __kmp_topology =
2592 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2593
2594 // Insert equivalent cache types if they exist
2595 kmp_cache_info_t cache_info;
2596 for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2597 const kmp_cache_info_t::info_t &info = cache_info[i];
2598 unsigned cache_mask = info.mask;
2599 unsigned cache_level = info.level;
2600 for (unsigned j = 0; j < levels_index; ++j) {
2601 unsigned hw_cache_mask = levels[j].cache_mask;
2602 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2603 if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2604 kmp_hw_t type =
2605 __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2606 __kmp_topology->set_equivalent_type(cache_type, type);
2607 }
2608 }
2609 }
2610
2611 // From here on, we can assume that it is safe to call
2612 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2613 // __kmp_affinity_type = affinity_none.
2614
2615 // Save the affinity mask for the current thread.
2616 kmp_affinity_raii_t previous_affinity;
2617
2618 // Run through each of the available contexts, binding the current thread
2619 // to it, and obtaining the pertinent information using the cpuid instr.
2620 unsigned int proc;
2621 int hw_thread_index = 0;
2622 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2623 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2624 unsigned my_levels_index;
2625
2626 // Skip this proc if it is not included in the machine model.
2627 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2628 continue;
2629 }
2630 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2631
2632 __kmp_affinity_dispatch->bind_thread(proc);
2633
2634 // New algorithm
2635 __kmp_x86_cpuid(topology_leaf, 0, &buf);
2636 apic_id = buf.edx;
2637 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2638 my_levels_index =
2639 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2640 if (my_levels_index == 0 || my_levels_index != levels_index) {
2641 *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2642 return false;
2643 }
2644 hw_thread.clear();
2645 hw_thread.os_id = proc;
2646 // Put in topology information
2647 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2648 hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2649 if (j > 0) {
2650 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2651 }
2652 }
2653 // Hybrid information
2654 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2655 kmp_hw_core_type_t type;
2656 unsigned native_model_id;
2657 int efficiency;
2658 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2659 hw_thread.attrs.set_core_type(type);
2660 hw_thread.attrs.set_core_eff(efficiency);
2661 }
2662 hw_thread_index++;
2663 }
2664 KMP_ASSERT(hw_thread_index > 0);
2665 __kmp_topology->sort_ids();
2666 if (!__kmp_topology->check_ids()) {
2667 kmp_topology_t::deallocate(__kmp_topology);
2668 __kmp_topology = nullptr;
2669 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2670 return false;
2671 }
2672 return true;
2673}
2674#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2675
2676#define osIdIndex 0
2677#define threadIdIndex 1
2678#define coreIdIndex 2
2679#define pkgIdIndex 3
2680#define nodeIdIndex 4
2681
2682typedef unsigned *ProcCpuInfo;
2683static unsigned maxIndex = pkgIdIndex;
2684
2685static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2686 const void *b) {
2687 unsigned i;
2688 const unsigned *aa = *(unsigned *const *)a;
2689 const unsigned *bb = *(unsigned *const *)b;
2690 for (i = maxIndex;; i--) {
2691 if (aa[i] < bb[i])
2692 return -1;
2693 if (aa[i] > bb[i])
2694 return 1;
2695 if (i == osIdIndex)
2696 break;
2697 }
2698 return 0;
2699}
2700
2701#if KMP_USE_HIER_SCHED
2702// Set the array sizes for the hierarchy layers
2703static void __kmp_dispatch_set_hierarchy_values() {
2704 // Set the maximum number of L1's to number of cores
2705 // Set the maximum number of L2's to to either number of cores / 2 for
2706 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2707 // Or the number of cores for Intel(R) Xeon(R) processors
2708 // Set the maximum number of NUMA nodes and L3's to number of packages
2709 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2710 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2711 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2712#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2713 KMP_MIC_SUPPORTED
2714 if (__kmp_mic_type >= mic3)
2715 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2716 else
2717#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2718 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2719 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2720 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2721 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2722 // Set the number of threads per unit
2723 // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2724 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2725 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2726 __kmp_nThreadsPerCore;
2727#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
2728 KMP_MIC_SUPPORTED
2729 if (__kmp_mic_type >= mic3)
2730 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2731 2 * __kmp_nThreadsPerCore;
2732 else
2733#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2734 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2735 __kmp_nThreadsPerCore;
2736 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2737 nCoresPerPkg * __kmp_nThreadsPerCore;
2738 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2739 nCoresPerPkg * __kmp_nThreadsPerCore;
2740 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2741 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2742}
2743
2744// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2745// i.e., this thread's L1 or this thread's L2, etc.
2746int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2747 int index = type + 1;
2748 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2749 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2750 if (type == kmp_hier_layer_e::LAYER_THREAD)
2751 return tid;
2752 else if (type == kmp_hier_layer_e::LAYER_LOOP)
2753 return 0;
2754 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2755 if (tid >= num_hw_threads)
2756 tid = tid % num_hw_threads;
2757 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2758}
2759
2760// Return the number of t1's per t2
2761int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2762 int i1 = t1 + 1;
2763 int i2 = t2 + 1;
2764 KMP_DEBUG_ASSERT(i1 <= i2);
2765 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2766 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2767 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2768 // (nthreads/t2) / (nthreads/t1) = t1 / t2
2769 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2770}
2771#endif // KMP_USE_HIER_SCHED
2772
2773static inline const char *__kmp_cpuinfo_get_filename() {
2774 const char *filename;
2775 if (__kmp_cpuinfo_file != nullptr)
2776 filename = __kmp_cpuinfo_file;
2777 else
2778 filename = "/proc/cpuinfo";
2779 return filename;
2780}
2781
2782static inline const char *__kmp_cpuinfo_get_envvar() {
2783 const char *envvar = nullptr;
2784 if (__kmp_cpuinfo_file != nullptr)
2785 envvar = "KMP_CPUINFO_FILE";
2786 return envvar;
2787}
2788
2789// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2790// affinity map.
2791static bool __kmp_affinity_create_cpuinfo_map(int *line,
2792 kmp_i18n_id_t *const msg_id) {
2793 const char *filename = __kmp_cpuinfo_get_filename();
2794 const char *envvar = __kmp_cpuinfo_get_envvar();
2795 *msg_id = kmp_i18n_null;
2796
2797 if (__kmp_affinity_verbose) {
2798 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2799 }
2800
2801 kmp_safe_raii_file_t f(filename, "r", envvar);
2802
2803 // Scan of the file, and count the number of "processor" (osId) fields,
2804 // and find the highest value of <n> for a node_<n> field.
2805 char buf[256];
2806 unsigned num_records = 0;
2807 while (!feof(f)) {
2808 buf[sizeof(buf) - 1] = 1;
2809 if (!fgets(buf, sizeof(buf), f)) {
2810 // Read errors presumably because of EOF
2811 break;
2812 }
2813
2814 char s1[] = "processor";
2815 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2816 num_records++;
2817 continue;
2818 }
2819
2820 // FIXME - this will match "node_<n> <garbage>"
2821 unsigned level;
2822 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2823 // validate the input fisrt:
2824 if (level > (unsigned)__kmp_xproc) { // level is too big
2825 level = __kmp_xproc;
2826 }
2827 if (nodeIdIndex + level >= maxIndex) {
2828 maxIndex = nodeIdIndex + level;
2829 }
2830 continue;
2831 }
2832 }
2833
2834 // Check for empty file / no valid processor records, or too many. The number
2835 // of records can't exceed the number of valid bits in the affinity mask.
2836 if (num_records == 0) {
2837 *msg_id = kmp_i18n_str_NoProcRecords;
2838 return false;
2839 }
2840 if (num_records > (unsigned)__kmp_xproc) {
2841 *msg_id = kmp_i18n_str_TooManyProcRecords;
2842 return false;
2843 }
2844
2845 // Set the file pointer back to the beginning, so that we can scan the file
2846 // again, this time performing a full parse of the data. Allocate a vector of
2847 // ProcCpuInfo object, where we will place the data. Adding an extra element
2848 // at the end allows us to remove a lot of extra checks for termination
2849 // conditions.
2850 if (fseek(f, 0, SEEK_SET) != 0) {
2851 *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2852 return false;
2853 }
2854
2855 // Allocate the array of records to store the proc info in. The dummy
2856 // element at the end makes the logic in filling them out easier to code.
2857 unsigned **threadInfo =
2858 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2859 unsigned i;
2860 for (i = 0; i <= num_records; i++) {
2861 threadInfo[i] =
2862 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2863 }
2864
2865#define CLEANUP_THREAD_INFO \
2866 for (i = 0; i <= num_records; i++) { \
2867 __kmp_free(threadInfo[i]); \
2868 } \
2869 __kmp_free(threadInfo);
2870
2871 // A value of UINT_MAX means that we didn't find the field
2872 unsigned __index;
2873
2874#define INIT_PROC_INFO(p) \
2875 for (__index = 0; __index <= maxIndex; __index++) { \
2876 (p)[__index] = UINT_MAX; \
2877 }
2878
2879 for (i = 0; i <= num_records; i++) {
2880 INIT_PROC_INFO(threadInfo[i]);
2881 }
2882
2883 unsigned num_avail = 0;
2884 *line = 0;
2885 while (!feof(f)) {
2886 // Create an inner scoping level, so that all the goto targets at the end of
2887 // the loop appear in an outer scoping level. This avoids warnings about
2888 // jumping past an initialization to a target in the same block.
2889 {
2890 buf[sizeof(buf) - 1] = 1;
2891 bool long_line = false;
2892 if (!fgets(buf, sizeof(buf), f)) {
2893 // Read errors presumably because of EOF
2894 // If there is valid data in threadInfo[num_avail], then fake
2895 // a blank line in ensure that the last address gets parsed.
2896 bool valid = false;
2897 for (i = 0; i <= maxIndex; i++) {
2898 if (threadInfo[num_avail][i] != UINT_MAX) {
2899 valid = true;
2900 }
2901 }
2902 if (!valid) {
2903 break;
2904 }
2905 buf[0] = 0;
2906 } else if (!buf[sizeof(buf) - 1]) {
2907 // The line is longer than the buffer. Set a flag and don't
2908 // emit an error if we were going to ignore the line, anyway.
2909 long_line = true;
2910
2911#define CHECK_LINE \
2912 if (long_line) { \
2913 CLEANUP_THREAD_INFO; \
2914 *msg_id = kmp_i18n_str_LongLineCpuinfo; \
2915 return false; \
2916 }
2917 }
2918 (*line)++;
2919
2920 char s1[] = "processor";
2921 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2922 CHECK_LINE;
2923 char *p = strchr(buf + sizeof(s1) - 1, ':');
2924 unsigned val;
2925 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2926 goto no_val;
2927 if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2928#if KMP_ARCH_AARCH64
2929 // Handle the old AArch64 /proc/cpuinfo layout differently,
2930 // it contains all of the 'processor' entries listed in a
2931 // single 'Processor' section, therefore the normal looking
2932 // for duplicates in that section will always fail.
2933 num_avail++;
2934#else
2935 goto dup_field;
2936#endif
2937 threadInfo[num_avail][osIdIndex] = val;
2938#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2939 char path[256];
2940 KMP_SNPRINTF(
2941 path, sizeof(path),
2942 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2943 threadInfo[num_avail][osIdIndex]);
2944 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2945
2946 KMP_SNPRINTF(path, sizeof(path),
2947 "/sys/devices/system/cpu/cpu%u/topology/core_id",
2948 threadInfo[num_avail][osIdIndex]);
2949 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2950 continue;
2951#else
2952 }
2953 char s2[] = "physical id";
2954 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2955 CHECK_LINE;
2956 char *p = strchr(buf + sizeof(s2) - 1, ':');
2957 unsigned val;
2958 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2959 goto no_val;
2960 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2961 goto dup_field;
2962 threadInfo[num_avail][pkgIdIndex] = val;
2963 continue;
2964 }
2965 char s3[] = "core id";
2966 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2967 CHECK_LINE;
2968 char *p = strchr(buf + sizeof(s3) - 1, ':');
2969 unsigned val;
2970 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2971 goto no_val;
2972 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2973 goto dup_field;
2974 threadInfo[num_avail][coreIdIndex] = val;
2975 continue;
2976#endif // KMP_OS_LINUX && USE_SYSFS_INFO
2977 }
2978 char s4[] = "thread id";
2979 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2980 CHECK_LINE;
2981 char *p = strchr(buf + sizeof(s4) - 1, ':');
2982 unsigned val;
2983 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2984 goto no_val;
2985 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2986 goto dup_field;
2987 threadInfo[num_avail][threadIdIndex] = val;
2988 continue;
2989 }
2990 unsigned level;
2991 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2992 CHECK_LINE;
2993 char *p = strchr(buf + sizeof(s4) - 1, ':');
2994 unsigned val;
2995 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2996 goto no_val;
2997 // validate the input before using level:
2998 if (level > (unsigned)__kmp_xproc) { // level is too big
2999 level = __kmp_xproc;
3000 }
3001 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3002 goto dup_field;
3003 threadInfo[num_avail][nodeIdIndex + level] = val;
3004 continue;
3005 }
3006
3007 // We didn't recognize the leading token on the line. There are lots of
3008 // leading tokens that we don't recognize - if the line isn't empty, go on
3009 // to the next line.
3010 if ((*buf != 0) && (*buf != '\n')) {
3011 // If the line is longer than the buffer, read characters
3012 // until we find a newline.
3013 if (long_line) {
3014 int ch;
3015 while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3016 ;
3017 }
3018 continue;
3019 }
3020
3021 // A newline has signalled the end of the processor record.
3022 // Check that there aren't too many procs specified.
3023 if ((int)num_avail == __kmp_xproc) {
3024 CLEANUP_THREAD_INFO;
3025 *msg_id = kmp_i18n_str_TooManyEntries;
3026 return false;
3027 }
3028
3029 // Check for missing fields. The osId field must be there, and we
3030 // currently require that the physical id field is specified, also.
3031 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3032 CLEANUP_THREAD_INFO;
3033 *msg_id = kmp_i18n_str_MissingProcField;
3034 return false;
3035 }
3036 if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3037 CLEANUP_THREAD_INFO;
3038 *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3039 return false;
3040 }
3041
3042 // Skip this proc if it is not included in the machine model.
3043 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3044 __kmp_affin_fullMask)) {
3045 INIT_PROC_INFO(threadInfo[num_avail]);
3046 continue;
3047 }
3048
3049 // We have a successful parse of this proc's info.
3050 // Increment the counter, and prepare for the next proc.
3051 num_avail++;
3052 KMP_ASSERT(num_avail <= num_records);
3053 INIT_PROC_INFO(threadInfo[num_avail]);
3054 }
3055 continue;
3056
3057 no_val:
3058 CLEANUP_THREAD_INFO;
3059 *msg_id = kmp_i18n_str_MissingValCpuinfo;
3060 return false;
3061
3062 dup_field:
3063 CLEANUP_THREAD_INFO;
3064 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3065 return false;
3066 }
3067 *line = 0;
3068
3069#if KMP_MIC && REDUCE_TEAM_SIZE
3070 unsigned teamSize = 0;
3071#endif // KMP_MIC && REDUCE_TEAM_SIZE
3072
3073 // check for num_records == __kmp_xproc ???
3074
3075 // If it is configured to omit the package level when there is only a single
3076 // package, the logic at the end of this routine won't work if there is only a
3077 // single thread
3078 KMP_ASSERT(num_avail > 0);
3079 KMP_ASSERT(num_avail <= num_records);
3080
3081 // Sort the threadInfo table by physical Id.
3082 qsort(threadInfo, num_avail, sizeof(*threadInfo),
3083 __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3084
3085 // The table is now sorted by pkgId / coreId / threadId, but we really don't
3086 // know the radix of any of the fields. pkgId's may be sparsely assigned among
3087 // the chips on a system. Although coreId's are usually assigned
3088 // [0 .. coresPerPkg-1] and threadId's are usually assigned
3089 // [0..threadsPerCore-1], we don't want to make any such assumptions.
3090 //
3091 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3092 // total # packages) are at this point - we want to determine that now. We
3093 // only have an upper bound on the first two figures.
3094 unsigned *counts =
3095 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3096 unsigned *maxCt =
3097 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3098 unsigned *totals =
3099 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3100 unsigned *lastId =
3101 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3102
3103 bool assign_thread_ids = false;
3104 unsigned threadIdCt;
3105 unsigned index;
3106
3107restart_radix_check:
3108 threadIdCt = 0;
3109
3110 // Initialize the counter arrays with data from threadInfo[0].
3111 if (assign_thread_ids) {
3112 if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3113 threadInfo[0][threadIdIndex] = threadIdCt++;
3114 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3115 threadIdCt = threadInfo[0][threadIdIndex] + 1;
3116 }
3117 }
3118 for (index = 0; index <= maxIndex; index++) {
3119 counts[index] = 1;
3120 maxCt[index] = 1;
3121 totals[index] = 1;
3122 lastId[index] = threadInfo[0][index];
3123 ;
3124 }
3125
3126 // Run through the rest of the OS procs.
3127 for (i = 1; i < num_avail; i++) {
3128 // Find the most significant index whose id differs from the id for the
3129 // previous OS proc.
3130 for (index = maxIndex; index >= threadIdIndex; index--) {
3131 if (assign_thread_ids && (index == threadIdIndex)) {
3132 // Auto-assign the thread id field if it wasn't specified.
3133 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3134 threadInfo[i][threadIdIndex] = threadIdCt++;
3135 }
3136 // Apparently the thread id field was specified for some entries and not
3137 // others. Start the thread id counter off at the next higher thread id.
3138 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3139 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3140 }
3141 }
3142 if (threadInfo[i][index] != lastId[index]) {
3143 // Run through all indices which are less significant, and reset the
3144 // counts to 1. At all levels up to and including index, we need to
3145 // increment the totals and record the last id.
3146 unsigned index2;
3147 for (index2 = threadIdIndex; index2 < index; index2++) {
3148 totals[index2]++;
3149 if (counts[index2] > maxCt[index2]) {
3150 maxCt[index2] = counts[index2];
3151 }
3152 counts[index2] = 1;
3153 lastId[index2] = threadInfo[i][index2];
3154 }
3155 counts[index]++;
3156 totals[index]++;
3157 lastId[index] = threadInfo[i][index];
3158
3159 if (assign_thread_ids && (index > threadIdIndex)) {
3160
3161#if KMP_MIC && REDUCE_TEAM_SIZE
3162 // The default team size is the total #threads in the machine
3163 // minus 1 thread for every core that has 3 or more threads.
3164 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3165#endif // KMP_MIC && REDUCE_TEAM_SIZE
3166
3167 // Restart the thread counter, as we are on a new core.
3168 threadIdCt = 0;
3169
3170 // Auto-assign the thread id field if it wasn't specified.
3171 if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3172 threadInfo[i][threadIdIndex] = threadIdCt++;
3173 }
3174
3175 // Apparently the thread id field was specified for some entries and
3176 // not others. Start the thread id counter off at the next higher
3177 // thread id.
3178 else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3179 threadIdCt = threadInfo[i][threadIdIndex] + 1;
3180 }
3181 }
3182 break;
3183 }
3184 }
3185 if (index < threadIdIndex) {
3186 // If thread ids were specified, it is an error if they are not unique.
3187 // Also, check that we waven't already restarted the loop (to be safe -
3188 // shouldn't need to).
3189 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3190 __kmp_free(lastId);
3191 __kmp_free(totals);
3192 __kmp_free(maxCt);
3193 __kmp_free(counts);
3194 CLEANUP_THREAD_INFO;
3195 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3196 return false;
3197 }
3198
3199 // If the thread ids were not specified and we see entries entries that
3200 // are duplicates, start the loop over and assign the thread ids manually.
3201 assign_thread_ids = true;
3202 goto restart_radix_check;
3203 }
3204 }
3205
3206#if KMP_MIC && REDUCE_TEAM_SIZE
3207 // The default team size is the total #threads in the machine
3208 // minus 1 thread for every core that has 3 or more threads.
3209 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3210#endif // KMP_MIC && REDUCE_TEAM_SIZE
3211
3212 for (index = threadIdIndex; index <= maxIndex; index++) {
3213 if (counts[index] > maxCt[index]) {
3214 maxCt[index] = counts[index];
3215 }
3216 }
3217
3218 __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3219 nCoresPerPkg = maxCt[coreIdIndex];
3220 nPackages = totals[pkgIdIndex];
3221
3222 // When affinity is off, this routine will still be called to set
3223 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3224 // Make sure all these vars are set correctly, and return now if affinity is
3225 // not enabled.
3226 __kmp_ncores = totals[coreIdIndex];
3227 if (!KMP_AFFINITY_CAPABLE()) {
3228 KMP_ASSERT(__kmp_affinity_type == affinity_none);
3229 return true;
3230 }
3231
3232#if KMP_MIC && REDUCE_TEAM_SIZE
3233 // Set the default team size.
3234 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3235 __kmp_dflt_team_nth = teamSize;
3236 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3237 "__kmp_dflt_team_nth = %d\n",
3238 __kmp_dflt_team_nth));
3239 }
3240#endif // KMP_MIC && REDUCE_TEAM_SIZE
3241
3242 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3243
3244 // Count the number of levels which have more nodes at that level than at the
3245 // parent's level (with there being an implicit root node of the top level).
3246 // This is equivalent to saying that there is at least one node at this level
3247 // which has a sibling. These levels are in the map, and the package level is
3248 // always in the map.
3249 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3250 for (index = threadIdIndex; index < maxIndex; index++) {
3251 KMP_ASSERT(totals[index] >= totals[index + 1]);
3252 inMap[index] = (totals[index] > totals[index + 1]);
3253 }
3254 inMap[maxIndex] = (totals[maxIndex] > 1);
3255 inMap[pkgIdIndex] = true;
3256 inMap[coreIdIndex] = true;
3257 inMap[threadIdIndex] = true;
3258
3259 int depth = 0;
3260 int idx = 0;
3261 kmp_hw_t types[KMP_HW_LAST];
3262 int pkgLevel = -1;
3263 int coreLevel = -1;
3264 int threadLevel = -1;
3265 for (index = threadIdIndex; index <= maxIndex; index++) {
3266 if (inMap[index]) {
3267 depth++;
3268 }
3269 }
3270 if (inMap[pkgIdIndex]) {
3271 pkgLevel = idx;
3272 types[idx++] = KMP_HW_SOCKET;
3273 }
3274 if (inMap[coreIdIndex]) {
3275 coreLevel = idx;
3276 types[idx++] = KMP_HW_CORE;
3277 }
3278 if (inMap[threadIdIndex]) {
3279 threadLevel = idx;
3280 types[idx++] = KMP_HW_THREAD;
3281 }
3282 KMP_ASSERT(depth > 0);
3283
3284 // Construct the data structure that is to be returned.
3285 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3286
3287 for (i = 0; i < num_avail; ++i) {
3288 unsigned os = threadInfo[i][osIdIndex];
3289 int src_index;
3290 int dst_index = 0;
3291 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3292 hw_thread.clear();
3293 hw_thread.os_id = os;
3294
3295 idx = 0;
3296 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3297 if (!inMap[src_index]) {
3298 continue;
3299 }
3300 if (src_index == pkgIdIndex) {
3301 hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3302 } else if (src_index == coreIdIndex) {
3303 hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3304 } else if (src_index == threadIdIndex) {
3305 hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3306 }
3307 dst_index++;
3308 }
3309 }
3310
3311 __kmp_free(inMap);
3312 __kmp_free(lastId);
3313 __kmp_free(totals);
3314 __kmp_free(maxCt);
3315 __kmp_free(counts);
3316 CLEANUP_THREAD_INFO;
3317 __kmp_topology->sort_ids();
3318 if (!__kmp_topology->check_ids()) {
3319 kmp_topology_t::deallocate(__kmp_topology);
3320 __kmp_topology = nullptr;
3321 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3322 return false;
3323 }
3324 return true;
3325}
3326
3327// Create and return a table of affinity masks, indexed by OS thread ID.
3328// This routine handles OR'ing together all the affinity masks of threads
3329// that are sufficiently close, if granularity > fine.
3330static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
3331 unsigned *numUnique) {
3332 // First form a table of affinity masks in order of OS thread id.
3333 int maxOsId;
3334 int i;
3335 int numAddrs = __kmp_topology->get_num_hw_threads();
3336 int depth = __kmp_topology->get_depth();
3337 KMP_ASSERT(numAddrs);
3338 KMP_ASSERT(depth);
3339
3340 maxOsId = 0;
3341 for (i = numAddrs - 1;; --i) {
3342 int osId = __kmp_topology->at(i).os_id;
3343 if (osId > maxOsId) {
3344 maxOsId = osId;
3345 }
3346 if (i == 0)
3347 break;
3348 }
3349 kmp_affin_mask_t *osId2Mask;
3350 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
3351 KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
3352 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
3353 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
3354 }
3355 if (__kmp_affinity_gran_levels >= (int)depth) {
3356 if (__kmp_affinity_verbose ||
3357 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3358 KMP_WARNING(AffThreadsMayMigrate);
3359 }
3360 }
3361
3362 // Run through the table, forming the masks for all threads on each core.
3363 // Threads on the same core will have identical kmp_hw_thread_t objects, not
3364 // considering the last level, which must be the thread id. All threads on a
3365 // core will appear consecutively.
3366 int unique = 0;
3367 int j = 0; // index of 1st thread on core
3368 int leader = 0;
3369 kmp_affin_mask_t *sum;
3370 KMP_CPU_ALLOC_ON_STACK(sum);
3371 KMP_CPU_ZERO(sum);
3372 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
3373 for (i = 1; i < numAddrs; i++) {
3374 // If this thread is sufficiently close to the leader (within the
3375 // granularity setting), then set the bit for this os thread in the
3376 // affinity mask for this group, and go on to the next thread.
3377 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
3378 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3379 continue;
3380 }
3381
3382 // For every thread in this group, copy the mask to the thread's entry in
3383 // the osId2Mask table. Mark the first address as a leader.
3384 for (; j < i; j++) {
3385 int osId = __kmp_topology->at(j).os_id;
3386 KMP_DEBUG_ASSERT(osId <= maxOsId);
3387 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
3388 KMP_CPU_COPY(mask, sum);
3389 __kmp_topology->at(j).leader = (j == leader);
3390 }
3391 unique++;
3392
3393 // Start a new mask.
3394 leader = i;
3395 KMP_CPU_ZERO(sum);
3396 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3397 }
3398
3399 // For every thread in last group, copy the mask to the thread's
3400 // entry in the osId2Mask table.
3401 for (; j < i; j++) {
3402 int osId = __kmp_topology->at(j).os_id;
3403 KMP_DEBUG_ASSERT(osId <= maxOsId);
3404 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
3405 KMP_CPU_COPY(mask, sum);
3406 __kmp_topology->at(j).leader = (j == leader);
3407 }
3408 unique++;
3409 KMP_CPU_FREE_FROM_STACK(sum);
3410
3411 *maxIndex = maxOsId;
3412 *numUnique = unique;
3413 return osId2Mask;
3414}
3415
3416// Stuff for the affinity proclist parsers. It's easier to declare these vars
3417// as file-static than to try and pass them through the calling sequence of
3418// the recursive-descent OMP_PLACES parser.
3419static kmp_affin_mask_t *newMasks;
3420static int numNewMasks;
3421static int nextNewMask;
3422
3423#define ADD_MASK(_mask) \
3424 { \
3425 if (nextNewMask >= numNewMasks) { \
3426 int i; \
3427 numNewMasks *= 2; \
3428 kmp_affin_mask_t *temp; \
3429 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
3430 for (i = 0; i < numNewMasks / 2; i++) { \
3431 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
3432 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
3433 KMP_CPU_COPY(dest, src); \
3434 } \
3435 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
3436 newMasks = temp; \
3437 } \
3438 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
3439 nextNewMask++; \
3440 }
3441
3442#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
3443 { \
3444 if (((_osId) > _maxOsId) || \
3445 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
3446 if (__kmp_affinity_verbose || \
3447 (__kmp_affinity_warnings && \
3448 (__kmp_affinity_type != affinity_none))) { \
3449 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
3450 } \
3451 } else { \
3452 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
3453 } \
3454 }
3455
3456// Re-parse the proclist (for the explicit affinity type), and form the list
3457// of affinity newMasks indexed by gtid.
3458static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
3459 unsigned int *out_numMasks,
3460 const char *proclist,
3461 kmp_affin_mask_t *osId2Mask,
3462 int maxOsId) {
3463 int i;
3464 const char *scan = proclist;
3465 const char *next = proclist;
3466
3467 // We use malloc() for the temporary mask vector, so that we can use
3468 // realloc() to extend it.
3469 numNewMasks = 2;
3470 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3471 nextNewMask = 0;
3472 kmp_affin_mask_t *sumMask;
3473 KMP_CPU_ALLOC(sumMask);
3474 int setSize = 0;
3475
3476 for (;;) {
3477 int start, end, stride;
3478
3479 SKIP_WS(scan);
3480 next = scan;
3481 if (*next == '\0') {
3482 break;
3483 }
3484
3485 if (*next == '{') {
3486 int num;
3487 setSize = 0;
3488 next++; // skip '{'
3489 SKIP_WS(next);
3490 scan = next;
3491
3492 // Read the first integer in the set.
3493 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3494 SKIP_DIGITS(next);
3495 num = __kmp_str_to_int(scan, *next);
3496 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3497
3498 // Copy the mask for that osId to the sum (union) mask.
3499 if ((num > maxOsId) ||
3500 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3501 if (__kmp_affinity_verbose ||
3502 (__kmp_affinity_warnings &&
3503 (__kmp_affinity_type != affinity_none))) {
3504 KMP_WARNING(AffIgnoreInvalidProcID, num);
3505 }
3506 KMP_CPU_ZERO(sumMask);
3507 } else {
3508 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3509 setSize = 1;
3510 }
3511
3512 for (;;) {
3513 // Check for end of set.
3514 SKIP_WS(next);
3515 if (*next == '}') {
3516 next++; // skip '}'
3517 break;
3518 }
3519
3520 // Skip optional comma.
3521 if (*next == ',') {
3522 next++;
3523 }
3524 SKIP_WS(next);
3525
3526 // Read the next integer in the set.
3527 scan = next;
3528 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3529
3530 SKIP_DIGITS(next);
3531 num = __kmp_str_to_int(scan, *next);
3532 KMP_ASSERT2(num >= 0, "bad explicit proc list");
3533
3534 // Add the mask for that osId to the sum mask.
3535 if ((num > maxOsId) ||
3536 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3537 if (__kmp_affinity_verbose ||
3538 (__kmp_affinity_warnings &&
3539 (__kmp_affinity_type != affinity_none))) {
3540 KMP_WARNING(AffIgnoreInvalidProcID, num);
3541 }
3542 } else {
3543 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3544 setSize++;
3545 }
3546 }
3547 if (setSize > 0) {
3548 ADD_MASK(sumMask);
3549 }
3550
3551 SKIP_WS(next);
3552 if (*next == ',') {
3553 next++;
3554 }
3555 scan = next;
3556 continue;
3557 }
3558
3559 // Read the first integer.
3560 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3561 SKIP_DIGITS(next);
3562 start = __kmp_str_to_int(scan, *next);
3563 KMP_ASSERT2(start >= 0, "bad explicit proc list");
3564 SKIP_WS(next);
3565
3566 // If this isn't a range, then add a mask to the list and go on.
3567 if (*next != '-') {
3568 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3569
3570 // Skip optional comma.
3571 if (*next == ',') {
3572 next++;
3573 }
3574 scan = next;
3575 continue;
3576 }
3577
3578 // This is a range. Skip over the '-' and read in the 2nd int.
3579 next++; // skip '-'
3580 SKIP_WS(next);
3581 scan = next;
3582 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3583 SKIP_DIGITS(next);
3584 end = __kmp_str_to_int(scan, *next);
3585 KMP_ASSERT2(end >= 0, "bad explicit proc list");
3586
3587 // Check for a stride parameter
3588 stride = 1;
3589 SKIP_WS(next);
3590 if (*next == ':') {
3591 // A stride is specified. Skip over the ':" and read the 3rd int.
3592 int sign = +1;
3593 next++; // skip ':'
3594 SKIP_WS(next);
3595 scan = next;
3596 if (*next == '-') {
3597 sign = -1;
3598 next++;
3599 SKIP_WS(next);
3600 scan = next;
3601 }
3602 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3603 SKIP_DIGITS(next);
3604 stride = __kmp_str_to_int(scan, *next);
3605 KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3606 stride *= sign;
3607 }
3608
3609 // Do some range checks.
3610 KMP_ASSERT2(stride != 0, "bad explicit proc list");
3611 if (stride > 0) {
3612 KMP_ASSERT2(start <= end, "bad explicit proc list");
3613 } else {
3614 KMP_ASSERT2(start >= end, "bad explicit proc list");
3615 }
3616 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3617
3618 // Add the mask for each OS proc # to the list.
3619 if (stride > 0) {
3620 do {
3621 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3622 start += stride;
3623 } while (start <= end);
3624 } else {
3625 do {
3626 ADD_MASK_OSID(start, osId2Mask, maxOsId);
3627 start += stride;
3628 } while (start >= end);
3629 }
3630
3631 // Skip optional comma.
3632 SKIP_WS(next);
3633 if (*next == ',') {
3634 next++;
3635 }
3636 scan = next;
3637 }
3638
3639 *out_numMasks = nextNewMask;
3640 if (nextNewMask == 0) {
3641 *out_masks = NULL;
3642 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3643 return;
3644 }
3645 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3646 for (i = 0; i < nextNewMask; i++) {
3647 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3648 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3649 KMP_CPU_COPY(dest, src);
3650 }
3651 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3652 KMP_CPU_FREE(sumMask);
3653}
3654
3655/*-----------------------------------------------------------------------------
3656Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3657places. Again, Here is the grammar:
3658
3659place_list := place
3660place_list := place , place_list
3661place := num
3662place := place : num
3663place := place : num : signed
3664place := { subplacelist }
3665place := ! place // (lowest priority)
3666subplace_list := subplace
3667subplace_list := subplace , subplace_list
3668subplace := num
3669subplace := num : num
3670subplace := num : num : signed
3671signed := num
3672signed := + signed
3673signed := - signed
3674-----------------------------------------------------------------------------*/
3675static void __kmp_process_subplace_list(const char **scan,
3676 kmp_affin_mask_t *osId2Mask,
3677 int maxOsId, kmp_affin_mask_t *tempMask,
3678 int *setSize) {
3679 const char *next;
3680
3681 for (;;) {
3682 int start, count, stride, i;
3683
3684 // Read in the starting proc id
3685 SKIP_WS(*scan);
3686 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3687 next = *scan;
3688 SKIP_DIGITS(next);
3689 start = __kmp_str_to_int(*scan, *next);
3690 KMP_ASSERT(start >= 0);
3691 *scan = next;
3692
3693 // valid follow sets are ',' ':' and '}'
3694 SKIP_WS(*scan);
3695 if (**scan == '}' || **scan == ',') {
3696 if ((start > maxOsId) ||
3697 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3698 if (__kmp_affinity_verbose ||
3699 (__kmp_affinity_warnings &&
3700 (__kmp_affinity_type != affinity_none))) {
3701 KMP_WARNING(AffIgnoreInvalidProcID, start);
3702 }
3703 } else {
3704 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3705 (*setSize)++;
3706 }
3707 if (**scan == '}') {
3708 break;
3709 }
3710 (*scan)++; // skip ','
3711 continue;
3712 }
3713 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3714 (*scan)++; // skip ':'
3715
3716 // Read count parameter
3717 SKIP_WS(*scan);
3718 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3719 next = *scan;
3720 SKIP_DIGITS(next);
3721 count = __kmp_str_to_int(*scan, *next);
3722 KMP_ASSERT(count >= 0);
3723 *scan = next;
3724
3725 // valid follow sets are ',' ':' and '}'
3726 SKIP_WS(*scan);
3727 if (**scan == '}' || **scan == ',') {
3728 for (i = 0; i < count; i++) {
3729 if ((start > maxOsId) ||
3730 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3731 if (__kmp_affinity_verbose ||
3732 (__kmp_affinity_warnings &&
3733 (__kmp_affinity_type != affinity_none))) {
3734 KMP_WARNING(AffIgnoreInvalidProcID, start);
3735 }
3736 break; // don't proliferate warnings for large count
3737 } else {
3738 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3739 start++;
3740 (*setSize)++;
3741 }
3742 }
3743 if (**scan == '}') {
3744 break;
3745 }
3746 (*scan)++; // skip ','
3747 continue;
3748 }
3749 KMP_ASSERT2(**scan == ':', "bad explicit places list");
3750 (*scan)++; // skip ':'
3751
3752 // Read stride parameter
3753 int sign = +1;
3754 for (;;) {
3755 SKIP_WS(*scan);
3756 if (**scan == '+') {
3757 (*scan)++; // skip '+'
3758 continue;
3759 }
3760 if (**scan == '-') {
3761 sign *= -1;
3762 (*scan)++; // skip '-'
3763 continue;
3764 }
3765 break;
3766 }
3767 SKIP_WS(*scan);
3768 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3769 next = *scan;
3770 SKIP_DIGITS(next);
3771 stride = __kmp_str_to_int(*scan, *next);
3772 KMP_ASSERT(stride >= 0);
3773 *scan = next;
3774 stride *= sign;
3775
3776 // valid follow sets are ',' and '}'
3777 SKIP_WS(*scan);
3778 if (**scan == '}' || **scan == ',') {
3779 for (i = 0; i < count; i++) {
3780 if ((start > maxOsId) ||
3781 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3782 if (__kmp_affinity_verbose ||
3783 (__kmp_affinity_warnings &&
3784 (__kmp_affinity_type != affinity_none))) {
3785 KMP_WARNING(AffIgnoreInvalidProcID, start);
3786 }
3787 break; // don't proliferate warnings for large count
3788 } else {
3789 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3790 start += stride;
3791 (*setSize)++;
3792 }
3793 }
3794 if (**scan == '}') {
3795 break;
3796 }
3797 (*scan)++; // skip ','
3798 continue;
3799 }
3800
3801 KMP_ASSERT2(0, "bad explicit places list");
3802 }
3803}
3804
3805static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3806 int maxOsId, kmp_affin_mask_t *tempMask,
3807 int *setSize) {
3808 const char *next;
3809
3810 // valid follow sets are '{' '!' and num
3811 SKIP_WS(*scan);
3812 if (**scan == '{') {
3813 (*scan)++; // skip '{'
3814 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3815 KMP_ASSERT2(**scan == '}', "bad explicit places list");
3816 (*scan)++; // skip '}'
3817 } else if (**scan == '!') {
3818 (*scan)++; // skip '!'
3819 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3820 KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3821 } else if ((**scan >= '0') && (**scan <= '9')) {
3822 next = *scan;
3823 SKIP_DIGITS(next);
3824 int num = __kmp_str_to_int(*scan, *next);
3825 KMP_ASSERT(num >= 0);
3826 if ((num > maxOsId) ||
3827 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3828 if (__kmp_affinity_verbose ||
3829 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3830 KMP_WARNING(AffIgnoreInvalidProcID, num);
3831 }
3832 } else {
3833 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3834 (*setSize)++;
3835 }
3836 *scan = next; // skip num
3837 } else {
3838 KMP_ASSERT2(0, "bad explicit places list");
3839 }
3840}
3841
3842// static void
3843void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3844 unsigned int *out_numMasks,
3845 const char *placelist,
3846 kmp_affin_mask_t *osId2Mask,
3847 int maxOsId) {
3848 int i, j, count, stride, sign;
3849 const char *scan = placelist;
3850 const char *next = placelist;
3851
3852 numNewMasks = 2;
3853 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3854 nextNewMask = 0;
3855
3856 // tempMask is modified based on the previous or initial
3857 // place to form the current place
3858 // previousMask contains the previous place
3859 kmp_affin_mask_t *tempMask;
3860 kmp_affin_mask_t *previousMask;
3861 KMP_CPU_ALLOC(tempMask);
3862 KMP_CPU_ZERO(tempMask);
3863 KMP_CPU_ALLOC(previousMask);
3864 KMP_CPU_ZERO(previousMask);
3865 int setSize = 0;
3866
3867 for (;;) {
3868 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3869
3870 // valid follow sets are ',' ':' and EOL
3871 SKIP_WS(scan);
3872 if (*scan == '\0' || *scan == ',') {
3873 if (setSize > 0) {
3874 ADD_MASK(tempMask);
3875 }
3876 KMP_CPU_ZERO(tempMask);
3877 setSize = 0;
3878 if (*scan == '\0') {
3879 break;
3880 }
3881 scan++; // skip ','
3882 continue;
3883 }
3884
3885 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3886 scan++; // skip ':'
3887
3888 // Read count parameter
3889 SKIP_WS(scan);
3890 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3891 next = scan;
3892 SKIP_DIGITS(next);
3893 count = __kmp_str_to_int(scan, *next);
3894 KMP_ASSERT(count >= 0);
3895 scan = next;
3896
3897 // valid follow sets are ',' ':' and EOL
3898 SKIP_WS(scan);
3899 if (*scan == '\0' || *scan == ',') {
3900 stride = +1;
3901 } else {
3902 KMP_ASSERT2(*scan == ':', "bad explicit places list");
3903 scan++; // skip ':'
3904
3905 // Read stride parameter
3906 sign = +1;
3907 for (;;) {
3908 SKIP_WS(scan);
3909 if (*scan == '+') {
3910 scan++; // skip '+'
3911 continue;
3912 }
3913 if (*scan == '-') {
3914 sign *= -1;
3915 scan++; // skip '-'
3916 continue;
3917 }
3918 break;
3919 }
3920 SKIP_WS(scan);
3921 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3922 next = scan;
3923 SKIP_DIGITS(next);
3924 stride = __kmp_str_to_int(scan, *next);
3925 KMP_DEBUG_ASSERT(stride >= 0);
3926 scan = next;
3927 stride *= sign;
3928 }
3929
3930 // Add places determined by initial_place : count : stride
3931 for (i = 0; i < count; i++) {
3932 if (setSize == 0) {
3933 break;
3934 }
3935 // Add the current place, then build the next place (tempMask) from that
3936 KMP_CPU_COPY(previousMask, tempMask);
3937 ADD_MASK(previousMask);
3938 KMP_CPU_ZERO(tempMask);
3939 setSize = 0;
3940 KMP_CPU_SET_ITERATE(j, previousMask) {
3941 if (!KMP_CPU_ISSET(j, previousMask)) {
3942 continue;
3943 }
3944 if ((j + stride > maxOsId) || (j + stride < 0) ||
3945 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3946 (!KMP_CPU_ISSET(j + stride,
3947 KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3948 if ((__kmp_affinity_verbose ||
3949 (__kmp_affinity_warnings &&
3950 (__kmp_affinity_type != affinity_none))) &&
3951 i < count - 1) {
3952 KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3953 }
3954 continue;
3955 }
3956 KMP_CPU_SET(j + stride, tempMask);
3957 setSize++;
3958 }
3959 }
3960 KMP_CPU_ZERO(tempMask);
3961 setSize = 0;
3962
3963 // valid follow sets are ',' and EOL
3964 SKIP_WS(scan);
3965 if (*scan == '\0') {
3966 break;
3967 }
3968 if (*scan == ',') {
3969 scan++; // skip ','
3970 continue;
3971 }
3972
3973 KMP_ASSERT2(0, "bad explicit places list");
3974 }
3975
3976 *out_numMasks = nextNewMask;
3977 if (nextNewMask == 0) {
3978 *out_masks = NULL;
3979 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3980 return;
3981 }
3982 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3983 KMP_CPU_FREE(tempMask);
3984 KMP_CPU_FREE(previousMask);
3985 for (i = 0; i < nextNewMask; i++) {
3986 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3987 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3988 KMP_CPU_COPY(dest, src);
3989 }
3990 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3991}
3992
3993#undef ADD_MASK
3994#undef ADD_MASK_OSID
3995
3996// This function figures out the deepest level at which there is at least one
3997// cluster/core with more than one processing unit bound to it.
3998static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3999 int core_level = 0;
4000
4001 for (int i = 0; i < nprocs; i++) {
4002 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4003 for (int j = bottom_level; j > 0; j--) {
4004 if (hw_thread.ids[j] > 0) {
4005 if (core_level < (j - 1)) {
4006 core_level = j - 1;
4007 }
4008 }
4009 }
4010 }
4011 return core_level;
4012}
4013
4014// This function counts number of clusters/cores at given level.
4015static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4016 int core_level) {
4017 return __kmp_topology->get_count(core_level);
4018}
4019// This function finds to which cluster/core given processing unit is bound.
4020static int __kmp_affinity_find_core(int proc, int bottom_level,
4021 int core_level) {
4022 int core = 0;
4023 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4024 for (int i = 0; i <= proc; ++i) {
4025 if (i + 1 <= proc) {
4026 for (int j = 0; j <= core_level; ++j) {
4027 if (__kmp_topology->at(i + 1).sub_ids[j] !=
4028 __kmp_topology->at(i).sub_ids[j]) {
4029 core++;
4030 break;
4031 }
4032 }
4033 }
4034 }
4035 return core;
4036}
4037
4038// This function finds maximal number of processing units bound to a
4039// cluster/core at given level.
4040static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4041 int core_level) {
4042 if (core_level >= bottom_level)
4043 return 1;
4044 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4045 return __kmp_topology->calculate_ratio(thread_level, core_level);
4046}
4047
4048static int *procarr = NULL;
4049static int __kmp_aff_depth = 0;
4050
4051// Create a one element mask array (set of places) which only contains the
4052// initial process's affinity mask
4053static void __kmp_create_affinity_none_places() {
4054 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4055 KMP_ASSERT(__kmp_affinity_type == affinity_none);
4056 __kmp_affinity_num_masks = 1;
4057 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4058 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4059 KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4060}
4061
4062static void __kmp_aux_affinity_initialize(void) {
4063 if (__kmp_affinity_masks != NULL) {
4064 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4065 return;
4066 }
4067
4068 // Create the "full" mask - this defines all of the processors that we
4069 // consider to be in the machine model. If respect is set, then it is the
4070 // initialization thread's affinity mask. Otherwise, it is all processors that
4071 // we know about on the machine.
4072 if (__kmp_affin_fullMask == NULL) {
4073 KMP_CPU_ALLOC(__kmp_affin_fullMask);
4074 }
4075 if (KMP_AFFINITY_CAPABLE()) {
4076 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4077 if (__kmp_affinity_respect_mask) {
4078 // Count the number of available processors.
4079 unsigned i;
4080 __kmp_avail_proc = 0;
4081 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4082 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4083 continue;
4084 }
4085 __kmp_avail_proc++;
4086 }
4087 if (__kmp_avail_proc > __kmp_xproc) {
4088 if (__kmp_affinity_verbose ||
4089 (__kmp_affinity_warnings &&
4090 (__kmp_affinity_type != affinity_none))) {
4091 KMP_WARNING(ErrorInitializeAffinity);
4092 }
4093 __kmp_affinity_type = affinity_none;
4094 KMP_AFFINITY_DISABLE();
4095 return;
4096 }
4097
4098 if (__kmp_affinity_verbose) {
4099 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4100 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4101 __kmp_affin_fullMask);
4102 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
4103 }
4104 } else {
4105 if (__kmp_affinity_verbose) {
4106 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4107 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4108 __kmp_affin_fullMask);
4109 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
4110 }
4111 __kmp_avail_proc =
4112 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4113#if KMP_OS_WINDOWS
4114 // Set the process affinity mask since threads' affinity
4115 // masks must be subset of process mask in Windows* OS
4116 __kmp_affin_fullMask->set_process_affinity(true);
4117#endif
4118 }
4119 }
4120
4121 kmp_i18n_id_t msg_id = kmp_i18n_null;
4122
4123 // For backward compatibility, setting KMP_CPUINFO_FILE =>
4124 // KMP_TOPOLOGY_METHOD=cpuinfo
4125 if ((__kmp_cpuinfo_file != NULL) &&
4126 (__kmp_affinity_top_method == affinity_top_method_all)) {
4127 __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4128 }
4129
4130 bool success = false;
4131 if (__kmp_affinity_top_method == affinity_top_method_all) {
4132// In the default code path, errors are not fatal - we just try using
4133// another method. We only emit a warning message if affinity is on, or the
4134// verbose flag is set, an the nowarnings flag was not set.
4135#if KMP_USE_HWLOC
4136 if (!success &&
4137 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4138 if (!__kmp_hwloc_error) {
4139 success = __kmp_affinity_create_hwloc_map(&msg_id);
4140 if (!success && __kmp_affinity_verbose) {
4141 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4142 }
4143 } else if (__kmp_affinity_verbose) {
4144 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4145 }
4146 }
4147#endif
4148
4149#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4150 if (!success) {
4151 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4152 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4153 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4154 }
4155 }
4156 if (!success) {
4157 success = __kmp_affinity_create_apicid_map(&msg_id);
4158 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4159 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4160 }
4161 }
4162#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4163
4164#if KMP_OS_LINUX
4165 if (!success) {
4166 int line = 0;
4167 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4168 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4169 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4170 }
4171 }
4172#endif /* KMP_OS_LINUX */
4173
4174#if KMP_GROUP_AFFINITY
4175 if (!success && (__kmp_num_proc_groups > 1)) {
4176 success = __kmp_affinity_create_proc_group_map(&msg_id);
4177 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4178 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4179 }
4180 }
4181#endif /* KMP_GROUP_AFFINITY */
4182
4183 if (!success) {
4184 success = __kmp_affinity_create_flat_map(&msg_id);
4185 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
4186 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
4187 }
4188 KMP_ASSERT(success);
4189 }
4190 }
4191
4192// If the user has specified that a paricular topology discovery method is to be
4193// used, then we abort if that method fails. The exception is group affinity,
4194// which might have been implicitly set.
4195#if KMP_USE_HWLOC
4196 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4197 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4198 success = __kmp_affinity_create_hwloc_map(&msg_id);
4199 if (!success) {
4200 KMP_ASSERT(msg_id != kmp_i18n_null);
4201 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4202 }
4203 }
4204#endif // KMP_USE_HWLOC
4205
4206#if KMP_ARCH_X86 || KMP_ARCH_X86_64
4207 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4208 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4209 success = __kmp_affinity_create_x2apicid_map(&msg_id);
4210 if (!success) {
4211 KMP_ASSERT(msg_id != kmp_i18n_null);
4212 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4213 }
4214 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4215 success = __kmp_affinity_create_apicid_map(&msg_id);
4216 if (!success) {
4217 KMP_ASSERT(msg_id != kmp_i18n_null);
4218 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4219 }
4220 }
4221#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4222
4223 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4224 int line = 0;
4225 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4226 if (!success) {
4227 KMP_ASSERT(msg_id != kmp_i18n_null);
4228 const char *filename = __kmp_cpuinfo_get_filename();
4229 if (line > 0) {
4230 KMP_FATAL(FileLineMsgExiting, filename, line,
4231 __kmp_i18n_catgets(msg_id));
4232 } else {
4233 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4234 }
4235 }
4236 }
4237
4238#if KMP_GROUP_AFFINITY
4239 else if (__kmp_affinity_top_method == affinity_top_method_group) {
4240 success = __kmp_affinity_create_proc_group_map(&msg_id);
4241 KMP_ASSERT(success);
4242 if (!success) {
4243 KMP_ASSERT(msg_id != kmp_i18n_null);
4244 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4245 }
4246 }
4247#endif /* KMP_GROUP_AFFINITY */
4248
4249 else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4250 success = __kmp_affinity_create_flat_map(&msg_id);
4251 // should not fail
4252 KMP_ASSERT(success);
4253 }
4254
4255 // Early exit if topology could not be created
4256 if (!__kmp_topology) {
4257 if (KMP_AFFINITY_CAPABLE() &&
4258 (__kmp_affinity_verbose ||
4259 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4260 KMP_WARNING(ErrorInitializeAffinity);
4261 }
4262 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4263 __kmp_ncores > 0) {
4264 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4265 __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4266 __kmp_nThreadsPerCore, __kmp_ncores);
4267 if (__kmp_affinity_verbose) {
4268 __kmp_topology->print("KMP_AFFINITY");
4269 }
4270 }
4271 __kmp_affinity_type = affinity_none;
4272 __kmp_create_affinity_none_places();
4273#if KMP_USE_HIER_SCHED
4274 __kmp_dispatch_set_hierarchy_values();
4275#endif
4276 KMP_AFFINITY_DISABLE();
4277 return;
4278 }
4279
4280 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
4281 // initialize other data structures which depend on the topology
4282 __kmp_topology->canonicalize();
4283 if (__kmp_affinity_verbose)
4284 __kmp_topology->print("KMP_AFFINITY");
4285 bool filtered = __kmp_topology->filter_hw_subset();
4286 if (filtered && __kmp_affinity_verbose)
4287 __kmp_topology->print("KMP_HW_SUBSET");
4288 machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4289 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4290 // If KMP_AFFINITY=none, then only create the single "none" place
4291 // which is the process's initial affinity mask or the number of
4292 // hardware threads depending on respect,norespect
4293 if (__kmp_affinity_type == affinity_none) {
4294 __kmp_create_affinity_none_places();
4295#if KMP_USE_HIER_SCHED
4296 __kmp_dispatch_set_hierarchy_values();
4297#endif
4298 return;
4299 }
4300 int depth = __kmp_topology->get_depth();
4301
4302 // Create the table of masks, indexed by thread Id.
4303 unsigned maxIndex;
4304 unsigned numUnique;
4305 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
4306 if (__kmp_affinity_gran_levels == 0) {
4307 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4308 }
4309
4310 switch (__kmp_affinity_type) {
4311
4312 case affinity_explicit:
4313 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4314 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4315 __kmp_affinity_process_proclist(
4316 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4317 __kmp_affinity_proclist, osId2Mask, maxIndex);
4318 } else {
4319 __kmp_affinity_process_placelist(
4320 &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4321 __kmp_affinity_proclist, osId2Mask, maxIndex);
4322 }
4323 if (__kmp_affinity_num_masks == 0) {
4324 if (__kmp_affinity_verbose ||
4325 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4326 KMP_WARNING(AffNoValidProcID);
4327 }
4328 __kmp_affinity_type = affinity_none;
4329 __kmp_create_affinity_none_places();
4330 return;
4331 }
4332 break;
4333
4334 // The other affinity types rely on sorting the hardware threads according to
4335 // some permutation of the machine topology tree. Set __kmp_affinity_compact
4336 // and __kmp_affinity_offset appropriately, then jump to a common code
4337 // fragment to do the sort and create the array of affinity masks.
4338 case affinity_logical:
4339 __kmp_affinity_compact = 0;
4340 if (__kmp_affinity_offset) {
4341 __kmp_affinity_offset =
4342 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4343 }
4344 goto sortTopology;
4345
4346 case affinity_physical:
4347 if (__kmp_nThreadsPerCore > 1) {
4348 __kmp_affinity_compact = 1;
4349 if (__kmp_affinity_compact >= depth) {
4350 __kmp_affinity_compact = 0;
4351 }
4352 } else {
4353 __kmp_affinity_compact = 0;
4354 }
4355 if (__kmp_affinity_offset) {
4356 __kmp_affinity_offset =
4357 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4358 }
4359 goto sortTopology;
4360
4361 case affinity_scatter:
4362 if (__kmp_affinity_compact >= depth) {
4363 __kmp_affinity_compact = 0;
4364 } else {
4365 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4366 }
4367 goto sortTopology;
4368
4369 case affinity_compact:
4370 if (__kmp_affinity_compact >= depth) {
4371 __kmp_affinity_compact = depth - 1;
4372 }
4373 goto sortTopology;
4374
4375 case affinity_balanced:
4376 if (depth <= 1) {
4377 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4378 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4379 }
4380 __kmp_affinity_type = affinity_none;
4381 __kmp_create_affinity_none_places();
4382 return;
4383 } else if (!__kmp_topology->is_uniform()) {
4384 // Save the depth for further usage
4385 __kmp_aff_depth = depth;
4386
4387 int core_level =
4388 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4389 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4390 core_level);
4391 int maxprocpercore = __kmp_affinity_max_proc_per_core(
4392 __kmp_avail_proc, depth - 1, core_level);
4393
4394 int nproc = ncores * maxprocpercore;
4395 if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4396 if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4397 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4398 }
4399 __kmp_affinity_type = affinity_none;
4400 return;
4401 }
4402
4403 procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4404 for (int i = 0; i < nproc; i++) {
4405 procarr[i] = -1;
4406 }
4407
4408 int lastcore = -1;
4409 int inlastcore = 0;
4410 for (int i = 0; i < __kmp_avail_proc; i++) {
4411 int proc = __kmp_topology->at(i).os_id;
4412 int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4413
4414 if (core == lastcore) {
4415 inlastcore++;
4416 } else {
4417 inlastcore = 0;
4418 }
4419 lastcore = core;
4420
4421 procarr[core * maxprocpercore + inlastcore] = proc;
4422 }
4423 }
4424 if (__kmp_affinity_compact >= depth) {
4425 __kmp_affinity_compact = depth - 1;
4426 }
4427
4428 sortTopology:
4429 // Allocate the gtid->affinity mask table.
4430 if (__kmp_affinity_dups) {
4431 __kmp_affinity_num_masks = __kmp_avail_proc;
4432 } else {
4433 __kmp_affinity_num_masks = numUnique;
4434 }
4435
4436 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4437 (__kmp_affinity_num_places > 0) &&
4438 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4439 __kmp_affinity_num_masks = __kmp_affinity_num_places;
4440 }
4441
4442 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4443
4444 // Sort the topology table according to the current setting of
4445 // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4446 __kmp_topology->sort_compact();
4447 {
4448 int i;
4449 unsigned j;
4450 int num_hw_threads = __kmp_topology->get_num_hw_threads();
4451 for (i = 0, j = 0; i < num_hw_threads; i++) {
4452 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
4453 continue;
4454 }
4455 int osId = __kmp_topology->at(i).os_id;
4456
4457 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4458 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4459 KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4460 KMP_CPU_COPY(dest, src);
4461 if (++j >= __kmp_affinity_num_masks) {
4462 break;
4463 }
4464 }
4465 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4466 }
4467 // Sort the topology back using ids
4468 __kmp_topology->sort_ids();
4469 break;
4470
4471 default:
4472 KMP_ASSERT2(0, "Unexpected affinity setting");
4473 }
4474
4475 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4476}
4477
4478void __kmp_affinity_initialize(void) {
4479 // Much of the code above was written assuming that if a machine was not
4480 // affinity capable, then __kmp_affinity_type == affinity_none. We now
4481 // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4482 // There are too many checks for __kmp_affinity_type == affinity_none
4483 // in this code. Instead of trying to change them all, check if
4484 // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4485 // affinity_none, call the real initialization routine, then restore
4486 // __kmp_affinity_type to affinity_disabled.
4487 int disabled = (__kmp_affinity_type == affinity_disabled);
4488 if (!KMP_AFFINITY_CAPABLE()) {
4489 KMP_ASSERT(disabled);
4490 }
4491 if (disabled) {
4492 __kmp_affinity_type = affinity_none;
4493 }
4494 __kmp_aux_affinity_initialize();
4495 if (disabled) {
4496 __kmp_affinity_type = affinity_disabled;
4497 }
4498}
4499
4500void __kmp_affinity_uninitialize(void) {
4501 if (__kmp_affinity_masks != NULL) {
4502 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4503 __kmp_affinity_masks = NULL;
4504 }
4505 if (__kmp_affin_fullMask != NULL) {
4506 KMP_CPU_FREE(__kmp_affin_fullMask);
4507 __kmp_affin_fullMask = NULL;
4508 }
4509 __kmp_affinity_num_masks = 0;
4510 __kmp_affinity_type = affinity_default;
4511 __kmp_affinity_num_places = 0;
4512 if (__kmp_affinity_proclist != NULL) {
4513 __kmp_free(__kmp_affinity_proclist);
4514 __kmp_affinity_proclist = NULL;
4515 }
4516 if (procarr != NULL) {
4517 __kmp_free(procarr);
4518 procarr = NULL;
4519 }
4520#if KMP_USE_HWLOC
4521 if (__kmp_hwloc_topology != NULL) {
4522 hwloc_topology_destroy(__kmp_hwloc_topology);
4523 __kmp_hwloc_topology = NULL;
4524 }
4525#endif
4526 if (__kmp_hw_subset) {
4527 kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4528 __kmp_hw_subset = nullptr;
4529 }
4530 if (__kmp_topology) {
4531 kmp_topology_t::deallocate(__kmp_topology);
4532 __kmp_topology = nullptr;
4533 }
4534 KMPAffinity::destroy_api();
4535}
4536
4537void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4538 if (!KMP_AFFINITY_CAPABLE()) {
4539 return;
4540 }
4541
4542 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4543 if (th->th.th_affin_mask == NULL) {
4544 KMP_CPU_ALLOC(th->th.th_affin_mask);
4545 } else {
4546 KMP_CPU_ZERO(th->th.th_affin_mask);
4547 }
4548
4549 // Copy the thread mask to the kmp_info_t structure. If
4550 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4551 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4552 // then the full mask is the same as the mask of the initialization thread.
4553 kmp_affin_mask_t *mask;
4554 int i;
4555
4556 if (KMP_AFFINITY_NON_PROC_BIND) {
4557 if ((__kmp_affinity_type == affinity_none) ||
4558 (__kmp_affinity_type == affinity_balanced) ||
4559 KMP_HIDDEN_HELPER_THREAD(gtid)) {
4560#if KMP_GROUP_AFFINITY
4561 if (__kmp_num_proc_groups > 1) {
4562 return;
4563 }
4564#endif
4565 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4566 i = 0;
4567 mask = __kmp_affin_fullMask;
4568 } else {
4569 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4570 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4571 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4572 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4573 }
4574 } else {
4575 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
4576 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4577#if KMP_GROUP_AFFINITY
4578 if (__kmp_num_proc_groups > 1) {
4579 return;
4580 }
4581#endif
4582 KMP_ASSERT(__kmp_affin_fullMask != NULL);
4583 i = KMP_PLACE_ALL;
4584 mask = __kmp_affin_fullMask;
4585 } else {
4586 // int i = some hash function or just a counter that doesn't
4587 // always start at 0. Use adjusted gtid for now.
4588 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4589 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4590 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4591 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4592 }
4593 }
4594
4595 th->th.th_current_place = i;
4596 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
4597 th->th.th_new_place = i;
4598 th->th.th_first_place = 0;
4599 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4600 } else if (KMP_AFFINITY_NON_PROC_BIND) {
4601 // When using a Non-OMP_PROC_BIND affinity method,
4602 // set all threads' place-partition-var to the entire place list
4603 th->th.th_first_place = 0;
4604 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4605 }
4606
4607 if (i == KMP_PLACE_ALL) {
4608 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4609 gtid));
4610 } else {
4611 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4612 gtid, i));
4613 }
4614
4615 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4616
4617 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
4618 /* to avoid duplicate printing (will be correctly printed on barrier) */
4619 && (__kmp_affinity_type == affinity_none ||
4620 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4621 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4622 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4623 th->th.th_affin_mask);
4624 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4625 __kmp_gettid(), gtid, buf);
4626 }
4627
4628#if KMP_DEBUG
4629 // Hidden helper thread affinity only printed for debug builds
4630 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
4631 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4632 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4633 th->th.th_affin_mask);
4634 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
4635 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
4636 }
4637#endif
4638
4639#if KMP_OS_WINDOWS
4640 // On Windows* OS, the process affinity mask might have changed. If the user
4641 // didn't request affinity and this call fails, just continue silently.
4642 // See CQ171393.
4643 if (__kmp_affinity_type == affinity_none) {
4644 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4645 } else
4646#endif
4647 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4648}
4649
4650void __kmp_affinity_set_place(int gtid) {
4651 if (!KMP_AFFINITY_CAPABLE()) {
4652 return;
4653 }
4654
4655 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4656
4657 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4658 "place = %d)\n",
4659 gtid, th->th.th_new_place, th->th.th_current_place));
4660
4661 // Check that the new place is within this thread's partition.
4662 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4663 KMP_ASSERT(th->th.th_new_place >= 0);
4664 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4665 if (th->th.th_first_place <= th->th.th_last_place) {
4666 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4667 (th->th.th_new_place <= th->th.th_last_place));
4668 } else {
4669 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4670 (th->th.th_new_place >= th->th.th_last_place));
4671 }
4672
4673 // Copy the thread mask to the kmp_info_t structure,
4674 // and set this thread's affinity.
4675 kmp_affin_mask_t *mask =
4676 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4677 KMP_CPU_COPY(th->th.th_affin_mask, mask);
4678 th->th.th_current_place = th->th.th_new_place;
4679
4680 if (__kmp_affinity_verbose) {
4681 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4682 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4683 th->th.th_affin_mask);
4684 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4685 __kmp_gettid(), gtid, buf);
4686 }
4687 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4688}
4689
4690int __kmp_aux_set_affinity(void **mask) {
4691 int gtid;
4692 kmp_info_t *th;
4693 int retval;
4694
4695 if (!KMP_AFFINITY_CAPABLE()) {
4696 return -1;
4697 }
4698
4699 gtid = __kmp_entry_gtid();
4700 KA_TRACE(
4701 1000, (""); {
4702 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4703 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4704 (kmp_affin_mask_t *)(*mask));
4705 __kmp_debug_printf(
4706 "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4707 gtid, buf);
4708 });
4709
4710 if (__kmp_env_consistency_check) {
4711 if ((mask == NULL) || (*mask == NULL)) {
4712 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4713 } else {
4714 unsigned proc;
4715 int num_procs = 0;
4716
4717 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4718 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4719 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4720 }
4721 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4722 continue;
4723 }
4724 num_procs++;
4725 }
4726 if (num_procs == 0) {
4727 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4728 }
4729
4730#if KMP_GROUP_AFFINITY
4731 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4732 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4733 }
4734#endif /* KMP_GROUP_AFFINITY */
4735 }
4736 }
4737
4738 th = __kmp_threads[gtid];
4739 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4740 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4741 if (retval == 0) {
4742 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4743 }
4744
4745 th->th.th_current_place = KMP_PLACE_UNDEFINED;
4746 th->th.th_new_place = KMP_PLACE_UNDEFINED;
4747 th->th.th_first_place = 0;
4748 th->th.th_last_place = __kmp_affinity_num_masks - 1;
4749
4750 // Turn off 4.0 affinity for the current tread at this parallel level.
4751 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4752
4753 return retval;
4754}
4755
4756int __kmp_aux_get_affinity(void **mask) {
4757 int gtid;
4758 int retval;
4759#if KMP_OS_WINDOWS || KMP_DEBUG
4760 kmp_info_t *th;
4761#endif
4762 if (!KMP_AFFINITY_CAPABLE()) {
4763 return -1;
4764 }
4765
4766 gtid = __kmp_entry_gtid();
4767#if KMP_OS_WINDOWS || KMP_DEBUG
4768 th = __kmp_threads[gtid];
4769#else
4770 (void)gtid; // unused variable
4771#endif
4772 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4773
4774 KA_TRACE(
4775 1000, (""); {
4776 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4777 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4778 th->th.th_affin_mask);
4779 __kmp_printf(
4780 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4781 buf);
4782 });
4783
4784 if (__kmp_env_consistency_check) {
4785 if ((mask == NULL) || (*mask == NULL)) {
4786 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4787 }
4788 }
4789
4790#if !KMP_OS_WINDOWS
4791
4792 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4793 KA_TRACE(
4794 1000, (""); {
4795 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4796 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4797 (kmp_affin_mask_t *)(*mask));
4798 __kmp_printf(
4799 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4800 buf);
4801 });
4802 return retval;
4803
4804#else
4805 (void)retval;
4806
4807 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4808 return 0;
4809
4810#endif /* KMP_OS_WINDOWS */
4811}
4812
4813int __kmp_aux_get_affinity_max_proc() {
4814 if (!KMP_AFFINITY_CAPABLE()) {
4815 return 0;
4816 }
4817#if KMP_GROUP_AFFINITY
4818 if (__kmp_num_proc_groups > 1) {
4819 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4820 }
4821#endif
4822 return __kmp_xproc;
4823}
4824
4825int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4826 if (!KMP_AFFINITY_CAPABLE()) {
4827 return -1;
4828 }
4829
4830 KA_TRACE(
4831 1000, (""); {
4832 int gtid = __kmp_entry_gtid();
4833 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4834 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4835 (kmp_affin_mask_t *)(*mask));
4836 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4837 "affinity mask for thread %d = %s\n",
4838 proc, gtid, buf);
4839 });
4840
4841 if (__kmp_env_consistency_check) {
4842 if ((mask == NULL) || (*mask == NULL)) {
4843 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4844 }
4845 }
4846
4847 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4848 return -1;
4849 }
4850 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4851 return -2;
4852 }
4853
4854 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4855 return 0;
4856}
4857
4858int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4859 if (!KMP_AFFINITY_CAPABLE()) {
4860 return -1;
4861 }
4862
4863 KA_TRACE(
4864 1000, (""); {
4865 int gtid = __kmp_entry_gtid();
4866 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4867 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4868 (kmp_affin_mask_t *)(*mask));
4869 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4870 "affinity mask for thread %d = %s\n",
4871 proc, gtid, buf);
4872 });
4873
4874 if (__kmp_env_consistency_check) {
4875 if ((mask == NULL) || (*mask == NULL)) {
4876 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4877 }
4878 }
4879
4880 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4881 return -1;
4882 }
4883 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4884 return -2;
4885 }
4886
4887 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4888 return 0;
4889}
4890
4891int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4892 if (!KMP_AFFINITY_CAPABLE()) {
4893 return -1;
4894 }
4895
4896 KA_TRACE(
4897 1000, (""); {
4898 int gtid = __kmp_entry_gtid();
4899 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4900 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4901 (kmp_affin_mask_t *)(*mask));
4902 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4903 "affinity mask for thread %d = %s\n",
4904 proc, gtid, buf);
4905 });
4906
4907 if (__kmp_env_consistency_check) {
4908 if ((mask == NULL) || (*mask == NULL)) {
4909 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4910 }
4911 }
4912
4913 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4914 return -1;
4915 }
4916 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4917 return 0;
4918 }
4919
4920 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4921}
4922
4923// Dynamic affinity settings - Affinity balanced
4924void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4925 KMP_DEBUG_ASSERT(th);
4926 bool fine_gran = true;
4927 int tid = th->th.th_info.ds.ds_tid;
4928
4929 // Do not perform balanced affinity for the hidden helper threads
4930 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
4931 return;
4932
4933 switch (__kmp_affinity_gran) {
4934 case KMP_HW_THREAD:
4935 break;
4936 case KMP_HW_CORE:
4937 if (__kmp_nThreadsPerCore > 1) {
4938 fine_gran = false;
4939 }
4940 break;
4941 case KMP_HW_SOCKET:
4942 if (nCoresPerPkg > 1) {
4943 fine_gran = false;
4944 }
4945 break;
4946 default:
4947 fine_gran = false;
4948 }
4949
4950 if (__kmp_topology->is_uniform()) {
4951 int coreID;
4952 int threadID;
4953 // Number of hyper threads per core in HT machine
4954 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
4955 // Number of cores
4956 int ncores = __kmp_ncores;
4957 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
4958 __kmp_nth_per_core = __kmp_avail_proc / nPackages;
4959 ncores = nPackages;
4960 }
4961 // How many threads will be bound to each core
4962 int chunk = nthreads / ncores;
4963 // How many cores will have an additional thread bound to it - "big cores"
4964 int big_cores = nthreads % ncores;
4965 // Number of threads on the big cores
4966 int big_nth = (chunk + 1) * big_cores;
4967 if (tid < big_nth) {
4968 coreID = tid / (chunk + 1);
4969 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
4970 } else { // tid >= big_nth
4971 coreID = (tid - big_cores) / chunk;
4972 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
4973 }
4974 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
4975 "Illegal set affinity operation when not capable");
4976
4977 kmp_affin_mask_t *mask = th->th.th_affin_mask;
4978 KMP_CPU_ZERO(mask);
4979
4980 if (fine_gran) {
4981 int osID =
4982 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
4983 KMP_CPU_SET(osID, mask);
4984 } else {
4985 for (int i = 0; i < __kmp_nth_per_core; i++) {
4986 int osID;
4987 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
4988 KMP_CPU_SET(osID, mask);
4989 }
4990 }
4991 if (__kmp_affinity_verbose) {
4992 char buf[KMP_AFFIN_MASK_PRINT_LEN];
4993 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
4994 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4995 __kmp_gettid(), tid, buf);
4996 }
4997 __kmp_set_system_affinity(mask, TRUE);
4998 } else { // Non-uniform topology
4999
5000 kmp_affin_mask_t *mask = th->th.th_affin_mask;
5001 KMP_CPU_ZERO(mask);
5002
5003 int core_level =
5004 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5005 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5006 __kmp_aff_depth - 1, core_level);
5007 int nth_per_core = __kmp_affinity_max_proc_per_core(
5008 __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5009
5010 // For performance gain consider the special case nthreads ==
5011 // __kmp_avail_proc
5012 if (nthreads == __kmp_avail_proc) {
5013 if (fine_gran) {
5014 int osID = __kmp_topology->at(tid).os_id;
5015 KMP_CPU_SET(osID, mask);
5016 } else {
5017 int core =
5018 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5019 for (int i = 0; i < __kmp_avail_proc; i++) {
5020 int osID = __kmp_topology->at(i).os_id;
5021 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5022 core) {
5023 KMP_CPU_SET(osID, mask);
5024 }
5025 }
5026 }
5027 } else if (nthreads <= ncores) {
5028
5029 int core = 0;
5030 for (int i = 0; i < ncores; i++) {
5031 // Check if this core from procarr[] is in the mask
5032 int in_mask = 0;
5033 for (int j = 0; j < nth_per_core; j++) {
5034 if (procarr[i * nth_per_core + j] != -1) {
5035 in_mask = 1;
5036 break;
5037 }
5038 }
5039 if (in_mask) {
5040 if (tid == core) {
5041 for (int j = 0; j < nth_per_core; j++) {
5042 int osID = procarr[i * nth_per_core + j];
5043 if (osID != -1) {
5044 KMP_CPU_SET(osID, mask);
5045 // For fine granularity it is enough to set the first available
5046 // osID for this core
5047 if (fine_gran) {
5048 break;
5049 }
5050 }
5051 }
5052 break;
5053 } else {
5054 core++;
5055 }
5056 }
5057 }
5058 } else { // nthreads > ncores
5059 // Array to save the number of processors at each core
5060 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5061 // Array to save the number of cores with "x" available processors;
5062 int *ncores_with_x_procs =
5063 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5064 // Array to save the number of cores with # procs from x to nth_per_core
5065 int *ncores_with_x_to_max_procs =
5066 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5067
5068 for (int i = 0; i <= nth_per_core; i++) {
5069 ncores_with_x_procs[i] = 0;
5070 ncores_with_x_to_max_procs[i] = 0;
5071 }
5072
5073 for (int i = 0; i < ncores; i++) {
5074 int cnt = 0;
5075 for (int j = 0; j < nth_per_core; j++) {
5076 if (procarr[i * nth_per_core + j] != -1) {
5077 cnt++;
5078 }
5079 }
5080 nproc_at_core[i] = cnt;
5081 ncores_with_x_procs[cnt]++;
5082 }
5083
5084 for (int i = 0; i <= nth_per_core; i++) {
5085 for (int j = i; j <= nth_per_core; j++) {
5086 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5087 }
5088 }
5089
5090 // Max number of processors
5091 int nproc = nth_per_core * ncores;
5092 // An array to keep number of threads per each context
5093 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5094 for (int i = 0; i < nproc; i++) {
5095 newarr[i] = 0;
5096 }
5097
5098 int nth = nthreads;
5099 int flag = 0;
5100 while (nth > 0) {
5101 for (int j = 1; j <= nth_per_core; j++) {
5102 int cnt = ncores_with_x_to_max_procs[j];
5103 for (int i = 0; i < ncores; i++) {
5104 // Skip the core with 0 processors
5105 if (nproc_at_core[i] == 0) {
5106 continue;
5107 }
5108 for (int k = 0; k < nth_per_core; k++) {
5109 if (procarr[i * nth_per_core + k] != -1) {
5110 if (newarr[i * nth_per_core + k] == 0) {
5111 newarr[i * nth_per_core + k] = 1;
5112 cnt--;
5113 nth--;
5114 break;
5115 } else {
5116 if (flag != 0) {
5117 newarr[i * nth_per_core + k]++;
5118 cnt--;
5119 nth--;
5120 break;
5121 }
5122 }
5123 }
5124 }
5125 if (cnt == 0 || nth == 0) {
5126 break;
5127 }
5128 }
5129 if (nth == 0) {
5130 break;
5131 }
5132 }
5133 flag = 1;
5134 }
5135 int sum = 0;
5136 for (int i = 0; i < nproc; i++) {
5137 sum += newarr[i];
5138 if (sum > tid) {
5139 if (fine_gran) {
5140 int osID = procarr[i];
5141 KMP_CPU_SET(osID, mask);
5142 } else {
5143 int coreID = i / nth_per_core;
5144 for (int ii = 0; ii < nth_per_core; ii++) {
5145 int osID = procarr[coreID * nth_per_core + ii];
5146 if (osID != -1) {
5147 KMP_CPU_SET(osID, mask);
5148 }
5149 }
5150 }
5151 break;
5152 }
5153 }
5154 __kmp_free(newarr);
5155 }
5156
5157 if (__kmp_affinity_verbose) {
5158 char buf[KMP_AFFIN_MASK_PRINT_LEN];
5159 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5160 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5161 __kmp_gettid(), tid, buf);
5162 }
5163 __kmp_set_system_affinity(mask, TRUE);
5164 }
5165}
5166
5167#if KMP_OS_LINUX || KMP_OS_FREEBSD
5168// We don't need this entry for Windows because
5169// there is GetProcessAffinityMask() api
5170//
5171// The intended usage is indicated by these steps:
5172// 1) The user gets the current affinity mask
5173// 2) Then sets the affinity by calling this function
5174// 3) Error check the return value
5175// 4) Use non-OpenMP parallelization
5176// 5) Reset the affinity to what was stored in step 1)
5177#ifdef __cplusplus
5178extern "C"
5179#endif
5180 int
5181 kmp_set_thread_affinity_mask_initial()
5182// the function returns 0 on success,
5183// -1 if we cannot bind thread
5184// >0 (errno) if an error happened during binding
5185{
5186 int gtid = __kmp_get_gtid();
5187 if (gtid < 0) {
5188 // Do not touch non-omp threads
5189 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5190 "non-omp thread, returning\n"));
5191 return -1;
5192 }
5193 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5194 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5195 "affinity not initialized, returning\n"));
5196 return -1;
5197 }
5198 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5199 "set full mask for thread %d\n",
5200 gtid));
5201 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5202 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5203}
5204#endif
5205
5206#endif // KMP_AFFINITY_SUPPORTED
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4335