LLVM OpenMP* Runtime Library
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30
31#define TASK_CURRENT_NOT_QUEUED 0
32#define TASK_CURRENT_QUEUED 1
33
34#ifdef BUILD_TIED_TASK_STACK
35#define TASK_STACK_EMPTY 0 // entries when the stack is empty
36#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
37// Number of entries in each task stack array
38#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
39// Mask for determining index into stack block
40#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
41#endif // BUILD_TIED_TASK_STACK
42
43#define TASK_NOT_PUSHED 1
44#define TASK_SUCCESSFULLY_PUSHED 0
45#define TASK_TIED 1
46#define TASK_UNTIED 0
47#define TASK_EXPLICIT 1
48#define TASK_IMPLICIT 0
49#define TASK_PROXY 1
50#define TASK_FULL 0
51#define TASK_DETACHABLE 1
52#define TASK_UNDETACHABLE 0
53
54#define KMP_CANCEL_THREADS
55#define KMP_THREAD_ATTR
56
57// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
58// built on Android
59#if defined(__ANDROID__)
60#undef KMP_CANCEL_THREADS
61#endif
62
63#include <signal.h>
64#include <stdarg.h>
65#include <stddef.h>
66#include <stdio.h>
67#include <stdlib.h>
68#include <string.h>
69#include <limits>
70#include <type_traits>
71/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
72 Microsoft library. Some macros provided below to replace these functions */
73#ifndef __ABSOFT_WIN
74#include <sys/types.h>
75#endif
76#include <limits.h>
77#include <time.h>
78
79#include <errno.h>
80
81#include "kmp_os.h"
82
83#include "kmp_safe_c_api.h"
84
85#if KMP_STATS_ENABLED
86class kmp_stats_list;
87#endif
88
89#if KMP_USE_HIER_SCHED
90// Only include hierarchical scheduling if affinity is supported
91#undef KMP_USE_HIER_SCHED
92#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
93#endif
94
95#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
96#include "hwloc.h"
97#ifndef HWLOC_OBJ_NUMANODE
98#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
99#endif
100#ifndef HWLOC_OBJ_PACKAGE
101#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
102#endif
103#if HWLOC_API_VERSION >= 0x00020000
104// hwloc 2.0 changed type of depth of object from unsigned to int
105typedef int kmp_hwloc_depth_t;
106#else
107typedef unsigned int kmp_hwloc_depth_t;
108#endif
109#endif
110
111#if KMP_ARCH_X86 || KMP_ARCH_X86_64
112#include <xmmintrin.h>
113#endif
114
115#include "kmp_debug.h"
116#include "kmp_lock.h"
117#include "kmp_version.h"
118#include "kmp_barrier.h"
119#if USE_DEBUGGER
120#include "kmp_debugger.h"
121#endif
122#include "kmp_i18n.h"
123
124#define KMP_HANDLE_SIGNALS (KMP_OS_UNIX || KMP_OS_WINDOWS)
125
126#include "kmp_wrapper_malloc.h"
127#if KMP_OS_UNIX
128#include <unistd.h>
129#if !defined NSIG && defined _NSIG
130#define NSIG _NSIG
131#endif
132#endif
133
134#if KMP_OS_LINUX
135#pragma weak clock_gettime
136#endif
137
138#if OMPT_SUPPORT
139#include "ompt-internal.h"
140#endif
141
142#if OMPD_SUPPORT
143#include "ompd-specific.h"
144#endif
145
146#ifndef UNLIKELY
147#define UNLIKELY(x) (x)
148#endif
149
150// Affinity format function
151#include "kmp_str.h"
152
153// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
154// 3 - fast allocation using sync, non-sync free lists of any size, non-self
155// free lists of limited size.
156#ifndef USE_FAST_MEMORY
157#define USE_FAST_MEMORY 3
158#endif
159
160#ifndef KMP_NESTED_HOT_TEAMS
161#define KMP_NESTED_HOT_TEAMS 0
162#define USE_NESTED_HOT_ARG(x)
163#else
164#if KMP_NESTED_HOT_TEAMS
165#define USE_NESTED_HOT_ARG(x) , x
166#else
167#define USE_NESTED_HOT_ARG(x)
168#endif
169#endif
170
171// Assume using BGET compare_exchange instruction instead of lock by default.
172#ifndef USE_CMP_XCHG_FOR_BGET
173#define USE_CMP_XCHG_FOR_BGET 1
174#endif
175
176// Test to see if queuing lock is better than bootstrap lock for bget
177// #ifndef USE_QUEUING_LOCK_FOR_BGET
178// #define USE_QUEUING_LOCK_FOR_BGET
179// #endif
180
181#define KMP_NSEC_PER_SEC 1000000000L
182#define KMP_USEC_PER_SEC 1000000L
183
192enum {
197 /* 0x04 is no longer used */
206 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
207 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
208 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
209
210 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
211 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
212
224 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
225 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
226 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
227 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
228 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
229};
230
234typedef struct ident {
235 kmp_int32 reserved_1;
236 kmp_int32 flags;
238 kmp_int32 reserved_2;
239#if USE_ITT_BUILD
240/* but currently used for storing region-specific ITT */
241/* contextual information. */
242#endif /* USE_ITT_BUILD */
243 kmp_int32 reserved_3;
244 char const *psource;
248 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
249 kmp_int32 get_openmp_version() {
250 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
251 }
257// Some forward declarations.
258typedef union kmp_team kmp_team_t;
259typedef struct kmp_taskdata kmp_taskdata_t;
260typedef union kmp_task_team kmp_task_team_t;
261typedef union kmp_team kmp_team_p;
262typedef union kmp_info kmp_info_p;
263typedef union kmp_root kmp_root_p;
264
265template <bool C = false, bool S = true> class kmp_flag_32;
266template <bool C = false, bool S = true> class kmp_flag_64;
267template <bool C = false, bool S = true> class kmp_atomic_flag_64;
268class kmp_flag_oncore;
269
270#ifdef __cplusplus
271extern "C" {
272#endif
273
274/* ------------------------------------------------------------------------ */
275
276/* Pack two 32-bit signed integers into a 64-bit signed integer */
277/* ToDo: Fix word ordering for big-endian machines. */
278#define KMP_PACK_64(HIGH_32, LOW_32) \
279 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
280
281// Generic string manipulation macros. Assume that _x is of type char *
282#define SKIP_WS(_x) \
283 { \
284 while (*(_x) == ' ' || *(_x) == '\t') \
285 (_x)++; \
286 }
287#define SKIP_DIGITS(_x) \
288 { \
289 while (*(_x) >= '0' && *(_x) <= '9') \
290 (_x)++; \
291 }
292#define SKIP_TOKEN(_x) \
293 { \
294 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
295 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
296 (_x)++; \
297 }
298#define SKIP_TO(_x, _c) \
299 { \
300 while (*(_x) != '\0' && *(_x) != (_c)) \
301 (_x)++; \
302 }
303
304/* ------------------------------------------------------------------------ */
305
306#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
307#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
308
309/* ------------------------------------------------------------------------ */
310/* Enumeration types */
311
312enum kmp_state_timer {
313 ts_stop,
314 ts_start,
315 ts_pause,
316
317 ts_last_state
318};
319
320enum dynamic_mode {
321 dynamic_default,
322#ifdef USE_LOAD_BALANCE
323 dynamic_load_balance,
324#endif /* USE_LOAD_BALANCE */
325 dynamic_random,
326 dynamic_thread_limit,
327 dynamic_max
328};
329
330/* external schedule constants, duplicate enum omp_sched in omp.h in order to
331 * not include it here */
332#ifndef KMP_SCHED_TYPE_DEFINED
333#define KMP_SCHED_TYPE_DEFINED
334typedef enum kmp_sched {
335 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
336 // Note: need to adjust __kmp_sch_map global array in case enum is changed
337 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
338 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
339 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
340 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
341 kmp_sched_upper_std = 5, // upper bound for standard schedules
342 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
343 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
344#if KMP_STATIC_STEAL_ENABLED
345 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
346#endif
347 kmp_sched_upper,
348 kmp_sched_default = kmp_sched_static, // default scheduling
349 kmp_sched_monotonic = 0x80000000
350} kmp_sched_t;
351#endif
352
357enum sched_type : kmp_int32 {
359 kmp_sch_static_chunked = 33,
361 kmp_sch_dynamic_chunked = 35,
363 kmp_sch_runtime = 37,
365 kmp_sch_trapezoidal = 39,
366
367 /* accessible only through KMP_SCHEDULE environment variable */
368 kmp_sch_static_greedy = 40,
369 kmp_sch_static_balanced = 41,
370 /* accessible only through KMP_SCHEDULE environment variable */
371 kmp_sch_guided_iterative_chunked = 42,
372 kmp_sch_guided_analytical_chunked = 43,
373 /* accessible only through KMP_SCHEDULE environment variable */
374 kmp_sch_static_steal = 44,
375
376 /* static with chunk adjustment (e.g., simd) */
377 kmp_sch_static_balanced_chunked = 45,
381 /* accessible only through KMP_SCHEDULE environment variable */
385 kmp_ord_static_chunked = 65,
387 kmp_ord_dynamic_chunked = 67,
388 kmp_ord_guided_chunked = 68,
389 kmp_ord_runtime = 69,
391 kmp_ord_trapezoidal = 71,
394 /* Schedules for Distribute construct */
398 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
399 single iteration/chunk, even if the loop is serialized. For the schedule
400 types listed above, the entire iteration vector is returned if the loop is
401 serialized. This doesn't work for gcc/gcomp sections. */
404 kmp_nm_static_chunked =
405 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
407 kmp_nm_dynamic_chunked = 163,
409 kmp_nm_runtime = 165,
411 kmp_nm_trapezoidal = 167,
412
413 /* accessible only through KMP_SCHEDULE environment variable */
414 kmp_nm_static_greedy = 168,
415 kmp_nm_static_balanced = 169,
416 /* accessible only through KMP_SCHEDULE environment variable */
417 kmp_nm_guided_iterative_chunked = 170,
418 kmp_nm_guided_analytical_chunked = 171,
419 kmp_nm_static_steal =
420 172, /* accessible only through OMP_SCHEDULE environment variable */
421
422 kmp_nm_ord_static_chunked = 193,
424 kmp_nm_ord_dynamic_chunked = 195,
425 kmp_nm_ord_guided_chunked = 196,
426 kmp_nm_ord_runtime = 197,
428 kmp_nm_ord_trapezoidal = 199,
431 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
432 we need to distinguish the three possible cases (no modifier, monotonic
433 modifier, nonmonotonic modifier), we need separate bits for each modifier.
434 The absence of monotonic does not imply nonmonotonic, especially since 4.5
435 says that the behaviour of the "no modifier" case is implementation defined
436 in 4.5, but will become "nonmonotonic" in 5.0.
437
438 Since we're passing a full 32 bit value, we can use a couple of high bits
439 for these flags; out of paranoia we avoid the sign bit.
440
441 These modifiers can be or-ed into non-static schedules by the compiler to
442 pass the additional information. They will be stripped early in the
443 processing in __kmp_dispatch_init when setting up schedules, so most of the
444 code won't ever see schedules with these bits set. */
446 (1 << 29),
448 (1 << 30),
450#define SCHEDULE_WITHOUT_MODIFIERS(s) \
451 (enum sched_type)( \
453#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
454#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
455#define SCHEDULE_HAS_NO_MODIFIERS(s) \
456 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
457#define SCHEDULE_GET_MODIFIERS(s) \
458 ((enum sched_type)( \
459 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
460#define SCHEDULE_SET_MODIFIERS(s, m) \
461 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
462#define SCHEDULE_NONMONOTONIC 0
463#define SCHEDULE_MONOTONIC 1
464
467
468// Apply modifiers on internal kind to standard kind
469static inline void
470__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
471 enum sched_type internal_kind) {
472 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
473 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
474 }
475}
476
477// Apply modifiers on standard kind to internal kind
478static inline void
479__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
480 enum sched_type *internal_kind) {
481 if ((int)kind & (int)kmp_sched_monotonic) {
482 *internal_kind = (enum sched_type)((int)*internal_kind |
484 }
485}
486
487// Get standard schedule without modifiers
488static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
489 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
490}
491
492/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
493typedef union kmp_r_sched {
494 struct {
495 enum sched_type r_sched_type;
496 int chunk;
497 };
498 kmp_int64 sched;
499} kmp_r_sched_t;
500
501extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
502// internal schedule types
503
504enum library_type {
505 library_none,
506 library_serial,
507 library_turnaround,
508 library_throughput
509};
510
511#if KMP_OS_LINUX
512enum clock_function_type {
513 clock_function_gettimeofday,
514 clock_function_clock_gettime
515};
516#endif /* KMP_OS_LINUX */
517
518#if KMP_MIC_SUPPORTED
519enum mic_type { non_mic, mic1, mic2, mic3, dummy };
520#endif
521
522/* -- fast reduction stuff ------------------------------------------------ */
523
524#undef KMP_FAST_REDUCTION_BARRIER
525#define KMP_FAST_REDUCTION_BARRIER 1
526
527#undef KMP_FAST_REDUCTION_CORE_DUO
528#if KMP_ARCH_X86 || KMP_ARCH_X86_64
529#define KMP_FAST_REDUCTION_CORE_DUO 1
530#endif
531
532enum _reduction_method {
533 reduction_method_not_defined = 0,
534 critical_reduce_block = (1 << 8),
535 atomic_reduce_block = (2 << 8),
536 tree_reduce_block = (3 << 8),
537 empty_reduce_block = (4 << 8)
538};
539
540// Description of the packed_reduction_method variable:
541// The packed_reduction_method variable consists of two enum types variables
542// that are packed together into 0-th byte and 1-st byte:
543// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
544// barrier that will be used in fast reduction: bs_plain_barrier or
545// bs_reduction_barrier
546// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
547// be used in fast reduction;
548// Reduction method is of 'enum _reduction_method' type and it's defined the way
549// so that the bits of 0-th byte are empty, so no need to execute a shift
550// instruction while packing/unpacking
551
552#if KMP_FAST_REDUCTION_BARRIER
553#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
554 ((reduction_method) | (barrier_type))
555
556#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
557 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
558
559#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
560 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
561#else
562#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
563 (reduction_method)
564
565#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
566 (packed_reduction_method)
567
568#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
569#endif
570
571#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
572 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
573 (which_reduction_block))
574
575#if KMP_FAST_REDUCTION_BARRIER
576#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
577 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
578
579#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
580 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
581#endif
582
583typedef int PACKED_REDUCTION_METHOD_T;
584
585/* -- end of fast reduction stuff ----------------------------------------- */
586
587#if KMP_OS_WINDOWS
588#define USE_CBLKDATA
589#if KMP_MSVC_COMPAT
590#pragma warning(push)
591#pragma warning(disable : 271 310)
592#endif
593#include <windows.h>
594#if KMP_MSVC_COMPAT
595#pragma warning(pop)
596#endif
597#endif
598
599#if KMP_OS_UNIX
600#include <dlfcn.h>
601#include <pthread.h>
602#endif
603
604enum kmp_hw_t : int {
605 KMP_HW_UNKNOWN = -1,
606 KMP_HW_SOCKET = 0,
607 KMP_HW_PROC_GROUP,
608 KMP_HW_NUMA,
609 KMP_HW_DIE,
610 KMP_HW_LLC,
611 KMP_HW_L3,
612 KMP_HW_TILE,
613 KMP_HW_MODULE,
614 KMP_HW_L2,
615 KMP_HW_L1,
616 KMP_HW_CORE,
617 KMP_HW_THREAD,
618 KMP_HW_LAST
619};
620
621typedef enum kmp_hw_core_type_t {
622 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
623#if KMP_ARCH_X86 || KMP_ARCH_X86_64
624 KMP_HW_CORE_TYPE_ATOM = 0x20,
625 KMP_HW_CORE_TYPE_CORE = 0x40,
626 KMP_HW_MAX_NUM_CORE_TYPES = 3,
627#else
628 KMP_HW_MAX_NUM_CORE_TYPES = 1,
629#endif
630} kmp_hw_core_type_t;
631
632#define KMP_HW_MAX_NUM_CORE_EFFS 8
633
634#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
635 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
636#define KMP_ASSERT_VALID_HW_TYPE(type) \
637 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
638
639#define KMP_FOREACH_HW_TYPE(type) \
640 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
641 type = (kmp_hw_t)((int)type + 1))
642
643const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
644const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
645const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
646
647/* Only Linux* OS and Windows* OS support thread affinity. */
648#if KMP_AFFINITY_SUPPORTED
649
650// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
651#if KMP_OS_WINDOWS
652#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
653typedef struct GROUP_AFFINITY {
654 KAFFINITY Mask;
655 WORD Group;
656 WORD Reserved[3];
657} GROUP_AFFINITY;
658#endif /* _MSC_VER < 1600 */
659#if KMP_GROUP_AFFINITY
660extern int __kmp_num_proc_groups;
661#else
662static const int __kmp_num_proc_groups = 1;
663#endif /* KMP_GROUP_AFFINITY */
664typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
665extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
666
667typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
668extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
669
670typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
671extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
672
673typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
674 GROUP_AFFINITY *);
675extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
676#endif /* KMP_OS_WINDOWS */
677
678#if KMP_USE_HWLOC
679extern hwloc_topology_t __kmp_hwloc_topology;
680extern int __kmp_hwloc_error;
681#endif
682
683extern size_t __kmp_affin_mask_size;
684#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
685#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
686#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
687#define KMP_CPU_SET_ITERATE(i, mask) \
688 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
689#define KMP_CPU_SET(i, mask) (mask)->set(i)
690#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
691#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
692#define KMP_CPU_ZERO(mask) (mask)->zero()
693#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
694#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
695#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
696#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
697#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
698#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
699#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
700#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
701#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
702#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
703#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
704#define KMP_CPU_ALLOC_ARRAY(arr, n) \
705 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
706#define KMP_CPU_FREE_ARRAY(arr, n) \
707 __kmp_affinity_dispatch->deallocate_mask_array(arr)
708#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
709#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
710#define __kmp_get_system_affinity(mask, abort_bool) \
711 (mask)->get_system_affinity(abort_bool)
712#define __kmp_set_system_affinity(mask, abort_bool) \
713 (mask)->set_system_affinity(abort_bool)
714#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
715
716class KMPAffinity {
717public:
718 class Mask {
719 public:
720 void *operator new(size_t n);
721 void operator delete(void *p);
722 void *operator new[](size_t n);
723 void operator delete[](void *p);
724 virtual ~Mask() {}
725 // Set bit i to 1
726 virtual void set(int i) {}
727 // Return bit i
728 virtual bool is_set(int i) const { return false; }
729 // Set bit i to 0
730 virtual void clear(int i) {}
731 // Zero out entire mask
732 virtual void zero() {}
733 // Copy src into this mask
734 virtual void copy(const Mask *src) {}
735 // this &= rhs
736 virtual void bitwise_and(const Mask *rhs) {}
737 // this |= rhs
738 virtual void bitwise_or(const Mask *rhs) {}
739 // this = ~this
740 virtual void bitwise_not() {}
741 // API for iterating over an affinity mask
742 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
743 virtual int begin() const { return 0; }
744 virtual int end() const { return 0; }
745 virtual int next(int previous) const { return 0; }
746#if KMP_OS_WINDOWS
747 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
748#endif
749 // Set the system's affinity to this affinity mask's value
750 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
751 // Set this affinity mask to the current system affinity
752 virtual int get_system_affinity(bool abort_on_error) { return -1; }
753 // Only 1 DWORD in the mask should have any procs set.
754 // Return the appropriate index, or -1 for an invalid mask.
755 virtual int get_proc_group() const { return -1; }
756 };
757 void *operator new(size_t n);
758 void operator delete(void *p);
759 // Need virtual destructor
760 virtual ~KMPAffinity() = default;
761 // Determine if affinity is capable
762 virtual void determine_capable(const char *env_var) {}
763 // Bind the current thread to os proc
764 virtual void bind_thread(int proc) {}
765 // Factory functions to allocate/deallocate a mask
766 virtual Mask *allocate_mask() { return nullptr; }
767 virtual void deallocate_mask(Mask *m) {}
768 virtual Mask *allocate_mask_array(int num) { return nullptr; }
769 virtual void deallocate_mask_array(Mask *m) {}
770 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
771 static void pick_api();
772 static void destroy_api();
773 enum api_type {
774 NATIVE_OS
775#if KMP_USE_HWLOC
776 ,
777 HWLOC
778#endif
779 };
780 virtual api_type get_api_type() const {
781 KMP_ASSERT(0);
782 return NATIVE_OS;
783 }
784
785private:
786 static bool picked_api;
787};
788
789typedef KMPAffinity::Mask kmp_affin_mask_t;
790extern KMPAffinity *__kmp_affinity_dispatch;
791
792// Declare local char buffers with this size for printing debug and info
793// messages, using __kmp_affinity_print_mask().
794#define KMP_AFFIN_MASK_PRINT_LEN 1024
795
796enum affinity_type {
797 affinity_none = 0,
798 affinity_physical,
799 affinity_logical,
800 affinity_compact,
801 affinity_scatter,
802 affinity_explicit,
803 affinity_balanced,
804 affinity_disabled, // not used outsize the env var parser
805 affinity_default
806};
807
808enum affinity_top_method {
809 affinity_top_method_all = 0, // try all (supported) methods, in order
810#if KMP_ARCH_X86 || KMP_ARCH_X86_64
811 affinity_top_method_apicid,
812 affinity_top_method_x2apicid,
813 affinity_top_method_x2apicid_1f,
814#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
815 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
816#if KMP_GROUP_AFFINITY
817 affinity_top_method_group,
818#endif /* KMP_GROUP_AFFINITY */
819 affinity_top_method_flat,
820#if KMP_USE_HWLOC
821 affinity_top_method_hwloc,
822#endif
823 affinity_top_method_default
824};
825
826#define affinity_respect_mask_default (-1)
827
828extern enum affinity_type __kmp_affinity_type; /* Affinity type */
829extern kmp_hw_t __kmp_affinity_gran; /* Affinity granularity */
830extern int __kmp_affinity_gran_levels; /* corresponding int value */
831extern int __kmp_affinity_dups; /* Affinity duplicate masks */
832extern enum affinity_top_method __kmp_affinity_top_method;
833extern int __kmp_affinity_compact; /* Affinity 'compact' value */
834extern int __kmp_affinity_offset; /* Affinity offset value */
835extern int __kmp_affinity_verbose; /* Was verbose specified for KMP_AFFINITY? */
836extern int __kmp_affinity_warnings; /* KMP_AFFINITY warnings enabled ? */
837extern int __kmp_affinity_respect_mask; // Respect process' init affinity mask?
838extern char *__kmp_affinity_proclist; /* proc ID list */
839extern kmp_affin_mask_t *__kmp_affinity_masks;
840extern unsigned __kmp_affinity_num_masks;
841extern void __kmp_affinity_bind_thread(int which);
842
843extern kmp_affin_mask_t *__kmp_affin_fullMask;
844extern char *__kmp_cpuinfo_file;
845
846#endif /* KMP_AFFINITY_SUPPORTED */
847
848// This needs to be kept in sync with the values in omp.h !!!
849typedef enum kmp_proc_bind_t {
850 proc_bind_false = 0,
851 proc_bind_true,
852 proc_bind_primary,
853 proc_bind_close,
854 proc_bind_spread,
855 proc_bind_intel, // use KMP_AFFINITY interface
856 proc_bind_default
857} kmp_proc_bind_t;
858
859typedef struct kmp_nested_proc_bind_t {
860 kmp_proc_bind_t *bind_types;
861 int size;
862 int used;
863} kmp_nested_proc_bind_t;
864
865extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
866extern kmp_proc_bind_t __kmp_teams_proc_bind;
867
868extern int __kmp_display_affinity;
869extern char *__kmp_affinity_format;
870static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
871#if OMPT_SUPPORT
872extern int __kmp_tool;
873extern char *__kmp_tool_libraries;
874#endif // OMPT_SUPPORT
875
876#if KMP_AFFINITY_SUPPORTED
877#define KMP_PLACE_ALL (-1)
878#define KMP_PLACE_UNDEFINED (-2)
879// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
880#define KMP_AFFINITY_NON_PROC_BIND \
881 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
882 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
883 (__kmp_affinity_num_masks > 0 || __kmp_affinity_type == affinity_balanced))
884#endif /* KMP_AFFINITY_SUPPORTED */
885
886extern int __kmp_affinity_num_places;
887
888typedef enum kmp_cancel_kind_t {
889 cancel_noreq = 0,
890 cancel_parallel = 1,
891 cancel_loop = 2,
892 cancel_sections = 3,
893 cancel_taskgroup = 4
894} kmp_cancel_kind_t;
895
896// KMP_HW_SUBSET support:
897typedef struct kmp_hws_item {
898 int num;
899 int offset;
900} kmp_hws_item_t;
901
902extern kmp_hws_item_t __kmp_hws_socket;
903extern kmp_hws_item_t __kmp_hws_die;
904extern kmp_hws_item_t __kmp_hws_node;
905extern kmp_hws_item_t __kmp_hws_tile;
906extern kmp_hws_item_t __kmp_hws_core;
907extern kmp_hws_item_t __kmp_hws_proc;
908extern int __kmp_hws_requested;
909extern int __kmp_hws_abs_flag; // absolute or per-item number requested
910
911/* ------------------------------------------------------------------------ */
912
913#define KMP_PAD(type, sz) \
914 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
915
916// We need to avoid using -1 as a GTID as +1 is added to the gtid
917// when storing it in a lock, and the value 0 is reserved.
918#define KMP_GTID_DNE (-2) /* Does not exist */
919#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
920#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
921#define KMP_GTID_UNKNOWN (-5) /* Is not known */
922#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
923
924/* OpenMP 5.0 Memory Management support */
925
926#ifndef __OMP_H
927// Duplicate type definitions from omp.h
928typedef uintptr_t omp_uintptr_t;
929
930typedef enum {
931 omp_atk_sync_hint = 1,
932 omp_atk_alignment = 2,
933 omp_atk_access = 3,
934 omp_atk_pool_size = 4,
935 omp_atk_fallback = 5,
936 omp_atk_fb_data = 6,
937 omp_atk_pinned = 7,
938 omp_atk_partition = 8
939} omp_alloctrait_key_t;
940
941typedef enum {
942 omp_atv_false = 0,
943 omp_atv_true = 1,
944 omp_atv_contended = 3,
945 omp_atv_uncontended = 4,
946 omp_atv_serialized = 5,
947 omp_atv_sequential = omp_atv_serialized, // (deprecated)
948 omp_atv_private = 6,
949 omp_atv_all = 7,
950 omp_atv_thread = 8,
951 omp_atv_pteam = 9,
952 omp_atv_cgroup = 10,
953 omp_atv_default_mem_fb = 11,
954 omp_atv_null_fb = 12,
955 omp_atv_abort_fb = 13,
956 omp_atv_allocator_fb = 14,
957 omp_atv_environment = 15,
958 omp_atv_nearest = 16,
959 omp_atv_blocked = 17,
960 omp_atv_interleaved = 18
961} omp_alloctrait_value_t;
962#define omp_atv_default ((omp_uintptr_t)-1)
963
964typedef void *omp_memspace_handle_t;
965extern omp_memspace_handle_t const omp_default_mem_space;
966extern omp_memspace_handle_t const omp_large_cap_mem_space;
967extern omp_memspace_handle_t const omp_const_mem_space;
968extern omp_memspace_handle_t const omp_high_bw_mem_space;
969extern omp_memspace_handle_t const omp_low_lat_mem_space;
970// Preview of target memory support
971extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
972extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
973extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
974
975typedef struct {
976 omp_alloctrait_key_t key;
977 omp_uintptr_t value;
978} omp_alloctrait_t;
979
980typedef void *omp_allocator_handle_t;
981extern omp_allocator_handle_t const omp_null_allocator;
982extern omp_allocator_handle_t const omp_default_mem_alloc;
983extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
984extern omp_allocator_handle_t const omp_const_mem_alloc;
985extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
986extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
987extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
988extern omp_allocator_handle_t const omp_pteam_mem_alloc;
989extern omp_allocator_handle_t const omp_thread_mem_alloc;
990// Preview of target memory support
991extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
992extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
993extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
994extern omp_allocator_handle_t const kmp_max_mem_alloc;
995extern omp_allocator_handle_t __kmp_def_allocator;
996
997// end of duplicate type definitions from omp.h
998#endif
999
1000extern int __kmp_memkind_available;
1001
1002typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1003
1004typedef struct kmp_allocator_t {
1005 omp_memspace_handle_t memspace;
1006 void **memkind; // pointer to memkind
1007 size_t alignment;
1008 omp_alloctrait_value_t fb;
1009 kmp_allocator_t *fb_data;
1010 kmp_uint64 pool_size;
1011 kmp_uint64 pool_used;
1012} kmp_allocator_t;
1013
1014extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1015 omp_memspace_handle_t,
1016 int ntraits,
1017 omp_alloctrait_t traits[]);
1018extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1019extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1020extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1021// external interfaces, may be used by compiler
1022extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1023extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1024 omp_allocator_handle_t al);
1025extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1026 omp_allocator_handle_t al);
1027extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1028 omp_allocator_handle_t al,
1029 omp_allocator_handle_t free_al);
1030extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1031// internal interfaces, contain real implementation
1032extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1033 omp_allocator_handle_t al);
1034extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1035 omp_allocator_handle_t al);
1036extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1037 omp_allocator_handle_t al,
1038 omp_allocator_handle_t free_al);
1039extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1040
1041extern void __kmp_init_memkind();
1042extern void __kmp_fini_memkind();
1043extern void __kmp_init_target_mem();
1044
1045/* ------------------------------------------------------------------------ */
1046
1047#define KMP_UINT64_MAX \
1048 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1049
1050#define KMP_MIN_NTH 1
1051
1052#ifndef KMP_MAX_NTH
1053#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1054#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1055#else
1056#define KMP_MAX_NTH INT_MAX
1057#endif
1058#endif /* KMP_MAX_NTH */
1059
1060#ifdef PTHREAD_STACK_MIN
1061#define KMP_MIN_STKSIZE PTHREAD_STACK_MIN
1062#else
1063#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1064#endif
1065
1066#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1067
1068#if KMP_ARCH_X86
1069#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1070#elif KMP_ARCH_X86_64
1071#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1072#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1073#else
1074#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1075#endif
1076
1077#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1078#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1079#define KMP_MAX_MALLOC_POOL_INCR \
1080 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1081
1082#define KMP_MIN_STKOFFSET (0)
1083#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1084#if KMP_OS_DARWIN
1085#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1086#else
1087#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1088#endif
1089
1090#define KMP_MIN_STKPADDING (0)
1091#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1092
1093#define KMP_BLOCKTIME_MULTIPLIER \
1094 (1000) /* number of blocktime units per second */
1095#define KMP_MIN_BLOCKTIME (0)
1096#define KMP_MAX_BLOCKTIME \
1097 (INT_MAX) /* Must be this for "infinite" setting the work */
1098
1099/* __kmp_blocktime is in milliseconds */
1100#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200))
1101
1102#if KMP_USE_MONITOR
1103#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1104#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1105#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1106
1107/* Calculate new number of monitor wakeups for a specific block time based on
1108 previous monitor_wakeups. Only allow increasing number of wakeups */
1109#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1110 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1111 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1112 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1113 ? (monitor_wakeups) \
1114 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1115
1116/* Calculate number of intervals for a specific block time based on
1117 monitor_wakeups */
1118#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1119 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1120 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1121#else
1122#define KMP_BLOCKTIME(team, tid) \
1123 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1124#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1125// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1126extern kmp_uint64 __kmp_ticks_per_msec;
1127#if KMP_COMPILER_ICC
1128#define KMP_NOW() ((kmp_uint64)_rdtsc())
1129#else
1130#define KMP_NOW() __kmp_hardware_timestamp()
1131#endif
1132#define KMP_NOW_MSEC() (KMP_NOW() / __kmp_ticks_per_msec)
1133#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1134 (KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_msec)
1135#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1136#else
1137// System time is retrieved sporadically while blocking.
1138extern kmp_uint64 __kmp_now_nsec();
1139#define KMP_NOW() __kmp_now_nsec()
1140#define KMP_NOW_MSEC() (KMP_NOW() / KMP_USEC_PER_SEC)
1141#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1142 (KMP_BLOCKTIME(team, tid) * KMP_USEC_PER_SEC)
1143#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1144#endif
1145#endif // KMP_USE_MONITOR
1146
1147#define KMP_MIN_STATSCOLS 40
1148#define KMP_MAX_STATSCOLS 4096
1149#define KMP_DEFAULT_STATSCOLS 80
1150
1151#define KMP_MIN_INTERVAL 0
1152#define KMP_MAX_INTERVAL (INT_MAX - 1)
1153#define KMP_DEFAULT_INTERVAL 0
1154
1155#define KMP_MIN_CHUNK 1
1156#define KMP_MAX_CHUNK (INT_MAX - 1)
1157#define KMP_DEFAULT_CHUNK 1
1158
1159#define KMP_MIN_DISP_NUM_BUFF 1
1160#define KMP_DFLT_DISP_NUM_BUFF 7
1161#define KMP_MAX_DISP_NUM_BUFF 4096
1162
1163#define KMP_MAX_ORDERED 8
1164
1165#define KMP_MAX_FIELDS 32
1166
1167#define KMP_MAX_BRANCH_BITS 31
1168
1169#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1170
1171#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1172
1173#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1174
1175/* Minimum number of threads before switch to TLS gtid (experimentally
1176 determined) */
1177/* josh TODO: what about OS X* tuning? */
1178#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1179#define KMP_TLS_GTID_MIN 5
1180#else
1181#define KMP_TLS_GTID_MIN INT_MAX
1182#endif
1183
1184#define KMP_MASTER_TID(tid) (0 == (tid))
1185#define KMP_WORKER_TID(tid) (0 != (tid))
1186
1187#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1188#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1189#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1190
1191#ifndef TRUE
1192#define FALSE 0
1193#define TRUE (!FALSE)
1194#endif
1195
1196/* NOTE: all of the following constants must be even */
1197
1198#if KMP_OS_WINDOWS
1199#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1200#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1201#elif KMP_OS_LINUX
1202#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1203#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1204#elif KMP_OS_DARWIN
1205/* TODO: tune for KMP_OS_DARWIN */
1206#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1207#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1208#elif KMP_OS_DRAGONFLY
1209/* TODO: tune for KMP_OS_DRAGONFLY */
1210#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1211#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1212#elif KMP_OS_FREEBSD
1213/* TODO: tune for KMP_OS_FREEBSD */
1214#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1215#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1216#elif KMP_OS_NETBSD
1217/* TODO: tune for KMP_OS_NETBSD */
1218#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1219#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1220#elif KMP_OS_HURD
1221/* TODO: tune for KMP_OS_HURD */
1222#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1223#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1224#elif KMP_OS_OPENBSD
1225/* TODO: tune for KMP_OS_OPENBSD */
1226#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1227#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1228#endif
1229
1230#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1231typedef struct kmp_cpuid {
1232 kmp_uint32 eax;
1233 kmp_uint32 ebx;
1234 kmp_uint32 ecx;
1235 kmp_uint32 edx;
1236} kmp_cpuid_t;
1237
1238typedef struct kmp_cpuinfo_flags_t {
1239 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1240 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1241 unsigned hybrid : 1;
1242 unsigned reserved : 29; // Ensure size of 32 bits
1243} kmp_cpuinfo_flags_t;
1244
1245typedef struct kmp_cpuinfo {
1246 int initialized; // If 0, other fields are not initialized.
1247 int signature; // CPUID(1).EAX
1248 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1249 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1250 // Model << 4 ) + Model)
1251 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1252 kmp_cpuinfo_flags_t flags;
1253 int apic_id;
1254 int physical_id;
1255 int logical_id;
1256 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1257 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1258} kmp_cpuinfo_t;
1259
1260extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1261
1262#if KMP_OS_UNIX
1263// subleaf is only needed for cache and topology discovery and can be set to
1264// zero in most cases
1265static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1266 __asm__ __volatile__("cpuid"
1267 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1268 : "a"(leaf), "c"(subleaf));
1269}
1270// Load p into FPU control word
1271static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1272 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1273}
1274// Store FPU control word into p
1275static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1276 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1277}
1278static inline void __kmp_clear_x87_fpu_status_word() {
1279#if KMP_MIC
1280 // 32-bit protected mode x87 FPU state
1281 struct x87_fpu_state {
1282 unsigned cw;
1283 unsigned sw;
1284 unsigned tw;
1285 unsigned fip;
1286 unsigned fips;
1287 unsigned fdp;
1288 unsigned fds;
1289 };
1290 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1291 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1292 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1293 "fldenv %0\n\t" // load FP env back
1294 : "+m"(fpu_state), "+m"(fpu_state.sw));
1295#else
1296 __asm__ __volatile__("fnclex");
1297#endif // KMP_MIC
1298}
1299#if __SSE__
1300static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1301static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1302#else
1303static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1304static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1305#endif
1306#else
1307// Windows still has these as external functions in assembly file
1308extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1309extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1310extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1311extern void __kmp_clear_x87_fpu_status_word();
1312static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1313static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1314#endif // KMP_OS_UNIX
1315
1316#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1317
1318// User-level Monitor/Mwait
1319#if KMP_HAVE_UMWAIT
1320// We always try for UMWAIT first
1321#if KMP_HAVE_WAITPKG_INTRINSICS
1322#if KMP_HAVE_IMMINTRIN_H
1323#include <immintrin.h>
1324#elif KMP_HAVE_INTRIN_H
1325#include <intrin.h>
1326#endif
1327#endif // KMP_HAVE_WAITPKG_INTRINSICS
1328
1329KMP_ATTRIBUTE_TARGET_WAITPKG
1330static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1331#if !KMP_HAVE_WAITPKG_INTRINSICS
1332 uint32_t timeHi = uint32_t(counter >> 32);
1333 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1334 char flag;
1335 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1336 "setb %0"
1337 : "=r"(flag)
1338 : "a"(timeLo), "d"(timeHi), "c"(hint)
1339 :);
1340 return flag;
1341#else
1342 return _tpause(hint, counter);
1343#endif
1344}
1345KMP_ATTRIBUTE_TARGET_WAITPKG
1346static inline void __kmp_umonitor(void *cacheline) {
1347#if !KMP_HAVE_WAITPKG_INTRINSICS
1348 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1349 :
1350 : "a"(cacheline)
1351 :);
1352#else
1353 _umonitor(cacheline);
1354#endif
1355}
1356KMP_ATTRIBUTE_TARGET_WAITPKG
1357static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1358#if !KMP_HAVE_WAITPKG_INTRINSICS
1359 uint32_t timeHi = uint32_t(counter >> 32);
1360 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1361 char flag;
1362 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1363 "setb %0"
1364 : "=r"(flag)
1365 : "a"(timeLo), "d"(timeHi), "c"(hint)
1366 :);
1367 return flag;
1368#else
1369 return _umwait(hint, counter);
1370#endif
1371}
1372#elif KMP_HAVE_MWAIT
1373#if KMP_OS_UNIX
1374#include <pmmintrin.h>
1375#else
1376#include <intrin.h>
1377#endif
1378#if KMP_OS_UNIX
1379__attribute__((target("sse3")))
1380#endif
1381static inline void
1382__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1383 _mm_monitor(cacheline, extensions, hints);
1384}
1385#if KMP_OS_UNIX
1386__attribute__((target("sse3")))
1387#endif
1388static inline void
1389__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1390 _mm_mwait(extensions, hints);
1391}
1392#endif // KMP_HAVE_UMWAIT
1393
1394#if KMP_ARCH_X86
1395extern void __kmp_x86_pause(void);
1396#elif KMP_MIC
1397// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1398// regression after removal of extra PAUSE from spin loops. Changing
1399// the delay from 100 to 300 showed even better performance than double PAUSE
1400// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1401static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1402#else
1403static inline void __kmp_x86_pause(void) { _mm_pause(); }
1404#endif
1405#define KMP_CPU_PAUSE() __kmp_x86_pause()
1406#elif KMP_ARCH_PPC64
1407#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1408#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1409#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1410#define KMP_CPU_PAUSE() \
1411 do { \
1412 KMP_PPC64_PRI_LOW(); \
1413 KMP_PPC64_PRI_MED(); \
1414 KMP_PPC64_PRI_LOC_MB(); \
1415 } while (0)
1416#else
1417#define KMP_CPU_PAUSE() /* nothing to do */
1418#endif
1419
1420#define KMP_INIT_YIELD(count) \
1421 { (count) = __kmp_yield_init; }
1422
1423#define KMP_INIT_BACKOFF(time) \
1424 { (time) = __kmp_pause_init; }
1425
1426#define KMP_OVERSUBSCRIBED \
1427 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1428
1429#define KMP_TRY_YIELD \
1430 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1431
1432#define KMP_TRY_YIELD_OVERSUB \
1433 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1434
1435#define KMP_YIELD(cond) \
1436 { \
1437 KMP_CPU_PAUSE(); \
1438 if ((cond) && (KMP_TRY_YIELD)) \
1439 __kmp_yield(); \
1440 }
1441
1442#define KMP_YIELD_OVERSUB() \
1443 { \
1444 KMP_CPU_PAUSE(); \
1445 if ((KMP_TRY_YIELD_OVERSUB)) \
1446 __kmp_yield(); \
1447 }
1448
1449// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1450// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1451#define KMP_YIELD_SPIN(count) \
1452 { \
1453 KMP_CPU_PAUSE(); \
1454 if (KMP_TRY_YIELD) { \
1455 (count) -= 2; \
1456 if (!(count)) { \
1457 __kmp_yield(); \
1458 (count) = __kmp_yield_next; \
1459 } \
1460 } \
1461 }
1462
1463// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1464// (C0.2) state, which improves performance of other SMT threads on the same
1465// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1466// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1467// available, fall back to the regular CPU pause and yield combination.
1468#if KMP_HAVE_UMWAIT
1469#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1470 { \
1471 if (__kmp_tpause_enabled) { \
1472 if (KMP_OVERSUBSCRIBED) { \
1473 __kmp_tpause(0, (time)); \
1474 } else { \
1475 __kmp_tpause(__kmp_tpause_hint, (time)); \
1476 } \
1477 (time) *= 2; \
1478 } else { \
1479 KMP_CPU_PAUSE(); \
1480 if ((KMP_TRY_YIELD_OVERSUB)) { \
1481 __kmp_yield(); \
1482 } else if (__kmp_use_yield == 1) { \
1483 (count) -= 2; \
1484 if (!(count)) { \
1485 __kmp_yield(); \
1486 (count) = __kmp_yield_next; \
1487 } \
1488 } \
1489 } \
1490 }
1491#else
1492#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1493 { \
1494 KMP_CPU_PAUSE(); \
1495 if ((KMP_TRY_YIELD_OVERSUB)) \
1496 __kmp_yield(); \
1497 else if (__kmp_use_yield == 1) { \
1498 (count) -= 2; \
1499 if (!(count)) { \
1500 __kmp_yield(); \
1501 (count) = __kmp_yield_next; \
1502 } \
1503 } \
1504 }
1505#endif // KMP_HAVE_UMWAIT
1506
1507/* ------------------------------------------------------------------------ */
1508/* Support datatypes for the orphaned construct nesting checks. */
1509/* ------------------------------------------------------------------------ */
1510
1511/* When adding to this enum, add its corresponding string in cons_text_c[]
1512 * array in kmp_error.cpp */
1513enum cons_type {
1514 ct_none,
1515 ct_parallel,
1516 ct_pdo,
1517 ct_pdo_ordered,
1518 ct_psections,
1519 ct_psingle,
1520 ct_critical,
1521 ct_ordered_in_parallel,
1522 ct_ordered_in_pdo,
1523 ct_master,
1524 ct_reduce,
1525 ct_barrier,
1526 ct_masked
1527};
1528
1529#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1530
1531struct cons_data {
1532 ident_t const *ident;
1533 enum cons_type type;
1534 int prev;
1535 kmp_user_lock_p
1536 name; /* address exclusively for critical section name comparison */
1537};
1538
1539struct cons_header {
1540 int p_top, w_top, s_top;
1541 int stack_size, stack_top;
1542 struct cons_data *stack_data;
1543};
1544
1545struct kmp_region_info {
1546 char *text;
1547 int offset[KMP_MAX_FIELDS];
1548 int length[KMP_MAX_FIELDS];
1549};
1550
1551/* ---------------------------------------------------------------------- */
1552/* ---------------------------------------------------------------------- */
1553
1554#if KMP_OS_WINDOWS
1555typedef HANDLE kmp_thread_t;
1556typedef DWORD kmp_key_t;
1557#endif /* KMP_OS_WINDOWS */
1558
1559#if KMP_OS_UNIX
1560typedef pthread_t kmp_thread_t;
1561typedef pthread_key_t kmp_key_t;
1562#endif
1563
1564extern kmp_key_t __kmp_gtid_threadprivate_key;
1565
1566typedef struct kmp_sys_info {
1567 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1568 long minflt; /* the number of page faults serviced without any I/O */
1569 long majflt; /* the number of page faults serviced that required I/O */
1570 long nswap; /* the number of times a process was "swapped" out of memory */
1571 long inblock; /* the number of times the file system had to perform input */
1572 long oublock; /* the number of times the file system had to perform output */
1573 long nvcsw; /* the number of times a context switch was voluntarily */
1574 long nivcsw; /* the number of times a context switch was forced */
1575} kmp_sys_info_t;
1576
1577#if USE_ITT_BUILD
1578// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1579// required type here. Later we will check the type meets requirements.
1580typedef int kmp_itt_mark_t;
1581#define KMP_ITT_DEBUG 0
1582#endif /* USE_ITT_BUILD */
1583
1584typedef kmp_int32 kmp_critical_name[8];
1585
1595typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1596typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1597 ...);
1598
1603/* ---------------------------------------------------------------------------
1604 */
1605/* Threadprivate initialization/finalization function declarations */
1606
1607/* for non-array objects: __kmpc_threadprivate_register() */
1608
1613typedef void *(*kmpc_ctor)(void *);
1614
1619typedef void (*kmpc_dtor)(
1620 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1621 compiler */
1626typedef void *(*kmpc_cctor)(void *, void *);
1627
1628/* for array objects: __kmpc_threadprivate_register_vec() */
1629/* First arg: "this" pointer */
1630/* Last arg: number of array elements */
1636typedef void *(*kmpc_ctor_vec)(void *, size_t);
1642typedef void (*kmpc_dtor_vec)(void *, size_t);
1648typedef void *(*kmpc_cctor_vec)(void *, void *,
1649 size_t); /* function unused by compiler */
1650
1655/* keeps tracked of threadprivate cache allocations for cleanup later */
1656typedef struct kmp_cached_addr {
1657 void **addr; /* address of allocated cache */
1658 void ***compiler_cache; /* pointer to compiler's cache */
1659 void *data; /* pointer to global data */
1660 struct kmp_cached_addr *next; /* pointer to next cached address */
1661} kmp_cached_addr_t;
1662
1663struct private_data {
1664 struct private_data *next; /* The next descriptor in the list */
1665 void *data; /* The data buffer for this descriptor */
1666 int more; /* The repeat count for this descriptor */
1667 size_t size; /* The data size for this descriptor */
1668};
1669
1670struct private_common {
1671 struct private_common *next;
1672 struct private_common *link;
1673 void *gbl_addr;
1674 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1675 size_t cmn_size;
1676};
1677
1678struct shared_common {
1679 struct shared_common *next;
1680 struct private_data *pod_init;
1681 void *obj_init;
1682 void *gbl_addr;
1683 union {
1684 kmpc_ctor ctor;
1685 kmpc_ctor_vec ctorv;
1686 } ct;
1687 union {
1688 kmpc_cctor cctor;
1689 kmpc_cctor_vec cctorv;
1690 } cct;
1691 union {
1692 kmpc_dtor dtor;
1693 kmpc_dtor_vec dtorv;
1694 } dt;
1695 size_t vec_len;
1696 int is_vec;
1697 size_t cmn_size;
1698};
1699
1700#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1701#define KMP_HASH_TABLE_SIZE \
1702 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1703#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1704#define KMP_HASH(x) \
1705 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1706
1707struct common_table {
1708 struct private_common *data[KMP_HASH_TABLE_SIZE];
1709};
1710
1711struct shared_table {
1712 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1713};
1714
1715/* ------------------------------------------------------------------------ */
1716
1717#if KMP_USE_HIER_SCHED
1718// Shared barrier data that exists inside a single unit of the scheduling
1719// hierarchy
1720typedef struct kmp_hier_private_bdata_t {
1721 kmp_int32 num_active;
1722 kmp_uint64 index;
1723 kmp_uint64 wait_val[2];
1724} kmp_hier_private_bdata_t;
1725#endif
1726
1727typedef struct kmp_sched_flags {
1728 unsigned ordered : 1;
1729 unsigned nomerge : 1;
1730 unsigned contains_last : 1;
1731#if KMP_USE_HIER_SCHED
1732 unsigned use_hier : 1;
1733 unsigned unused : 28;
1734#else
1735 unsigned unused : 29;
1736#endif
1737} kmp_sched_flags_t;
1738
1739KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1740
1741#if KMP_STATIC_STEAL_ENABLED
1742typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1743 kmp_int32 count;
1744 kmp_int32 ub;
1745 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1746 kmp_int32 lb;
1747 kmp_int32 st;
1748 kmp_int32 tc;
1749 kmp_lock_t *steal_lock; // lock used for chunk stealing
1750 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1751 // a) parm3 is properly aligned and
1752 // b) all parm1-4 are on the same cache line.
1753 // Because of parm1-4 are used together, performance seems to be better
1754 // if they are on the same cache line (not measured though).
1755
1756 struct KMP_ALIGN(32) { // AC: changed 16 to 32 in order to simplify template
1757 kmp_int32 parm1; // structures in kmp_dispatch.cpp. This should
1758 kmp_int32 parm2; // make no real change at least while padding is off.
1759 kmp_int32 parm3;
1760 kmp_int32 parm4;
1761 };
1762
1763 kmp_uint32 ordered_lower;
1764 kmp_uint32 ordered_upper;
1765#if KMP_OS_WINDOWS
1766 kmp_int32 last_upper;
1767#endif /* KMP_OS_WINDOWS */
1768} dispatch_private_info32_t;
1769
1770typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1771 kmp_int64 count; // current chunk number for static & static-steal scheduling
1772 kmp_int64 ub; /* upper-bound */
1773 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1774 kmp_int64 lb; /* lower-bound */
1775 kmp_int64 st; /* stride */
1776 kmp_int64 tc; /* trip count (number of iterations) */
1777 kmp_lock_t *steal_lock; // lock used for chunk stealing
1778 /* parm[1-4] are used in different ways by different scheduling algorithms */
1779
1780 // KMP_ALIGN( 32 ) ensures ( if the KMP_ALIGN macro is turned on )
1781 // a) parm3 is properly aligned and
1782 // b) all parm1-4 are in the same cache line.
1783 // Because of parm1-4 are used together, performance seems to be better
1784 // if they are in the same line (not measured though).
1785
1786 struct KMP_ALIGN(32) {
1787 kmp_int64 parm1;
1788 kmp_int64 parm2;
1789 kmp_int64 parm3;
1790 kmp_int64 parm4;
1791 };
1792
1793 kmp_uint64 ordered_lower;
1794 kmp_uint64 ordered_upper;
1795#if KMP_OS_WINDOWS
1796 kmp_int64 last_upper;
1797#endif /* KMP_OS_WINDOWS */
1798} dispatch_private_info64_t;
1799#else /* KMP_STATIC_STEAL_ENABLED */
1800typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1801 kmp_int32 lb;
1802 kmp_int32 ub;
1803 kmp_int32 st;
1804 kmp_int32 tc;
1805
1806 kmp_int32 parm1;
1807 kmp_int32 parm2;
1808 kmp_int32 parm3;
1809 kmp_int32 parm4;
1810
1811 kmp_int32 count;
1812
1813 kmp_uint32 ordered_lower;
1814 kmp_uint32 ordered_upper;
1815#if KMP_OS_WINDOWS
1816 kmp_int32 last_upper;
1817#endif /* KMP_OS_WINDOWS */
1818} dispatch_private_info32_t;
1819
1820typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1821 kmp_int64 lb; /* lower-bound */
1822 kmp_int64 ub; /* upper-bound */
1823 kmp_int64 st; /* stride */
1824 kmp_int64 tc; /* trip count (number of iterations) */
1825
1826 /* parm[1-4] are used in different ways by different scheduling algorithms */
1827 kmp_int64 parm1;
1828 kmp_int64 parm2;
1829 kmp_int64 parm3;
1830 kmp_int64 parm4;
1831
1832 kmp_int64 count; /* current chunk number for static scheduling */
1833
1834 kmp_uint64 ordered_lower;
1835 kmp_uint64 ordered_upper;
1836#if KMP_OS_WINDOWS
1837 kmp_int64 last_upper;
1838#endif /* KMP_OS_WINDOWS */
1839} dispatch_private_info64_t;
1840#endif /* KMP_STATIC_STEAL_ENABLED */
1841
1842typedef struct KMP_ALIGN_CACHE dispatch_private_info {
1843 union private_info {
1844 dispatch_private_info32_t p32;
1845 dispatch_private_info64_t p64;
1846 } u;
1847 enum sched_type schedule; /* scheduling algorithm */
1848 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
1849 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
1850 kmp_int32 ordered_bumped;
1851 // Stack of buffers for nest of serial regions
1852 struct dispatch_private_info *next;
1853 kmp_int32 type_size; /* the size of types in private_info */
1854#if KMP_USE_HIER_SCHED
1855 kmp_int32 hier_id;
1856 void *parent; /* hierarchical scheduling parent pointer */
1857#endif
1858 enum cons_type pushed_ws;
1859} dispatch_private_info_t;
1860
1861typedef struct dispatch_shared_info32 {
1862 /* chunk index under dynamic, number of idle threads under static-steal;
1863 iteration index otherwise */
1864 volatile kmp_uint32 iteration;
1865 volatile kmp_int32 num_done;
1866 volatile kmp_uint32 ordered_iteration;
1867 // Dummy to retain the structure size after making ordered_iteration scalar
1868 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
1869} dispatch_shared_info32_t;
1870
1871typedef struct dispatch_shared_info64 {
1872 /* chunk index under dynamic, number of idle threads under static-steal;
1873 iteration index otherwise */
1874 volatile kmp_uint64 iteration;
1875 volatile kmp_int64 num_done;
1876 volatile kmp_uint64 ordered_iteration;
1877 // Dummy to retain the structure size after making ordered_iteration scalar
1878 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
1879} dispatch_shared_info64_t;
1880
1881typedef struct dispatch_shared_info {
1882 union shared_info {
1883 dispatch_shared_info32_t s32;
1884 dispatch_shared_info64_t s64;
1885 } u;
1886 volatile kmp_uint32 buffer_index;
1887 volatile kmp_int32 doacross_buf_idx; // teamwise index
1888 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
1889 kmp_int32 doacross_num_done; // count finished threads
1890#if KMP_USE_HIER_SCHED
1891 void *hier;
1892#endif
1893#if KMP_USE_HWLOC
1894 // When linking with libhwloc, the ORDERED EPCC test slows down on big
1895 // machines (> 48 cores). Performance analysis showed that a cache thrash
1896 // was occurring and this padding helps alleviate the problem.
1897 char padding[64];
1898#endif
1899} dispatch_shared_info_t;
1900
1901typedef struct kmp_disp {
1902 /* Vector for ORDERED SECTION */
1903 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
1904 /* Vector for END ORDERED SECTION */
1905 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
1906
1907 dispatch_shared_info_t *th_dispatch_sh_current;
1908 dispatch_private_info_t *th_dispatch_pr_current;
1909
1910 dispatch_private_info_t *th_disp_buffer;
1911 kmp_uint32 th_disp_index;
1912 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
1913 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
1914 kmp_int64 *th_doacross_info; // info on loop bounds
1915#if KMP_USE_INTERNODE_ALIGNMENT
1916 char more_padding[INTERNODE_CACHE_LINE];
1917#endif
1918} kmp_disp_t;
1919
1920/* ------------------------------------------------------------------------ */
1921/* Barrier stuff */
1922
1923/* constants for barrier state update */
1924#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
1925#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
1926#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
1927#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
1928
1929#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
1930#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
1931#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
1932
1933#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
1934#error "Barrier sleep bit must be smaller than barrier bump bit"
1935#endif
1936#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
1937#error "Barrier unused bit must be smaller than barrier bump bit"
1938#endif
1939
1940// Constants for release barrier wait state: currently, hierarchical only
1941#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
1942#define KMP_BARRIER_OWN_FLAG \
1943 1 // Normal state; worker waiting on own b_go flag in release
1944#define KMP_BARRIER_PARENT_FLAG \
1945 2 // Special state; worker waiting on parent's b_go flag in release
1946#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
1947 3 // Special state; tells worker to shift from parent to own b_go
1948#define KMP_BARRIER_SWITCHING \
1949 4 // Special state; worker resets appropriate flag on wake-up
1950
1951#define KMP_NOT_SAFE_TO_REAP \
1952 0 // Thread th_reap_state: not safe to reap (tasking)
1953#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
1954
1955// The flag_type describes the storage used for the flag.
1956enum flag_type {
1957 flag32,
1958 flag64,
1959 atomic_flag64,
1960 flag_oncore,
1961 flag_unset
1962};
1963
1964enum barrier_type {
1965 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
1966 barriers if enabled) */
1967 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
1968#if KMP_FAST_REDUCTION_BARRIER
1969 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
1970#endif // KMP_FAST_REDUCTION_BARRIER
1971 bs_last_barrier /* Just a placeholder to mark the end */
1972};
1973
1974// to work with reduction barriers just like with plain barriers
1975#if !KMP_FAST_REDUCTION_BARRIER
1976#define bs_reduction_barrier bs_plain_barrier
1977#endif // KMP_FAST_REDUCTION_BARRIER
1978
1979typedef enum kmp_bar_pat { /* Barrier communication patterns */
1980 bp_linear_bar =
1981 0, /* Single level (degenerate) tree */
1982 bp_tree_bar =
1983 1, /* Balanced tree with branching factor 2^n */
1984 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
1985 branching factor 2^n */
1986 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
1987 bp_dist_bar = 4, /* Distributed barrier */
1988 bp_last_bar /* Placeholder to mark the end */
1989} kmp_bar_pat_e;
1990
1991#define KMP_BARRIER_ICV_PUSH 1
1992
1993/* Record for holding the values of the internal controls stack records */
1994typedef struct kmp_internal_control {
1995 int serial_nesting_level; /* corresponds to the value of the
1996 th_team_serialized field */
1997 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
1998 thread) */
1999 kmp_int8
2000 bt_set; /* internal control for whether blocktime is explicitly set */
2001 int blocktime; /* internal control for blocktime */
2002#if KMP_USE_MONITOR
2003 int bt_intervals; /* internal control for blocktime intervals */
2004#endif
2005 int nproc; /* internal control for #threads for next parallel region (per
2006 thread) */
2007 int thread_limit; /* internal control for thread-limit-var */
2008 int max_active_levels; /* internal control for max_active_levels */
2009 kmp_r_sched_t
2010 sched; /* internal control for runtime schedule {sched,chunk} pair */
2011 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2012 kmp_int32 default_device; /* internal control for default device */
2013 struct kmp_internal_control *next;
2014} kmp_internal_control_t;
2015
2016static inline void copy_icvs(kmp_internal_control_t *dst,
2017 kmp_internal_control_t *src) {
2018 *dst = *src;
2019}
2020
2021/* Thread barrier needs volatile barrier fields */
2022typedef struct KMP_ALIGN_CACHE kmp_bstate {
2023 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2024 // uses of it). It is not explicitly aligned below, because we *don't* want
2025 // it to be padded -- instead, we fit b_go into the same cache line with
2026 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2027 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2028 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2029 // same NGO store
2030 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2031 KMP_ALIGN_CACHE volatile kmp_uint64
2032 b_arrived; // STATE => task reached synch point.
2033 kmp_uint32 *skip_per_level;
2034 kmp_uint32 my_level;
2035 kmp_int32 parent_tid;
2036 kmp_int32 old_tid;
2037 kmp_uint32 depth;
2038 struct kmp_bstate *parent_bar;
2039 kmp_team_t *team;
2040 kmp_uint64 leaf_state;
2041 kmp_uint32 nproc;
2042 kmp_uint8 base_leaf_kids;
2043 kmp_uint8 leaf_kids;
2044 kmp_uint8 offset;
2045 kmp_uint8 wait_flag;
2046 kmp_uint8 use_oncore_barrier;
2047#if USE_DEBUGGER
2048 // The following field is intended for the debugger solely. Only the worker
2049 // thread itself accesses this field: the worker increases it by 1 when it
2050 // arrives to a barrier.
2051 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2052#endif /* USE_DEBUGGER */
2053} kmp_bstate_t;
2054
2055union KMP_ALIGN_CACHE kmp_barrier_union {
2056 double b_align; /* use worst case alignment */
2057 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2058 kmp_bstate_t bb;
2059};
2060
2061typedef union kmp_barrier_union kmp_balign_t;
2062
2063/* Team barrier needs only non-volatile arrived counter */
2064union KMP_ALIGN_CACHE kmp_barrier_team_union {
2065 double b_align; /* use worst case alignment */
2066 char b_pad[CACHE_LINE];
2067 struct {
2068 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2069#if USE_DEBUGGER
2070 // The following two fields are indended for the debugger solely. Only
2071 // primary thread of the team accesses these fields: the first one is
2072 // increased by 1 when the primary thread arrives to a barrier, the second
2073 // one is increased by one when all the threads arrived.
2074 kmp_uint b_master_arrived;
2075 kmp_uint b_team_arrived;
2076#endif
2077 };
2078};
2079
2080typedef union kmp_barrier_team_union kmp_balign_team_t;
2081
2082/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2083 threads when a condition changes. This is to workaround an NPTL bug where
2084 padding was added to pthread_cond_t which caused the initialization routine
2085 to write outside of the structure if compiled on pre-NPTL threads. */
2086#if KMP_OS_WINDOWS
2087typedef struct kmp_win32_mutex {
2088 /* The Lock */
2089 CRITICAL_SECTION cs;
2090} kmp_win32_mutex_t;
2091
2092typedef struct kmp_win32_cond {
2093 /* Count of the number of waiters. */
2094 int waiters_count_;
2095
2096 /* Serialize access to <waiters_count_> */
2097 kmp_win32_mutex_t waiters_count_lock_;
2098
2099 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2100 int release_count_;
2101
2102 /* Keeps track of the current "generation" so that we don't allow */
2103 /* one thread to steal all the "releases" from the broadcast. */
2104 int wait_generation_count_;
2105
2106 /* A manual-reset event that's used to block and release waiting threads. */
2107 HANDLE event_;
2108} kmp_win32_cond_t;
2109#endif
2110
2111#if KMP_OS_UNIX
2112
2113union KMP_ALIGN_CACHE kmp_cond_union {
2114 double c_align;
2115 char c_pad[CACHE_LINE];
2116 pthread_cond_t c_cond;
2117};
2118
2119typedef union kmp_cond_union kmp_cond_align_t;
2120
2121union KMP_ALIGN_CACHE kmp_mutex_union {
2122 double m_align;
2123 char m_pad[CACHE_LINE];
2124 pthread_mutex_t m_mutex;
2125};
2126
2127typedef union kmp_mutex_union kmp_mutex_align_t;
2128
2129#endif /* KMP_OS_UNIX */
2130
2131typedef struct kmp_desc_base {
2132 void *ds_stackbase;
2133 size_t ds_stacksize;
2134 int ds_stackgrow;
2135 kmp_thread_t ds_thread;
2136 volatile int ds_tid;
2137 int ds_gtid;
2138#if KMP_OS_WINDOWS
2139 volatile int ds_alive;
2140 DWORD ds_thread_id;
2141/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2142 However, debugger support (libomp_db) cannot work with handles, because they
2143 uncomparable. For example, debugger requests info about thread with handle h.
2144 h is valid within debugger process, and meaningless within debugee process.
2145 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2146 within debugee process, but it is a *new* handle which does *not* equal to
2147 any other handle in debugee... The only way to compare handles is convert
2148 them to system-wide ids. GetThreadId() function is available only in
2149 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2150 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2151 thread id by call to GetCurrentThreadId() from within the thread and save it
2152 to let libomp_db identify threads. */
2153#endif /* KMP_OS_WINDOWS */
2154} kmp_desc_base_t;
2155
2156typedef union KMP_ALIGN_CACHE kmp_desc {
2157 double ds_align; /* use worst case alignment */
2158 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2159 kmp_desc_base_t ds;
2160} kmp_desc_t;
2161
2162typedef struct kmp_local {
2163 volatile int this_construct; /* count of single's encountered by thread */
2164 void *reduce_data;
2165#if KMP_USE_BGET
2166 void *bget_data;
2167 void *bget_list;
2168#if !USE_CMP_XCHG_FOR_BGET
2169#ifdef USE_QUEUING_LOCK_FOR_BGET
2170 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2171#else
2172 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2173// bootstrap lock so we can use it at library
2174// shutdown.
2175#endif /* USE_LOCK_FOR_BGET */
2176#endif /* ! USE_CMP_XCHG_FOR_BGET */
2177#endif /* KMP_USE_BGET */
2178
2179 PACKED_REDUCTION_METHOD_T
2180 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2181 __kmpc_end_reduce*() */
2182
2183} kmp_local_t;
2184
2185#define KMP_CHECK_UPDATE(a, b) \
2186 if ((a) != (b)) \
2187 (a) = (b)
2188#define KMP_CHECK_UPDATE_SYNC(a, b) \
2189 if ((a) != (b)) \
2190 TCW_SYNC_PTR((a), (b))
2191
2192#define get__blocktime(xteam, xtid) \
2193 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2194#define get__bt_set(xteam, xtid) \
2195 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2196#if KMP_USE_MONITOR
2197#define get__bt_intervals(xteam, xtid) \
2198 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2199#endif
2200
2201#define get__dynamic_2(xteam, xtid) \
2202 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2203#define get__nproc_2(xteam, xtid) \
2204 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2205#define get__sched_2(xteam, xtid) \
2206 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2207
2208#define set__blocktime_team(xteam, xtid, xval) \
2209 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2210 (xval))
2211
2212#if KMP_USE_MONITOR
2213#define set__bt_intervals_team(xteam, xtid, xval) \
2214 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2215 (xval))
2216#endif
2217
2218#define set__bt_set_team(xteam, xtid, xval) \
2219 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2220
2221#define set__dynamic(xthread, xval) \
2222 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2223#define get__dynamic(xthread) \
2224 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2225
2226#define set__nproc(xthread, xval) \
2227 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2228
2229#define set__thread_limit(xthread, xval) \
2230 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2231
2232#define set__max_active_levels(xthread, xval) \
2233 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2234
2235#define get__max_active_levels(xthread) \
2236 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2237
2238#define set__sched(xthread, xval) \
2239 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2240
2241#define set__proc_bind(xthread, xval) \
2242 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2243#define get__proc_bind(xthread) \
2244 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2245
2246// OpenMP tasking data structures
2247
2248typedef enum kmp_tasking_mode {
2249 tskm_immediate_exec = 0,
2250 tskm_extra_barrier = 1,
2251 tskm_task_teams = 2,
2252 tskm_max = 2
2253} kmp_tasking_mode_t;
2254
2255extern kmp_tasking_mode_t
2256 __kmp_tasking_mode; /* determines how/when to execute tasks */
2257extern int __kmp_task_stealing_constraint;
2258extern int __kmp_enable_task_throttling;
2259extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2260// specified, defaults to 0 otherwise
2261// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2262extern kmp_int32 __kmp_max_task_priority;
2263// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2264extern kmp_uint64 __kmp_taskloop_min_tasks;
2265
2266/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2267 taskdata first */
2268#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2269#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2270
2271// The tt_found_tasks flag is a signal to all threads in the team that tasks
2272// were spawned and queued since the previous barrier release.
2273#define KMP_TASKING_ENABLED(task_team) \
2274 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2282typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2283
2284typedef union kmp_cmplrdata {
2285 kmp_int32 priority;
2286 kmp_routine_entry_t
2287 destructors; /* pointer to function to invoke deconstructors of
2288 firstprivate C++ objects */
2289 /* future data */
2290} kmp_cmplrdata_t;
2291
2292/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2295typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2296 void *shareds;
2297 kmp_routine_entry_t
2298 routine;
2299 kmp_int32 part_id;
2300 kmp_cmplrdata_t
2301 data1; /* Two known optional additions: destructors and priority */
2302 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2303 /* future data */
2304 /* private vars */
2305} kmp_task_t;
2306
2311typedef struct kmp_taskgroup {
2312 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2313 std::atomic<kmp_int32>
2314 cancel_request; // request for cancellation of this taskgroup
2315 struct kmp_taskgroup *parent; // parent taskgroup
2316 // Block of data to perform task reduction
2317 void *reduce_data; // reduction related info
2318 kmp_int32 reduce_num_data; // number of data items to reduce
2319 uintptr_t *gomp_data; // gomp reduction data
2320} kmp_taskgroup_t;
2321
2322// forward declarations
2323typedef union kmp_depnode kmp_depnode_t;
2324typedef struct kmp_depnode_list kmp_depnode_list_t;
2325typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2326
2327// macros for checking dep flag as an integer
2328#define KMP_DEP_IN 0x1
2329#define KMP_DEP_OUT 0x2
2330#define KMP_DEP_INOUT 0x3
2331#define KMP_DEP_MTX 0x4
2332#define KMP_DEP_SET 0x8
2333#define KMP_DEP_ALL 0x80
2334// Compiler sends us this info:
2335typedef struct kmp_depend_info {
2336 kmp_intptr_t base_addr;
2337 size_t len;
2338 union {
2339 kmp_uint8 flag; // flag as an unsigned char
2340 struct { // flag as a set of 8 bits
2341 unsigned in : 1;
2342 unsigned out : 1;
2343 unsigned mtx : 1;
2344 unsigned set : 1;
2345 unsigned unused : 3;
2346 unsigned all : 1;
2347 } flags;
2348 };
2349} kmp_depend_info_t;
2350
2351// Internal structures to work with task dependencies:
2352struct kmp_depnode_list {
2353 kmp_depnode_t *node;
2354 kmp_depnode_list_t *next;
2355};
2356
2357// Max number of mutexinoutset dependencies per node
2358#define MAX_MTX_DEPS 4
2359
2360typedef struct kmp_base_depnode {
2361 kmp_depnode_list_t *successors; /* used under lock */
2362 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2363 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2364 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2365 kmp_lock_t lock; /* guards shared fields: task, successors */
2366#if KMP_SUPPORT_GRAPH_OUTPUT
2367 kmp_uint32 id;
2368#endif
2369 std::atomic<kmp_int32> npredecessors;
2370 std::atomic<kmp_int32> nrefs;
2371} kmp_base_depnode_t;
2372
2373union KMP_ALIGN_CACHE kmp_depnode {
2374 double dn_align; /* use worst case alignment */
2375 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2376 kmp_base_depnode_t dn;
2377};
2378
2379struct kmp_dephash_entry {
2380 kmp_intptr_t addr;
2381 kmp_depnode_t *last_out;
2382 kmp_depnode_list_t *last_set;
2383 kmp_depnode_list_t *prev_set;
2384 kmp_uint8 last_flag;
2385 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2386 kmp_dephash_entry_t *next_in_bucket;
2387};
2388
2389typedef struct kmp_dephash {
2390 kmp_dephash_entry_t **buckets;
2391 size_t size;
2392 kmp_depnode_t *last_all;
2393 size_t generation;
2394 kmp_uint32 nelements;
2395 kmp_uint32 nconflicts;
2396} kmp_dephash_t;
2397
2398typedef struct kmp_task_affinity_info {
2399 kmp_intptr_t base_addr;
2400 size_t len;
2401 struct {
2402 bool flag1 : 1;
2403 bool flag2 : 1;
2404 kmp_int32 reserved : 30;
2405 } flags;
2406} kmp_task_affinity_info_t;
2407
2408typedef enum kmp_event_type_t {
2409 KMP_EVENT_UNINITIALIZED = 0,
2410 KMP_EVENT_ALLOW_COMPLETION = 1
2411} kmp_event_type_t;
2412
2413typedef struct {
2414 kmp_event_type_t type;
2415 kmp_tas_lock_t lock;
2416 union {
2417 kmp_task_t *task;
2418 } ed;
2419} kmp_event_t;
2420
2421#ifdef BUILD_TIED_TASK_STACK
2422
2423/* Tied Task stack definitions */
2424typedef struct kmp_stack_block {
2425 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2426 struct kmp_stack_block *sb_next;
2427 struct kmp_stack_block *sb_prev;
2428} kmp_stack_block_t;
2429
2430typedef struct kmp_task_stack {
2431 kmp_stack_block_t ts_first_block; // first block of stack entries
2432 kmp_taskdata_t **ts_top; // pointer to the top of stack
2433 kmp_int32 ts_entries; // number of entries on the stack
2434} kmp_task_stack_t;
2435
2436#endif // BUILD_TIED_TASK_STACK
2437
2438typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2439 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2440 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2441 unsigned final : 1; /* task is final(1) so execute immediately */
2442 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2443 code path */
2444 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2445 invoke destructors from the runtime */
2446 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2447 context of the RTL) */
2448 unsigned priority_specified : 1; /* set if the compiler provides priority
2449 setting for the task */
2450 unsigned detachable : 1; /* 1 == can detach */
2451 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2452 unsigned reserved : 8; /* reserved for compiler use */
2453
2454 /* Library flags */ /* Total library flags must be 16 bits */
2455 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2456 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2457 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2458 // (1) or may be deferred (0)
2459 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2460 // (0) [>= 2 threads]
2461 /* If either team_serial or tasking_ser is set, task team may be NULL */
2462 /* Task State Flags: */
2463 unsigned started : 1; /* 1==started, 0==not started */
2464 unsigned executing : 1; /* 1==executing, 0==not executing */
2465 unsigned complete : 1; /* 1==complete, 0==not complete */
2466 unsigned freed : 1; /* 1==freed, 0==allocated */
2467 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2468 unsigned reserved31 : 7; /* reserved for library use */
2469
2470} kmp_tasking_flags_t;
2471
2472struct kmp_taskdata { /* aligned during dynamic allocation */
2473 kmp_int32 td_task_id; /* id, assigned by debugger */
2474 kmp_tasking_flags_t td_flags; /* task flags */
2475 kmp_team_t *td_team; /* team for this task */
2476 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2477 /* Currently not used except for perhaps IDB */
2478 kmp_taskdata_t *td_parent; /* parent task */
2479 kmp_int32 td_level; /* task nesting level */
2480 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2481 ident_t *td_ident; /* task identifier */
2482 // Taskwait data.
2483 ident_t *td_taskwait_ident;
2484 kmp_uint32 td_taskwait_counter;
2485 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2486 KMP_ALIGN_CACHE kmp_internal_control_t
2487 td_icvs; /* Internal control variables for the task */
2488 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2489 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2490 deallocated */
2491 std::atomic<kmp_int32>
2492 td_incomplete_child_tasks; /* Child tasks not yet complete */
2493 kmp_taskgroup_t
2494 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2495 kmp_dephash_t
2496 *td_dephash; // Dependencies for children tasks are tracked from here
2497 kmp_depnode_t
2498 *td_depnode; // Pointer to graph node if this task has dependencies
2499 kmp_task_team_t *td_task_team;
2500 size_t td_size_alloc; // Size of task structure, including shareds etc.
2501#if defined(KMP_GOMP_COMPAT)
2502 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2503 kmp_int32 td_size_loop_bounds;
2504#endif
2505 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2506#if defined(KMP_GOMP_COMPAT)
2507 // GOMP sends in a copy function for copy constructors
2508 void (*td_copy_func)(void *, void *);
2509#endif
2510 kmp_event_t td_allow_completion_event;
2511#if OMPT_SUPPORT
2512 ompt_task_info_t ompt_task_info;
2513#endif
2514}; // struct kmp_taskdata
2515
2516// Make sure padding above worked
2517KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2518
2519// Data for task team but per thread
2520typedef struct kmp_base_thread_data {
2521 kmp_info_p *td_thr; // Pointer back to thread info
2522 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2523 // queued?
2524 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2525 kmp_taskdata_t *
2526 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2527 kmp_int32 td_deque_size; // Size of deck
2528 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2529 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2530 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2531 // GEH: shouldn't this be volatile since used in while-spin?
2532 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2533#ifdef BUILD_TIED_TASK_STACK
2534 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2535// scheduling constraint
2536#endif // BUILD_TIED_TASK_STACK
2537} kmp_base_thread_data_t;
2538
2539#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2540#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2541
2542#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2543#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2544
2545typedef union KMP_ALIGN_CACHE kmp_thread_data {
2546 kmp_base_thread_data_t td;
2547 double td_align; /* use worst case alignment */
2548 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2549} kmp_thread_data_t;
2550
2551// Data for task teams which are used when tasking is enabled for the team
2552typedef struct kmp_base_task_team {
2553 kmp_bootstrap_lock_t
2554 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2555 /* must be bootstrap lock since used at library shutdown*/
2556 kmp_task_team_t *tt_next; /* For linking the task team free list */
2557 kmp_thread_data_t
2558 *tt_threads_data; /* Array of per-thread structures for task team */
2559 /* Data survives task team deallocation */
2560 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2561 executing this team? */
2562 /* TRUE means tt_threads_data is set up and initialized */
2563 kmp_int32 tt_nproc; /* #threads in team */
2564 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2565 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2566 kmp_int32 tt_untied_task_encountered;
2567 // There is hidden helper thread encountered in this task team so that we must
2568 // wait when waiting on task team
2569 kmp_int32 tt_hidden_helper_task_encountered;
2570
2571 KMP_ALIGN_CACHE
2572 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2573
2574 KMP_ALIGN_CACHE
2575 volatile kmp_uint32
2576 tt_active; /* is the team still actively executing tasks */
2577} kmp_base_task_team_t;
2578
2579union KMP_ALIGN_CACHE kmp_task_team {
2580 kmp_base_task_team_t tt;
2581 double tt_align; /* use worst case alignment */
2582 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2583};
2584
2585#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2586// Free lists keep same-size free memory slots for fast memory allocation
2587// routines
2588typedef struct kmp_free_list {
2589 void *th_free_list_self; // Self-allocated tasks free list
2590 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2591 // threads
2592 void *th_free_list_other; // Non-self free list (to be returned to owner's
2593 // sync list)
2594} kmp_free_list_t;
2595#endif
2596#if KMP_NESTED_HOT_TEAMS
2597// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2598// are not put in teams pool, and they don't put threads in threads pool.
2599typedef struct kmp_hot_team_ptr {
2600 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2601 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2602} kmp_hot_team_ptr_t;
2603#endif
2604typedef struct kmp_teams_size {
2605 kmp_int32 nteams; // number of teams in a league
2606 kmp_int32 nth; // number of threads in each team of the league
2607} kmp_teams_size_t;
2608
2609// This struct stores a thread that acts as a "root" for a contention
2610// group. Contention groups are rooted at kmp_root threads, but also at
2611// each primary thread of each team created in the teams construct.
2612// This struct therefore also stores a thread_limit associated with
2613// that contention group, and a counter to track the number of threads
2614// active in that contention group. Each thread has a list of these: CG
2615// root threads have an entry in their list in which cg_root refers to
2616// the thread itself, whereas other workers in the CG will have a
2617// single entry where cg_root is same as the entry containing their CG
2618// root. When a thread encounters a teams construct, it will add a new
2619// entry to the front of its list, because it now roots a new CG.
2620typedef struct kmp_cg_root {
2621 kmp_info_p *cg_root; // "root" thread for a contention group
2622 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2623 // thread_limit clause for teams primary threads
2624 kmp_int32 cg_thread_limit;
2625 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2626 struct kmp_cg_root *up; // pointer to higher level CG root in list
2627} kmp_cg_root_t;
2628
2629// OpenMP thread data structures
2630
2631typedef struct KMP_ALIGN_CACHE kmp_base_info {
2632 /* Start with the readonly data which is cache aligned and padded. This is
2633 written before the thread starts working by the primary thread. Uber
2634 masters may update themselves later. Usage does not consider serialized
2635 regions. */
2636 kmp_desc_t th_info;
2637 kmp_team_p *th_team; /* team we belong to */
2638 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2639 kmp_info_p *th_next_pool; /* next available thread in the pool */
2640 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2641 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2642
2643 /* The following are cached from the team info structure */
2644 /* TODO use these in more places as determined to be needed via profiling */
2645 int th_team_nproc; /* number of threads in a team */
2646 kmp_info_p *th_team_master; /* the team's primary thread */
2647 int th_team_serialized; /* team is serialized */
2648 microtask_t th_teams_microtask; /* save entry address for teams construct */
2649 int th_teams_level; /* save initial level of teams construct */
2650/* it is 0 on device but may be any on host */
2651
2652/* The blocktime info is copied from the team struct to the thread struct */
2653/* at the start of a barrier, and the values stored in the team are used */
2654/* at points in the code where the team struct is no longer guaranteed */
2655/* to exist (from the POV of worker threads). */
2656#if KMP_USE_MONITOR
2657 int th_team_bt_intervals;
2658 int th_team_bt_set;
2659#else
2660 kmp_uint64 th_team_bt_intervals;
2661#endif
2662
2663#if KMP_AFFINITY_SUPPORTED
2664 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2665#endif
2666 omp_allocator_handle_t th_def_allocator; /* default allocator */
2667 /* The data set by the primary thread at reinit, then R/W by the worker */
2668 KMP_ALIGN_CACHE int
2669 th_set_nproc; /* if > 0, then only use this request for the next fork */
2670#if KMP_NESTED_HOT_TEAMS
2671 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2672#endif
2673 kmp_proc_bind_t
2674 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2675 kmp_teams_size_t
2676 th_teams_size; /* number of teams/threads in teams construct */
2677#if KMP_AFFINITY_SUPPORTED
2678 int th_current_place; /* place currently bound to */
2679 int th_new_place; /* place to bind to in par reg */
2680 int th_first_place; /* first place in partition */
2681 int th_last_place; /* last place in partition */
2682#endif
2683 int th_prev_level; /* previous level for affinity format */
2684 int th_prev_num_threads; /* previous num_threads for affinity format */
2685#if USE_ITT_BUILD
2686 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2687 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2688 kmp_uint64 th_frame_time; /* frame timestamp */
2689#endif /* USE_ITT_BUILD */
2690 kmp_local_t th_local;
2691 struct private_common *th_pri_head;
2692
2693 /* Now the data only used by the worker (after initial allocation) */
2694 /* TODO the first serial team should actually be stored in the info_t
2695 structure. this will help reduce initial allocation overhead */
2696 KMP_ALIGN_CACHE kmp_team_p
2697 *th_serial_team; /*serialized team held in reserve*/
2698
2699#if OMPT_SUPPORT
2700 ompt_thread_info_t ompt_thread_info;
2701#endif
2702
2703 /* The following are also read by the primary thread during reinit */
2704 struct common_table *th_pri_common;
2705
2706 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2707 /* while awaiting queuing lock acquire */
2708
2709 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2710 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2711
2712 ident_t *th_ident;
2713 unsigned th_x; // Random number generator data
2714 unsigned th_a; // Random number generator data
2715
2716 /* Tasking-related data for the thread */
2717 kmp_task_team_t *th_task_team; // Task team struct
2718 kmp_taskdata_t *th_current_task; // Innermost Task being executed
2719 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
2720 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
2721 // at nested levels
2722 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
2723 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
2724 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
2725 // tasking, thus safe to reap
2726
2727 /* More stuff for keeping track of active/sleeping threads (this part is
2728 written by the worker thread) */
2729 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
2730 int th_active; // ! sleeping; 32 bits for TCR/TCW
2731 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
2732 // 0 = not used in team; 1 = used in team;
2733 // 2 = transitioning to not used in team; 3 = transitioning to used in team
2734 struct cons_header *th_cons; // used for consistency check
2735#if KMP_USE_HIER_SCHED
2736 // used for hierarchical scheduling
2737 kmp_hier_private_bdata_t *th_hier_bar_data;
2738#endif
2739
2740 /* Add the syncronizing data which is cache aligned and padded. */
2741 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
2742
2743 KMP_ALIGN_CACHE volatile kmp_int32
2744 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
2745
2746#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2747#define NUM_LISTS 4
2748 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
2749// allocation routines
2750#endif
2751
2752#if KMP_OS_WINDOWS
2753 kmp_win32_cond_t th_suspend_cv;
2754 kmp_win32_mutex_t th_suspend_mx;
2755 std::atomic<int> th_suspend_init;
2756#endif
2757#if KMP_OS_UNIX
2758 kmp_cond_align_t th_suspend_cv;
2759 kmp_mutex_align_t th_suspend_mx;
2760 std::atomic<int> th_suspend_init_count;
2761#endif
2762
2763#if USE_ITT_BUILD
2764 kmp_itt_mark_t th_itt_mark_single;
2765// alignment ???
2766#endif /* USE_ITT_BUILD */
2767#if KMP_STATS_ENABLED
2768 kmp_stats_list *th_stats;
2769#endif
2770#if KMP_OS_UNIX
2771 std::atomic<bool> th_blocking;
2772#endif
2773 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
2774} kmp_base_info_t;
2775
2776typedef union KMP_ALIGN_CACHE kmp_info {
2777 double th_align; /* use worst case alignment */
2778 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
2779 kmp_base_info_t th;
2780} kmp_info_t;
2781
2782// OpenMP thread team data structures
2783
2784typedef struct kmp_base_data {
2785 volatile kmp_uint32 t_value;
2786} kmp_base_data_t;
2787
2788typedef union KMP_ALIGN_CACHE kmp_sleep_team {
2789 double dt_align; /* use worst case alignment */
2790 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2791 kmp_base_data_t dt;
2792} kmp_sleep_team_t;
2793
2794typedef union KMP_ALIGN_CACHE kmp_ordered_team {
2795 double dt_align; /* use worst case alignment */
2796 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2797 kmp_base_data_t dt;
2798} kmp_ordered_team_t;
2799
2800typedef int (*launch_t)(int gtid);
2801
2802/* Minimum number of ARGV entries to malloc if necessary */
2803#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
2804
2805// Set up how many argv pointers will fit in cache lines containing
2806// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
2807// larger value for more space between the primary write/worker read section and
2808// read/write by all section seems to buy more performance on EPCC PARALLEL.
2809#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2810#define KMP_INLINE_ARGV_BYTES \
2811 (4 * CACHE_LINE - \
2812 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
2813 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
2814 CACHE_LINE))
2815#else
2816#define KMP_INLINE_ARGV_BYTES \
2817 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
2818#endif
2819#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
2820
2821typedef struct KMP_ALIGN_CACHE kmp_base_team {
2822 // Synchronization Data
2823 // ---------------------------------------------------------------------------
2824 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
2825 kmp_balign_team_t t_bar[bs_last_barrier];
2826 std::atomic<int> t_construct; // count of single directive encountered by team
2827 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
2828
2829 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
2830 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
2831 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
2832
2833 // Primary thread only
2834 // ---------------------------------------------------------------------------
2835 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
2836 int t_master_this_cons; // "this_construct" single counter of primary thread
2837 // in parent team
2838 ident_t *t_ident; // if volatile, have to change too much other crud to
2839 // volatile too
2840 kmp_team_p *t_parent; // parent team
2841 kmp_team_p *t_next_pool; // next free team in the team pool
2842 kmp_disp_t *t_dispatch; // thread's dispatch data
2843 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
2844 kmp_proc_bind_t t_proc_bind; // bind type for par region
2845#if USE_ITT_BUILD
2846 kmp_uint64 t_region_time; // region begin timestamp
2847#endif /* USE_ITT_BUILD */
2848
2849 // Primary thread write, workers read
2850 // --------------------------------------------------------------------------
2851 KMP_ALIGN_CACHE void **t_argv;
2852 int t_argc;
2853 int t_nproc; // number of threads in team
2854 microtask_t t_pkfn;
2855 launch_t t_invoke; // procedure to launch the microtask
2856
2857#if OMPT_SUPPORT
2858 ompt_team_info_t ompt_team_info;
2859 ompt_lw_taskteam_t *ompt_serialized_team_info;
2860#endif
2861
2862#if KMP_ARCH_X86 || KMP_ARCH_X86_64
2863 kmp_int8 t_fp_control_saved;
2864 kmp_int8 t_pad2b;
2865 kmp_int16 t_x87_fpu_control_word; // FP control regs
2866 kmp_uint32 t_mxcsr;
2867#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2868
2869 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
2870
2871 KMP_ALIGN_CACHE kmp_info_t **t_threads;
2872 kmp_taskdata_t
2873 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
2874 int t_level; // nested parallel level
2875
2876 KMP_ALIGN_CACHE int t_max_argc;
2877 int t_max_nproc; // max threads this team can handle (dynamically expandable)
2878 int t_serialized; // levels deep of serialized teams
2879 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
2880 int t_id; // team's id, assigned by debugger.
2881 int t_active_level; // nested active parallel level
2882 kmp_r_sched_t t_sched; // run-time schedule for the team
2883#if KMP_AFFINITY_SUPPORTED
2884 int t_first_place; // first & last place in parent thread's partition.
2885 int t_last_place; // Restore these values to primary thread after par region.
2886#endif // KMP_AFFINITY_SUPPORTED
2887 int t_display_affinity;
2888 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
2889 // omp_set_num_threads() call
2890 omp_allocator_handle_t t_def_allocator; /* default allocator */
2891
2892// Read/write by workers as well
2893#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
2894 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
2895 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
2896 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
2897 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
2898 char dummy_padding[1024];
2899#endif
2900 // Internal control stack for additional nested teams.
2901 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
2902 // for SERIALIZED teams nested 2 or more levels deep
2903 // typed flag to store request state of cancellation
2904 std::atomic<kmp_int32> t_cancel_request;
2905 int t_master_active; // save on fork, restore on join
2906 void *t_copypriv_data; // team specific pointer to copyprivate data array
2907#if KMP_OS_WINDOWS
2908 std::atomic<kmp_uint32> t_copyin_counter;
2909#endif
2910#if USE_ITT_BUILD
2911 void *t_stack_id; // team specific stack stitching id (for ittnotify)
2912#endif /* USE_ITT_BUILD */
2913 distributedBarrier *b; // Distributed barrier data associated with team
2914} kmp_base_team_t;
2915
2916union KMP_ALIGN_CACHE kmp_team {
2917 kmp_base_team_t t;
2918 double t_align; /* use worst case alignment */
2919 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
2920};
2921
2922typedef union KMP_ALIGN_CACHE kmp_time_global {
2923 double dt_align; /* use worst case alignment */
2924 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
2925 kmp_base_data_t dt;
2926} kmp_time_global_t;
2927
2928typedef struct kmp_base_global {
2929 /* cache-aligned */
2930 kmp_time_global_t g_time;
2931
2932 /* non cache-aligned */
2933 volatile int g_abort;
2934 volatile int g_done;
2935
2936 int g_dynamic;
2937 enum dynamic_mode g_dynamic_mode;
2938} kmp_base_global_t;
2939
2940typedef union KMP_ALIGN_CACHE kmp_global {
2941 kmp_base_global_t g;
2942 double g_align; /* use worst case alignment */
2943 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
2944} kmp_global_t;
2945
2946typedef struct kmp_base_root {
2947 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
2948 // (r_in_parallel>= 0)
2949 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
2950 // the synch overhead or keeping r_active
2951 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
2952 // keeps a count of active parallel regions per root
2953 std::atomic<int> r_in_parallel;
2954 // GEH: This is misnamed, should be r_active_levels
2955 kmp_team_t *r_root_team;
2956 kmp_team_t *r_hot_team;
2957 kmp_info_t *r_uber_thread;
2958 kmp_lock_t r_begin_lock;
2959 volatile int r_begin;
2960 int r_blocktime; /* blocktime for this root and descendants */
2961#if KMP_AFFINITY_SUPPORTED
2962 int r_affinity_assigned;
2963#endif // KMP_AFFINITY_SUPPORTED
2964} kmp_base_root_t;
2965
2966typedef union KMP_ALIGN_CACHE kmp_root {
2967 kmp_base_root_t r;
2968 double r_align; /* use worst case alignment */
2969 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
2970} kmp_root_t;
2971
2972struct fortran_inx_info {
2973 kmp_int32 data;
2974};
2975
2976/* ------------------------------------------------------------------------ */
2977
2978extern int __kmp_settings;
2979extern int __kmp_duplicate_library_ok;
2980#if USE_ITT_BUILD
2981extern int __kmp_forkjoin_frames;
2982extern int __kmp_forkjoin_frames_mode;
2983#endif
2984extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
2985extern int __kmp_determ_red;
2986
2987#ifdef KMP_DEBUG
2988extern int kmp_a_debug;
2989extern int kmp_b_debug;
2990extern int kmp_c_debug;
2991extern int kmp_d_debug;
2992extern int kmp_e_debug;
2993extern int kmp_f_debug;
2994#endif /* KMP_DEBUG */
2995
2996/* For debug information logging using rotating buffer */
2997#define KMP_DEBUG_BUF_LINES_INIT 512
2998#define KMP_DEBUG_BUF_LINES_MIN 1
2999
3000#define KMP_DEBUG_BUF_CHARS_INIT 128
3001#define KMP_DEBUG_BUF_CHARS_MIN 2
3002
3003extern int
3004 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3005extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3006extern int
3007 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3008extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3009 entry pointer */
3010
3011extern char *__kmp_debug_buffer; /* Debug buffer itself */
3012extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3013 printed in buffer so far */
3014extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3015 recommended in warnings */
3016/* end rotating debug buffer */
3017
3018#ifdef KMP_DEBUG
3019extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3020
3021#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3022extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3023#define KMP_PAR_RANGE_FILENAME_LEN 1024
3024extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3025extern int __kmp_par_range_lb;
3026extern int __kmp_par_range_ub;
3027#endif
3028
3029/* For printing out dynamic storage map for threads and teams */
3030extern int
3031 __kmp_storage_map; /* True means print storage map for threads and teams */
3032extern int __kmp_storage_map_verbose; /* True means storage map includes
3033 placement info */
3034extern int __kmp_storage_map_verbose_specified;
3035
3036#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3037extern kmp_cpuinfo_t __kmp_cpuinfo;
3038static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3039#else
3040static inline bool __kmp_is_hybrid_cpu() { return false; }
3041#endif
3042
3043extern volatile int __kmp_init_serial;
3044extern volatile int __kmp_init_gtid;
3045extern volatile int __kmp_init_common;
3046extern volatile int __kmp_init_middle;
3047extern volatile int __kmp_init_parallel;
3048#if KMP_USE_MONITOR
3049extern volatile int __kmp_init_monitor;
3050#endif
3051extern volatile int __kmp_init_user_locks;
3052extern volatile int __kmp_init_hidden_helper_threads;
3053extern int __kmp_init_counter;
3054extern int __kmp_root_counter;
3055extern int __kmp_version;
3056
3057/* list of address of allocated caches for commons */
3058extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3059
3060/* Barrier algorithm types and options */
3061extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3062extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3063extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3064extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3065extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3066extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3067extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3068extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3069extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3070extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3071extern char const *__kmp_barrier_type_name[bs_last_barrier];
3072extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3073
3074/* Global Locks */
3075extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3076extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3077extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3078extern kmp_bootstrap_lock_t
3079 __kmp_exit_lock; /* exit() is not always thread-safe */
3080#if KMP_USE_MONITOR
3081extern kmp_bootstrap_lock_t
3082 __kmp_monitor_lock; /* control monitor thread creation */
3083#endif
3084extern kmp_bootstrap_lock_t
3085 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3086 __kmp_threads expansion to co-exist */
3087
3088extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3089extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3090extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3091
3092extern enum library_type __kmp_library;
3093
3094extern enum sched_type __kmp_sched; /* default runtime scheduling */
3095extern enum sched_type __kmp_static; /* default static scheduling method */
3096extern enum sched_type __kmp_guided; /* default guided scheduling method */
3097extern enum sched_type __kmp_auto; /* default auto scheduling method */
3098extern int __kmp_chunk; /* default runtime chunk size */
3099extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3100
3101extern size_t __kmp_stksize; /* stack size per thread */
3102#if KMP_USE_MONITOR
3103extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3104#endif
3105extern size_t __kmp_stkoffset; /* stack offset per thread */
3106extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3107
3108extern size_t
3109 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3110extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3111extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3112extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3113extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3114extern int __kmp_generate_warnings; /* should we issue warnings? */
3115extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3116
3117#ifdef DEBUG_SUSPEND
3118extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3119#endif
3120
3121extern kmp_int32 __kmp_use_yield;
3122extern kmp_int32 __kmp_use_yield_exp_set;
3123extern kmp_uint32 __kmp_yield_init;
3124extern kmp_uint32 __kmp_yield_next;
3125extern kmp_uint64 __kmp_pause_init;
3126
3127/* ------------------------------------------------------------------------- */
3128extern int __kmp_allThreadsSpecified;
3129
3130extern size_t __kmp_align_alloc;
3131/* following data protected by initialization routines */
3132extern int __kmp_xproc; /* number of processors in the system */
3133extern int __kmp_avail_proc; /* number of processors available to the process */
3134extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3135extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3136// maximum total number of concurrently-existing threads on device
3137extern int __kmp_max_nth;
3138// maximum total number of concurrently-existing threads in a contention group
3139extern int __kmp_cg_max_nth;
3140extern int __kmp_teams_max_nth; // max threads used in a teams construct
3141extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3142 __kmp_root */
3143extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3144 region a la OMP_NUM_THREADS */
3145extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3146 initialization */
3147extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3148 used (fixed) */
3149extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3150 (__kmpc_threadprivate_cached()) */
3151extern int __kmp_dflt_blocktime; /* number of milliseconds to wait before
3152 blocking (env setting) */
3153#if KMP_USE_MONITOR
3154extern int
3155 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3156extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3157 blocking */
3158#endif
3159#ifdef KMP_ADJUST_BLOCKTIME
3160extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3161#endif /* KMP_ADJUST_BLOCKTIME */
3162#ifdef KMP_DFLT_NTH_CORES
3163extern int __kmp_ncores; /* Total number of cores for threads placement */
3164#endif
3165/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3166extern int __kmp_abort_delay;
3167
3168extern int __kmp_need_register_atfork_specified;
3169extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3170 to install fork handler */
3171extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3172 0 - not set, will be set at runtime
3173 1 - using stack search
3174 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3175 X*) or TlsGetValue(Windows* OS))
3176 3 - static TLS (__declspec(thread) __kmp_gtid),
3177 Linux* OS .so only. */
3178extern int
3179 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3180#ifdef KMP_TDATA_GTID
3181extern KMP_THREAD_LOCAL int __kmp_gtid;
3182#endif
3183extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3184extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3185#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3186extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3187extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3188extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3189#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3190
3191// max_active_levels for nested parallelism enabled by default via
3192// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3193extern int __kmp_dflt_max_active_levels;
3194// Indicates whether value of __kmp_dflt_max_active_levels was already
3195// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3196extern bool __kmp_dflt_max_active_levels_set;
3197extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3198 concurrent execution per team */
3199#if KMP_NESTED_HOT_TEAMS
3200extern int __kmp_hot_teams_mode;
3201extern int __kmp_hot_teams_max_level;
3202#endif
3203
3204#if KMP_OS_LINUX
3205extern enum clock_function_type __kmp_clock_function;
3206extern int __kmp_clock_function_param;
3207#endif /* KMP_OS_LINUX */
3208
3209#if KMP_MIC_SUPPORTED
3210extern enum mic_type __kmp_mic_type;
3211#endif
3212
3213#ifdef USE_LOAD_BALANCE
3214extern double __kmp_load_balance_interval; // load balance algorithm interval
3215#endif /* USE_LOAD_BALANCE */
3216
3217// OpenMP 3.1 - Nested num threads array
3218typedef struct kmp_nested_nthreads_t {
3219 int *nth;
3220 int size;
3221 int used;
3222} kmp_nested_nthreads_t;
3223
3224extern kmp_nested_nthreads_t __kmp_nested_nth;
3225
3226#if KMP_USE_ADAPTIVE_LOCKS
3227
3228// Parameters for the speculative lock backoff system.
3229struct kmp_adaptive_backoff_params_t {
3230 // Number of soft retries before it counts as a hard retry.
3231 kmp_uint32 max_soft_retries;
3232 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3233 // the right
3234 kmp_uint32 max_badness;
3235};
3236
3237extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3238
3239#if KMP_DEBUG_ADAPTIVE_LOCKS
3240extern const char *__kmp_speculative_statsfile;
3241#endif
3242
3243#endif // KMP_USE_ADAPTIVE_LOCKS
3244
3245extern int __kmp_display_env; /* TRUE or FALSE */
3246extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3247extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3248extern int __kmp_nteams;
3249extern int __kmp_teams_thread_limit;
3250
3251/* ------------------------------------------------------------------------- */
3252
3253/* the following are protected by the fork/join lock */
3254/* write: lock read: anytime */
3255extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3256/* read/write: lock */
3257extern volatile kmp_team_t *__kmp_team_pool;
3258extern volatile kmp_info_t *__kmp_thread_pool;
3259extern kmp_info_t *__kmp_thread_pool_insert_pt;
3260
3261// total num threads reachable from some root thread including all root threads
3262extern volatile int __kmp_nth;
3263/* total number of threads reachable from some root thread including all root
3264 threads, and those in the thread pool */
3265extern volatile int __kmp_all_nth;
3266extern std::atomic<int> __kmp_thread_pool_active_nth;
3267
3268extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3269/* end data protected by fork/join lock */
3270/* ------------------------------------------------------------------------- */
3271
3272#define __kmp_get_gtid() __kmp_get_global_thread_id()
3273#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3274#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3275#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3276#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3277
3278// AT: Which way is correct?
3279// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3280// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3281#define __kmp_get_team_num_threads(gtid) \
3282 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3283
3284static inline bool KMP_UBER_GTID(int gtid) {
3285 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3286 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3287 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3288 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3289}
3290
3291static inline int __kmp_tid_from_gtid(int gtid) {
3292 KMP_DEBUG_ASSERT(gtid >= 0);
3293 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3294}
3295
3296static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3297 KMP_DEBUG_ASSERT(tid >= 0 && team);
3298 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3299}
3300
3301static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3302 KMP_DEBUG_ASSERT(thr);
3303 return thr->th.th_info.ds.ds_gtid;
3304}
3305
3306static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3307 KMP_DEBUG_ASSERT(gtid >= 0);
3308 return __kmp_threads[gtid];
3309}
3310
3311static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3312 KMP_DEBUG_ASSERT(gtid >= 0);
3313 return __kmp_threads[gtid]->th.th_team;
3314}
3315
3316static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3317 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3318 KMP_FATAL(ThreadIdentInvalid);
3319}
3320
3321#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3322extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3323extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3324extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3325extern int __kmp_mwait_hints; // Hints to pass in to mwait
3326#endif
3327
3328#if KMP_HAVE_UMWAIT
3329extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3330extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3331extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3332extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3333#endif
3334
3335/* ------------------------------------------------------------------------- */
3336
3337extern kmp_global_t __kmp_global; /* global status */
3338
3339extern kmp_info_t __kmp_monitor;
3340// For Debugging Support Library
3341extern std::atomic<kmp_int32> __kmp_team_counter;
3342// For Debugging Support Library
3343extern std::atomic<kmp_int32> __kmp_task_counter;
3344
3345#if USE_DEBUGGER
3346#define _KMP_GEN_ID(counter) \
3347 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3348#else
3349#define _KMP_GEN_ID(counter) (~0)
3350#endif /* USE_DEBUGGER */
3351
3352#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3353#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3354
3355/* ------------------------------------------------------------------------ */
3356
3357extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3358 size_t size, char const *format, ...);
3359
3360extern void __kmp_serial_initialize(void);
3361extern void __kmp_middle_initialize(void);
3362extern void __kmp_parallel_initialize(void);
3363
3364extern void __kmp_internal_begin(void);
3365extern void __kmp_internal_end_library(int gtid);
3366extern void __kmp_internal_end_thread(int gtid);
3367extern void __kmp_internal_end_atexit(void);
3368extern void __kmp_internal_end_dtor(void);
3369extern void __kmp_internal_end_dest(void *);
3370
3371extern int __kmp_register_root(int initial_thread);
3372extern void __kmp_unregister_root(int gtid);
3373extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3374
3375extern int __kmp_ignore_mppbeg(void);
3376extern int __kmp_ignore_mppend(void);
3377
3378extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3379extern void __kmp_exit_single(int gtid);
3380
3381extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3382extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3383
3384#ifdef USE_LOAD_BALANCE
3385extern int __kmp_get_load_balance(int);
3386#endif
3387
3388extern int __kmp_get_global_thread_id(void);
3389extern int __kmp_get_global_thread_id_reg(void);
3390extern void __kmp_exit_thread(int exit_status);
3391extern void __kmp_abort(char const *format, ...);
3392extern void __kmp_abort_thread(void);
3393KMP_NORETURN extern void __kmp_abort_process(void);
3394extern void __kmp_warn(char const *format, ...);
3395
3396extern void __kmp_set_num_threads(int new_nth, int gtid);
3397
3398// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3399// registered.
3400static inline kmp_info_t *__kmp_entry_thread() {
3401 int gtid = __kmp_entry_gtid();
3402
3403 return __kmp_threads[gtid];
3404}
3405
3406extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3407extern int __kmp_get_max_active_levels(int gtid);
3408extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3409extern int __kmp_get_team_size(int gtid, int level);
3410extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3411extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3412
3413extern unsigned short __kmp_get_random(kmp_info_t *thread);
3414extern void __kmp_init_random(kmp_info_t *thread);
3415
3416extern kmp_r_sched_t __kmp_get_schedule_global(void);
3417extern void __kmp_adjust_num_threads(int new_nproc);
3418extern void __kmp_check_stksize(size_t *val);
3419
3420extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3421extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3422extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3423#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3424#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3425#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3426
3427#if USE_FAST_MEMORY
3428extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3429 size_t size KMP_SRC_LOC_DECL);
3430extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3431extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3432extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3433#define __kmp_fast_allocate(this_thr, size) \
3434 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3435#define __kmp_fast_free(this_thr, ptr) \
3436 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3437#endif
3438
3439extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3440extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3441 size_t elsize KMP_SRC_LOC_DECL);
3442extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3443 size_t size KMP_SRC_LOC_DECL);
3444extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3445#define __kmp_thread_malloc(th, size) \
3446 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3447#define __kmp_thread_calloc(th, nelem, elsize) \
3448 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3449#define __kmp_thread_realloc(th, ptr, size) \
3450 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3451#define __kmp_thread_free(th, ptr) \
3452 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3453
3454#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
3455#define KMP_INTERNAL_FREE(p) free(p)
3456#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
3457#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
3458
3459extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3460
3461extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3462 kmp_proc_bind_t proc_bind);
3463extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3464 int num_threads);
3465extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3466 int num_teams_ub, int num_threads);
3467
3468extern void __kmp_yield();
3469
3470extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3471 enum sched_type schedule, kmp_int32 lb,
3472 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3473extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3474 enum sched_type schedule, kmp_uint32 lb,
3475 kmp_uint32 ub, kmp_int32 st,
3476 kmp_int32 chunk);
3477extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3478 enum sched_type schedule, kmp_int64 lb,
3479 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3480extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3481 enum sched_type schedule, kmp_uint64 lb,
3482 kmp_uint64 ub, kmp_int64 st,
3483 kmp_int64 chunk);
3484
3485extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3486 kmp_int32 *p_last, kmp_int32 *p_lb,
3487 kmp_int32 *p_ub, kmp_int32 *p_st);
3488extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3489 kmp_int32 *p_last, kmp_uint32 *p_lb,
3490 kmp_uint32 *p_ub, kmp_int32 *p_st);
3491extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3492 kmp_int32 *p_last, kmp_int64 *p_lb,
3493 kmp_int64 *p_ub, kmp_int64 *p_st);
3494extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3495 kmp_int32 *p_last, kmp_uint64 *p_lb,
3496 kmp_uint64 *p_ub, kmp_int64 *p_st);
3497
3498extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3499extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3500extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3501extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3502
3503#ifdef KMP_GOMP_COMPAT
3504
3505extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3506 enum sched_type schedule, kmp_int32 lb,
3507 kmp_int32 ub, kmp_int32 st,
3508 kmp_int32 chunk, int push_ws);
3509extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3510 enum sched_type schedule, kmp_uint32 lb,
3511 kmp_uint32 ub, kmp_int32 st,
3512 kmp_int32 chunk, int push_ws);
3513extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3514 enum sched_type schedule, kmp_int64 lb,
3515 kmp_int64 ub, kmp_int64 st,
3516 kmp_int64 chunk, int push_ws);
3517extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3518 enum sched_type schedule, kmp_uint64 lb,
3519 kmp_uint64 ub, kmp_int64 st,
3520 kmp_int64 chunk, int push_ws);
3521extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3522extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3523extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3524extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3525
3526#endif /* KMP_GOMP_COMPAT */
3527
3528extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3529extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3530extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3531extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3532extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3533extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3534 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3535 void *obj);
3536extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3537 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3538
3539extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3540 int final_spin
3541#if USE_ITT_BUILD
3542 ,
3543 void *itt_sync_obj
3544#endif
3545);
3546extern void __kmp_release_64(kmp_flag_64<> *flag);
3547
3548extern void __kmp_infinite_loop(void);
3549
3550extern void __kmp_cleanup(void);
3551
3552#if KMP_HANDLE_SIGNALS
3553extern int __kmp_handle_signals;
3554extern void __kmp_install_signals(int parallel_init);
3555extern void __kmp_remove_signals(void);
3556#endif
3557
3558extern void __kmp_clear_system_time(void);
3559extern void __kmp_read_system_time(double *delta);
3560
3561extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3562
3563extern void __kmp_expand_host_name(char *buffer, size_t size);
3564extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3565
3566#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && KMP_ARCH_AARCH64)
3567extern void
3568__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3569#endif
3570
3571extern void
3572__kmp_runtime_initialize(void); /* machine specific initialization */
3573extern void __kmp_runtime_destroy(void);
3574
3575#if KMP_AFFINITY_SUPPORTED
3576extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3577 kmp_affin_mask_t *mask);
3578extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3579 kmp_affin_mask_t *mask);
3580extern void __kmp_affinity_initialize(void);
3581extern void __kmp_affinity_uninitialize(void);
3582extern void __kmp_affinity_set_init_mask(
3583 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3584extern void __kmp_affinity_set_place(int gtid);
3585extern void __kmp_affinity_determine_capable(const char *env_var);
3586extern int __kmp_aux_set_affinity(void **mask);
3587extern int __kmp_aux_get_affinity(void **mask);
3588extern int __kmp_aux_get_affinity_max_proc();
3589extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3590extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3591extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3592extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3593#if KMP_OS_LINUX || KMP_OS_FREEBSD
3594extern int kmp_set_thread_affinity_mask_initial(void);
3595#endif
3596static inline void __kmp_assign_root_init_mask() {
3597 int gtid = __kmp_entry_gtid();
3598 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3599 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3600 __kmp_affinity_set_init_mask(gtid, TRUE);
3601 r->r.r_affinity_assigned = TRUE;
3602 }
3603}
3604#else /* KMP_AFFINITY_SUPPORTED */
3605#define __kmp_assign_root_init_mask() /* Nothing */
3606#endif /* KMP_AFFINITY_SUPPORTED */
3607// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3608// format string is for affinity, so platforms that do not support
3609// affinity can still use the other fields, e.g., %n for num_threads
3610extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3611 kmp_str_buf_t *buffer);
3612extern void __kmp_aux_display_affinity(int gtid, const char *format);
3613
3614extern void __kmp_cleanup_hierarchy();
3615extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3616
3617#if KMP_USE_FUTEX
3618
3619extern int __kmp_futex_determine_capable(void);
3620
3621#endif // KMP_USE_FUTEX
3622
3623extern void __kmp_gtid_set_specific(int gtid);
3624extern int __kmp_gtid_get_specific(void);
3625
3626extern double __kmp_read_cpu_time(void);
3627
3628extern int __kmp_read_system_info(struct kmp_sys_info *info);
3629
3630#if KMP_USE_MONITOR
3631extern void __kmp_create_monitor(kmp_info_t *th);
3632#endif
3633
3634extern void *__kmp_launch_thread(kmp_info_t *thr);
3635
3636extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3637
3638#if KMP_OS_WINDOWS
3639extern int __kmp_still_running(kmp_info_t *th);
3640extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3641extern void __kmp_free_handle(kmp_thread_t tHandle);
3642#endif
3643
3644#if KMP_USE_MONITOR
3645extern void __kmp_reap_monitor(kmp_info_t *th);
3646#endif
3647extern void __kmp_reap_worker(kmp_info_t *th);
3648extern void __kmp_terminate_thread(int gtid);
3649
3650extern int __kmp_try_suspend_mx(kmp_info_t *th);
3651extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3652extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3653
3654extern void __kmp_elapsed(double *);
3655extern void __kmp_elapsed_tick(double *);
3656
3657extern void __kmp_enable(int old_state);
3658extern void __kmp_disable(int *old_state);
3659
3660extern void __kmp_thread_sleep(int millis);
3661
3662extern void __kmp_common_initialize(void);
3663extern void __kmp_common_destroy(void);
3664extern void __kmp_common_destroy_gtid(int gtid);
3665
3666#if KMP_OS_UNIX
3667extern void __kmp_register_atfork(void);
3668#endif
3669extern void __kmp_suspend_initialize(void);
3670extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
3671extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
3672
3673extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
3674 int tid);
3675extern kmp_team_t *
3676__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
3677#if OMPT_SUPPORT
3678 ompt_data_t ompt_parallel_data,
3679#endif
3680 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
3681 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
3682extern void __kmp_free_thread(kmp_info_t *);
3683extern void __kmp_free_team(kmp_root_t *,
3684 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
3685extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
3686
3687/* ------------------------------------------------------------------------ */
3688
3689extern void __kmp_initialize_bget(kmp_info_t *th);
3690extern void __kmp_finalize_bget(kmp_info_t *th);
3691
3692KMP_EXPORT void *kmpc_malloc(size_t size);
3693KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
3694KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
3695KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
3696KMP_EXPORT void kmpc_free(void *ptr);
3697
3698/* declarations for internal use */
3699
3700extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
3701 size_t reduce_size, void *reduce_data,
3702 void (*reduce)(void *, void *));
3703extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
3704extern int __kmp_barrier_gomp_cancel(int gtid);
3705
3710enum fork_context_e {
3711 fork_context_gnu,
3713 fork_context_intel,
3714 fork_context_last
3715};
3716extern int __kmp_fork_call(ident_t *loc, int gtid,
3717 enum fork_context_e fork_context, kmp_int32 argc,
3718 microtask_t microtask, launch_t invoker,
3719 kmp_va_list ap);
3720
3721extern void __kmp_join_call(ident_t *loc, int gtid
3722#if OMPT_SUPPORT
3723 ,
3724 enum fork_context_e fork_context
3725#endif
3726 ,
3727 int exit_teams = 0);
3728
3729extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
3730extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
3731extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
3732extern int __kmp_invoke_task_func(int gtid);
3733extern void __kmp_run_before_invoked_task(int gtid, int tid,
3734 kmp_info_t *this_thr,
3735 kmp_team_t *team);
3736extern void __kmp_run_after_invoked_task(int gtid, int tid,
3737 kmp_info_t *this_thr,
3738 kmp_team_t *team);
3739
3740// should never have been exported
3741KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
3742extern int __kmp_invoke_teams_master(int gtid);
3743extern void __kmp_teams_master(int gtid);
3744extern int __kmp_aux_get_team_num();
3745extern int __kmp_aux_get_num_teams();
3746extern void __kmp_save_internal_controls(kmp_info_t *thread);
3747extern void __kmp_user_set_library(enum library_type arg);
3748extern void __kmp_aux_set_library(enum library_type arg);
3749extern void __kmp_aux_set_stacksize(size_t arg);
3750extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
3751extern void __kmp_aux_set_defaults(char const *str, size_t len);
3752
3753/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
3754void kmpc_set_blocktime(int arg);
3755void ompc_set_nested(int flag);
3756void ompc_set_dynamic(int flag);
3757void ompc_set_num_threads(int arg);
3758
3759extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
3760 kmp_team_t *team, int tid);
3761extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
3762extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3763 kmp_tasking_flags_t *flags,
3764 size_t sizeof_kmp_task_t,
3765 size_t sizeof_shareds,
3766 kmp_routine_entry_t task_entry);
3767extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
3768 kmp_team_t *team, int tid,
3769 int set_curr_task);
3770extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
3771extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
3772
3773extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
3774 int gtid,
3775 kmp_task_t *task);
3776extern void __kmp_fulfill_event(kmp_event_t *event);
3777
3778extern void __kmp_free_task_team(kmp_info_t *thread,
3779 kmp_task_team_t *task_team);
3780extern void __kmp_reap_task_teams(void);
3781extern void __kmp_wait_to_unref_task_teams(void);
3782extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
3783 int always);
3784extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
3785extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
3786#if USE_ITT_BUILD
3787 ,
3788 void *itt_sync_obj
3789#endif /* USE_ITT_BUILD */
3790 ,
3791 int wait = 1);
3792extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
3793 int gtid);
3794
3795extern int __kmp_is_address_mapped(void *addr);
3796extern kmp_uint64 __kmp_hardware_timestamp(void);
3797
3798#if KMP_OS_UNIX
3799extern int __kmp_read_from_file(char const *path, char const *format, ...);
3800#endif
3801
3802/* ------------------------------------------------------------------------ */
3803//
3804// Assembly routines that have no compiler intrinsic replacement
3805//
3806
3807extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
3808 void *argv[]
3809#if OMPT_SUPPORT
3810 ,
3811 void **exit_frame_ptr
3812#endif
3813);
3814
3815/* ------------------------------------------------------------------------ */
3816
3817KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
3818KMP_EXPORT void __kmpc_end(ident_t *);
3819
3820KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
3821 kmpc_ctor_vec ctor,
3822 kmpc_cctor_vec cctor,
3823 kmpc_dtor_vec dtor,
3824 size_t vector_length);
3825KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
3826 kmpc_ctor ctor, kmpc_cctor cctor,
3827 kmpc_dtor dtor);
3828KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
3829 void *data, size_t size);
3830
3831KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
3832KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
3833KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
3834KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
3835
3836KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
3837KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
3838 kmpc_micro microtask, ...);
3839
3840KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
3841KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
3842
3843KMP_EXPORT void __kmpc_flush(ident_t *);
3844KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
3845KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
3846KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
3847KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
3848 kmp_int32 filter);
3849KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
3850KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
3851KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
3852KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
3853 kmp_critical_name *);
3854KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
3855 kmp_critical_name *);
3856KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
3857 kmp_critical_name *, uint32_t hint);
3858
3859KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
3860KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
3861
3862KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
3863 kmp_int32 global_tid);
3864
3865KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
3866KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
3867
3868KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
3869 kmp_int32 schedtype, kmp_int32 *plastiter,
3870 kmp_int *plower, kmp_int *pupper,
3871 kmp_int *pstride, kmp_int incr,
3872 kmp_int chunk);
3873
3874KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
3875
3876KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
3877 size_t cpy_size, void *cpy_data,
3878 void (*cpy_func)(void *, void *),
3879 kmp_int32 didit);
3880
3881extern void KMPC_SET_NUM_THREADS(int arg);
3882extern void KMPC_SET_DYNAMIC(int flag);
3883extern void KMPC_SET_NESTED(int flag);
3884
3885/* OMP 3.0 tasking interface routines */
3886KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
3887 kmp_task_t *new_task);
3888KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
3889 kmp_int32 flags,
3890 size_t sizeof_kmp_task_t,
3891 size_t sizeof_shareds,
3892 kmp_routine_entry_t task_entry);
3893KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
3894 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
3895 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
3896KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
3897 kmp_task_t *task);
3898KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
3899 kmp_task_t *task);
3900KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
3901 kmp_task_t *new_task);
3902KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
3903
3904KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
3905 int end_part);
3906
3907#if TASK_UNUSED
3908void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
3909void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
3910 kmp_task_t *task);
3911#endif // TASK_UNUSED
3912
3913/* ------------------------------------------------------------------------ */
3914
3915KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
3916KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
3917
3918KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
3919 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
3920 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
3921 kmp_depend_info_t *noalias_dep_list);
3922KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
3923 kmp_int32 ndeps,
3924 kmp_depend_info_t *dep_list,
3925 kmp_int32 ndeps_noalias,
3926 kmp_depend_info_t *noalias_dep_list);
3927extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
3928 bool serialize_immediate);
3929
3930KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
3931 kmp_int32 cncl_kind);
3932KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
3933 kmp_int32 cncl_kind);
3934KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
3935KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
3936
3937KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
3938KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
3939KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
3940 kmp_int32 if_val, kmp_uint64 *lb,
3941 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
3942 kmp_int32 sched, kmp_uint64 grainsize,
3943 void *task_dup);
3944KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
3945 kmp_task_t *task, kmp_int32 if_val,
3946 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
3947 kmp_int32 nogroup, kmp_int32 sched,
3948 kmp_uint64 grainsize, kmp_int32 modifier,
3949 void *task_dup);
3950KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
3951KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
3952KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
3953KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
3954 int is_ws, int num,
3955 void *data);
3956KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
3957 int num, void *data);
3958KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
3959 int is_ws);
3960KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
3961 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
3962 kmp_task_affinity_info_t *affin_list);
3963KMP_EXPORT void __kmp_set_num_teams(int num_teams);
3964KMP_EXPORT int __kmp_get_max_teams(void);
3965KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
3966KMP_EXPORT int __kmp_get_teams_thread_limit(void);
3967
3968/* Lock interface routines (fast versions with gtid passed in) */
3969KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
3970 void **user_lock);
3971KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
3972 void **user_lock);
3973KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
3974 void **user_lock);
3975KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
3976 void **user_lock);
3977KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3978KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
3979 void **user_lock);
3980KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
3981 void **user_lock);
3982KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
3983 void **user_lock);
3984KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
3985KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
3986 void **user_lock);
3987
3988KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3989 void **user_lock, uintptr_t hint);
3990KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
3991 void **user_lock,
3992 uintptr_t hint);
3993
3994/* Interface to fast scalable reduce methods routines */
3995
3996KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
3997 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
3998 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
3999 kmp_critical_name *lck);
4000KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4001 kmp_critical_name *lck);
4002KMP_EXPORT kmp_int32 __kmpc_reduce(
4003 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4004 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4005 kmp_critical_name *lck);
4006KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4007 kmp_critical_name *lck);
4008
4009/* Internal fast reduction routines */
4010
4011extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4012 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4013 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4014 kmp_critical_name *lck);
4015
4016// this function is for testing set/get/determine reduce method
4017KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4018
4019KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4020KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4021
4022// C++ port
4023// missing 'extern "C"' declarations
4024
4025KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4026KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4027KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4028 kmp_int32 num_threads);
4029
4030KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4031 int proc_bind);
4032KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4033 kmp_int32 num_teams,
4034 kmp_int32 num_threads);
4035/* Function for OpenMP 5.1 num_teams clause */
4036KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4037 kmp_int32 num_teams_lb,
4038 kmp_int32 num_teams_ub,
4039 kmp_int32 num_threads);
4040KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4041 kmpc_micro microtask, ...);
4042struct kmp_dim { // loop bounds info casted to kmp_int64
4043 kmp_int64 lo; // lower
4044 kmp_int64 up; // upper
4045 kmp_int64 st; // stride
4046};
4047KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4048 kmp_int32 num_dims,
4049 const struct kmp_dim *dims);
4050KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4051 const kmp_int64 *vec);
4052KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4053 const kmp_int64 *vec);
4054KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4055
4056KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4057 void *data, size_t size,
4058 void ***cache);
4059
4060// Symbols for MS mutual detection.
4061extern int _You_must_link_with_exactly_one_OpenMP_library;
4062extern int _You_must_link_with_Intel_OpenMP_library;
4063#if KMP_OS_WINDOWS && (KMP_VERSION_MAJOR > 4)
4064extern int _You_must_link_with_Microsoft_OpenMP_library;
4065#endif
4066
4067// The routines below are not exported.
4068// Consider making them 'static' in corresponding source files.
4069void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4070 void *data_addr, size_t pc_size);
4071struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4072 void *data_addr,
4073 size_t pc_size);
4074void __kmp_threadprivate_resize_cache(int newCapacity);
4075void __kmp_cleanup_threadprivate_caches();
4076
4077// ompc_, kmpc_ entries moved from omp.h.
4078#if KMP_OS_WINDOWS
4079#define KMPC_CONVENTION __cdecl
4080#else
4081#define KMPC_CONVENTION
4082#endif
4083
4084#ifndef __OMP_H
4085typedef enum omp_sched_t {
4086 omp_sched_static = 1,
4087 omp_sched_dynamic = 2,
4088 omp_sched_guided = 3,
4089 omp_sched_auto = 4
4090} omp_sched_t;
4091typedef void *kmp_affinity_mask_t;
4092#endif
4093
4094KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4095KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4096KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4097KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4098KMP_EXPORT int KMPC_CONVENTION
4099kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4100KMP_EXPORT int KMPC_CONVENTION
4101kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4102KMP_EXPORT int KMPC_CONVENTION
4103kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4104
4105KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4106KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4107KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4108KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4109KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4110void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4111size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4112void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4113size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4114 char const *format);
4115
4116enum kmp_target_offload_kind {
4117 tgt_disabled = 0,
4118 tgt_default = 1,
4119 tgt_mandatory = 2
4120};
4121typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4122// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4123extern kmp_target_offload_kind_t __kmp_target_offload;
4124extern int __kmpc_get_target_offload();
4125
4126// Constants used in libomptarget
4127#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4128#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4129
4130// OMP Pause Resource
4131
4132// The following enum is used both to set the status in __kmp_pause_status, and
4133// as the internal equivalent of the externally-visible omp_pause_resource_t.
4134typedef enum kmp_pause_status_t {
4135 kmp_not_paused = 0, // status is not paused, or, requesting resume
4136 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4137 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4138} kmp_pause_status_t;
4139
4140// This stores the pause state of the runtime
4141extern kmp_pause_status_t __kmp_pause_status;
4142extern int __kmpc_pause_resource(kmp_pause_status_t level);
4143extern int __kmp_pause_resource(kmp_pause_status_t level);
4144// Soft resume sets __kmp_pause_status, and wakes up all threads.
4145extern void __kmp_resume_if_soft_paused();
4146// Hard resume simply resets the status to not paused. Library will appear to
4147// be uninitialized after hard pause. Let OMP constructs trigger required
4148// initializations.
4149static inline void __kmp_resume_if_hard_paused() {
4150 if (__kmp_pause_status == kmp_hard_paused) {
4151 __kmp_pause_status = kmp_not_paused;
4152 }
4153}
4154
4155extern void __kmp_omp_display_env(int verbose);
4156
4157// 1: it is initializing hidden helper team
4158extern volatile int __kmp_init_hidden_helper;
4159// 1: the hidden helper team is done
4160extern volatile int __kmp_hidden_helper_team_done;
4161// 1: enable hidden helper task
4162extern kmp_int32 __kmp_enable_hidden_helper;
4163// Main thread of hidden helper team
4164extern kmp_info_t *__kmp_hidden_helper_main_thread;
4165// Descriptors for the hidden helper threads
4166extern kmp_info_t **__kmp_hidden_helper_threads;
4167// Number of hidden helper threads
4168extern kmp_int32 __kmp_hidden_helper_threads_num;
4169// Number of hidden helper tasks that have not been executed yet
4170extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4171
4172extern void __kmp_hidden_helper_initialize();
4173extern void __kmp_hidden_helper_threads_initz_routine();
4174extern void __kmp_do_initialize_hidden_helper_threads();
4175extern void __kmp_hidden_helper_threads_initz_wait();
4176extern void __kmp_hidden_helper_initz_release();
4177extern void __kmp_hidden_helper_threads_deinitz_wait();
4178extern void __kmp_hidden_helper_threads_deinitz_release();
4179extern void __kmp_hidden_helper_main_thread_wait();
4180extern void __kmp_hidden_helper_worker_thread_wait();
4181extern void __kmp_hidden_helper_worker_thread_signal();
4182extern void __kmp_hidden_helper_main_thread_release();
4183
4184// Check whether a given thread is a hidden helper thread
4185#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4186 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4187
4188#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4189 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4190
4191#define KMP_HIDDEN_HELPER_TEAM(team) \
4192 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4193
4194// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4195// main thread, is skipped.
4196#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4197 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4198
4199// Return the adjusted gtid value by subtracting from gtid the number
4200// of hidden helper threads. This adjusted value is the gtid the thread would
4201// have received if there were no hidden helper threads.
4202static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4203 int adjusted_gtid = gtid;
4204 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4205 gtid - __kmp_hidden_helper_threads_num >= 0) {
4206 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4207 }
4208 return adjusted_gtid;
4209}
4210
4211// Support for error directive
4212typedef enum kmp_severity_t {
4213 severity_warning = 1,
4214 severity_fatal = 2
4215} kmp_severity_t;
4216extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4217
4218// Support for scope directive
4219KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4220KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4221
4222#ifdef __cplusplus
4223}
4224#endif
4225
4226template <bool C, bool S>
4227extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4228template <bool C, bool S>
4229extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4230template <bool C, bool S>
4231extern void __kmp_atomic_suspend_64(int th_gtid,
4232 kmp_atomic_flag_64<C, S> *flag);
4233extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4234#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4235template <bool C, bool S>
4236extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4237template <bool C, bool S>
4238extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4239template <bool C, bool S>
4240extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4241extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4242#endif
4243template <bool C, bool S>
4244extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4245template <bool C, bool S>
4246extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4247template <bool C, bool S>
4248extern void __kmp_atomic_resume_64(int target_gtid,
4249 kmp_atomic_flag_64<C, S> *flag);
4250extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4251
4252template <bool C, bool S>
4253int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4254 kmp_flag_32<C, S> *flag, int final_spin,
4255 int *thread_finished,
4256#if USE_ITT_BUILD
4257 void *itt_sync_obj,
4258#endif /* USE_ITT_BUILD */
4259 kmp_int32 is_constrained);
4260template <bool C, bool S>
4261int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4262 kmp_flag_64<C, S> *flag, int final_spin,
4263 int *thread_finished,
4264#if USE_ITT_BUILD
4265 void *itt_sync_obj,
4266#endif /* USE_ITT_BUILD */
4267 kmp_int32 is_constrained);
4268template <bool C, bool S>
4269int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4270 kmp_atomic_flag_64<C, S> *flag,
4271 int final_spin, int *thread_finished,
4272#if USE_ITT_BUILD
4273 void *itt_sync_obj,
4274#endif /* USE_ITT_BUILD */
4275 kmp_int32 is_constrained);
4276int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4277 kmp_flag_oncore *flag, int final_spin,
4278 int *thread_finished,
4279#if USE_ITT_BUILD
4280 void *itt_sync_obj,
4281#endif /* USE_ITT_BUILD */
4282 kmp_int32 is_constrained);
4283
4284extern int __kmp_nesting_mode;
4285extern int __kmp_nesting_mode_nlevels;
4286extern int *__kmp_nesting_nth_level;
4287extern void __kmp_init_nesting_mode();
4288extern void __kmp_set_nesting_mode_threads();
4289
4297 FILE *f;
4298
4299 void close() {
4300 if (f && f != stdout && f != stderr) {
4301 fclose(f);
4302 f = nullptr;
4303 }
4304 }
4305
4306public:
4307 kmp_safe_raii_file_t() : f(nullptr) {}
4308 kmp_safe_raii_file_t(const char *filename, const char *mode,
4309 const char *env_var = nullptr)
4310 : f(nullptr) {
4311 open(filename, mode, env_var);
4312 }
4313 ~kmp_safe_raii_file_t() { close(); }
4314
4318 void open(const char *filename, const char *mode,
4319 const char *env_var = nullptr) {
4320 KMP_ASSERT(!f);
4321 f = fopen(filename, mode);
4322 if (!f) {
4323 int code = errno;
4324 if (env_var) {
4325 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4326 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4327 } else {
4328 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4329 __kmp_msg_null);
4330 }
4331 }
4332 }
4335 int try_open(const char *filename, const char *mode) {
4336 KMP_ASSERT(!f);
4337 f = fopen(filename, mode);
4338 if (!f)
4339 return errno;
4340 return 0;
4341 }
4344 void set_stdout() {
4345 KMP_ASSERT(!f);
4346 f = stdout;
4347 }
4350 void set_stderr() {
4351 KMP_ASSERT(!f);
4352 f = stderr;
4353 }
4354 operator bool() { return bool(f); }
4355 operator FILE *() { return f; }
4356};
4357
4358template <typename SourceType, typename TargetType,
4359 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4360 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4361 bool isSourceSigned = std::is_signed<SourceType>::value,
4362 bool isTargetSigned = std::is_signed<TargetType>::value>
4363struct kmp_convert {};
4364
4365// Both types are signed; Source smaller
4366template <typename SourceType, typename TargetType>
4367struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4368 static TargetType to(SourceType src) { return (TargetType)src; }
4369};
4370// Source equal
4371template <typename SourceType, typename TargetType>
4372struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4373 static TargetType to(SourceType src) { return src; }
4374};
4375// Source bigger
4376template <typename SourceType, typename TargetType>
4377struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4378 static TargetType to(SourceType src) {
4379 KMP_ASSERT(src <= static_cast<SourceType>(
4380 (std::numeric_limits<TargetType>::max)()));
4381 KMP_ASSERT(src >= static_cast<SourceType>(
4382 (std::numeric_limits<TargetType>::min)()));
4383 return (TargetType)src;
4384 }
4385};
4386
4387// Source signed, Target unsigned
4388// Source smaller
4389template <typename SourceType, typename TargetType>
4390struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4391 static TargetType to(SourceType src) {
4392 KMP_ASSERT(src >= 0);
4393 return (TargetType)src;
4394 }
4395};
4396// Source equal
4397template <typename SourceType, typename TargetType>
4398struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4399 static TargetType to(SourceType src) {
4400 KMP_ASSERT(src >= 0);
4401 return (TargetType)src;
4402 }
4403};
4404// Source bigger
4405template <typename SourceType, typename TargetType>
4406struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4407 static TargetType to(SourceType src) {
4408 KMP_ASSERT(src >= 0);
4409 KMP_ASSERT(src <= static_cast<SourceType>(
4410 (std::numeric_limits<TargetType>::max)()));
4411 return (TargetType)src;
4412 }
4413};
4414
4415// Source unsigned, Target signed
4416// Source smaller
4417template <typename SourceType, typename TargetType>
4418struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4419 static TargetType to(SourceType src) { return (TargetType)src; }
4420};
4421// Source equal
4422template <typename SourceType, typename TargetType>
4423struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4424 static TargetType to(SourceType src) {
4425 KMP_ASSERT(src <= static_cast<SourceType>(
4426 (std::numeric_limits<TargetType>::max)()));
4427 return (TargetType)src;
4428 }
4429};
4430// Source bigger
4431template <typename SourceType, typename TargetType>
4432struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4433 static TargetType to(SourceType src) {
4434 KMP_ASSERT(src <= static_cast<SourceType>(
4435 (std::numeric_limits<TargetType>::max)()));
4436 return (TargetType)src;
4437 }
4438};
4439
4440// Source unsigned, Target unsigned
4441// Source smaller
4442template <typename SourceType, typename TargetType>
4443struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4444 static TargetType to(SourceType src) { return (TargetType)src; }
4445};
4446// Source equal
4447template <typename SourceType, typename TargetType>
4448struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4449 static TargetType to(SourceType src) { return src; }
4450};
4451// Source bigger
4452template <typename SourceType, typename TargetType>
4453struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4454 static TargetType to(SourceType src) {
4455 KMP_ASSERT(src <= static_cast<SourceType>(
4456 (std::numeric_limits<TargetType>::max)()));
4457 return (TargetType)src;
4458 }
4459};
4460
4461template <typename T1, typename T2>
4462static inline void __kmp_type_convert(T1 src, T2 *dest) {
4463 *dest = kmp_convert<T1, T2>::to(src);
4464}
4465
4466#endif /* KMP_H */
void set_stdout()
Definition: kmp.h:4344
void set_stderr()
Definition: kmp.h:4350
int try_open(const char *filename, const char *mode)
Definition: kmp.h:4335
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition: kmp.h:4318
struct ident ident_t
@ KMP_IDENT_KMPC
Definition: kmp.h:196
@ KMP_IDENT_IMB
Definition: kmp.h:194
@ KMP_IDENT_WORK_LOOP
Definition: kmp.h:214
@ KMP_IDENT_BARRIER_IMPL
Definition: kmp.h:205
@ KMP_IDENT_WORK_SECTIONS
Definition: kmp.h:216
@ KMP_IDENT_AUTOPAR
Definition: kmp.h:199
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition: kmp.h:223
@ KMP_IDENT_WORK_DISTRIBUTE
Definition: kmp.h:218
@ KMP_IDENT_BARRIER_EXPL
Definition: kmp.h:203
@ KMP_IDENT_ATOMIC_REDUCE
Definition: kmp.h:201
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition: kmp.h:1595
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int sched, kmp_uint64 grainsize, int modifier, void *task_dup)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
void(* kmpc_dtor)(void *)
Definition: kmp.h:1619
void *(* kmpc_cctor)(void *, void *)
Definition: kmp.h:1626
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition: kmp.h:1648
void *(* kmpc_ctor)(void *)
Definition: kmp.h:1613
void *(* kmpc_ctor_vec)(void *, size_t)
Definition: kmp.h:1636
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition: kmp.h:1642
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st)
sched_type
Definition: kmp.h:357
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid, kmp_critical_name *, uint32_t hint)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
void __kmpc_doacross_init(ident_t *loc, int gtid, int num_dims, const struct kmp_dim *dims)
int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint32 *p_lb, kmp_uint32 *p_ub, kmp_int32 *p_st)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_uint64 *p_lb, kmp_uint64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid)
int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st)
void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk)
void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk)
void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid)
void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int64 lb, kmp_int64 ub, kmp_int64 st, kmp_int64 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition: kmp.h:408
@ kmp_sch_runtime_simd
Definition: kmp.h:379
@ kmp_nm_ord_auto
Definition: kmp.h:427
@ kmp_sch_auto
Definition: kmp.h:364
@ kmp_nm_auto
Definition: kmp.h:410
@ kmp_distribute_static_chunked
Definition: kmp.h:395
@ kmp_sch_static
Definition: kmp.h:360
@ kmp_sch_guided_simd
Definition: kmp.h:378
@ kmp_sch_modifier_monotonic
Definition: kmp.h:445
@ kmp_sch_default
Definition: kmp.h:465
@ kmp_sch_modifier_nonmonotonic
Definition: kmp.h:447
@ kmp_nm_ord_static
Definition: kmp.h:423
@ kmp_distribute_static
Definition: kmp.h:396
@ kmp_sch_guided_chunked
Definition: kmp.h:362
@ kmp_nm_static
Definition: kmp.h:406
@ kmp_sch_lower
Definition: kmp.h:358
@ kmp_nm_upper
Definition: kmp.h:429
@ kmp_ord_lower
Definition: kmp.h:384
@ kmp_ord_static
Definition: kmp.h:386
@ kmp_sch_upper
Definition: kmp.h:382
@ kmp_ord_upper
Definition: kmp.h:392
@ kmp_nm_lower
Definition: kmp.h:402
@ kmp_ord_auto
Definition: kmp.h:390
Definition: kmp.h:234
kmp_int32 reserved_1
Definition: kmp.h:235
char const * psource
Definition: kmp.h:244
kmp_int32 reserved_2
Definition: kmp.h:238
kmp_int32 reserved_3
Definition: kmp.h:243
kmp_int32 flags
Definition: kmp.h:236