ERLANG

Dialyzer

Copyright © 2006-2022 Ericsson AB. All Rights Reserved.
Dialyzer 5.0

March 24, 2022

Copyright © 2006-2022 Ericsson AB. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless
required by applicable law or agreed to in writing, software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See

the License for the specific language governing permissions and limitations under the License. Ericsson AB. All
Rights Reserved..

March 24, 2022

1.1 Dialyzer

1 Dialyzer User's Guide

1.1 Dialyzer

1.1.1 Introduction

Scope

Dialyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer can be called from the command line, from Erlang, and from a GUI.

Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

1.1.2 The Persistent Lookup Table

Dialyzer stores the result of an analysisin a Persistent Lookup Table (PLT). The PLT can then be used as a starting
point for later analyses. It is recommended to build a PLT with the Erlang/OTP applications that you are using, but
also to include your own applications that you are using frequently.

ThePLT isbuilt using option - - bui | d_pl t to Dialyzer. The following command builds the recommended minimal
PLT for Erlang/OTP:

dialyzer --build_plt --apps erts kernel stdlib mesia

Didyzer looks if there is an environment variable called DI ALYZER PLT and places the PLT at this
location. If no such variable is set, Dialyzer places the PLT in a file caled .diadyzer_plt in the
fil enane: basedi r (user_cache, "erl ang") folder. The placement can also be specified using the options
--plt or--output_plt.

Information can be added to an existing PLT using option - - add_t o_pl t . If you also want to include the Erlang
compilerinthe PLT and placeit in anew PLT, then use the following command:

di al yzer --add_to_plt --apps conpiler --output_plt my.plt

Then you can add your favorite application my_app to the new PLT:
dialyzer --add_to_plt --plt my.plt -r ny_app/ebin

But you realize that it is unnecessary to have the Erlang compiler in this one:
di al yzer --renove_fromplt --plt my.plt --apps conpiler

Later, when you have fixed a bug in your application my_app, you want to update the PLT so that it becomes fresh
the next time you run Dialyzer. In this case, run the following command:

di al yzer --check_plt --plt ny.plt

Ericsson AB. All Rights Reserved.: Dialyzer | 1

1.1 Dialyzer

Dialyzer then reanalyzes the changed files and the files that depend on these files. Notice that this consistency check
is performed automatically the next time you run Dialyzer with this PLT. Option - - check_pl t isonly for doing
so without doing any other analysis.

To get information about a PLT, use the following option:
dialyzer --plt_info
To specify which PLT, use option - - pl t .
To get the output printed to afile, use option - - out put _fil e.
Notice that when manipulating the PLT, no warnings are emitted. To turn on warnings during (re)analysis of the PLT,
useoption - - get _war ni ngs.
1.1.3 Using Dialyzer from the Command Line

Diayzer has acommand-line version for automated use. Seedi al yzer (3) .

1.1.4 Using Dialyzer from Erlang
Diayzer can aso be used directly from Erlang. Seedi al yzer (3).

1.1.5 Using Dialyzer from the GUI

Choosing the Applications or Modules

The File window displays a listing of the current directory. Click your way to the directoriesymodules you want to
add or type the correct path in the entry.

Mark the directoriesymodules you want to analyze for discrepancies and click Add. You can either add the . beam
and . er| filesdirectly, or add directories that contain these kind of files. Notice that you are only allowed to add
the type of files that can be analyzed in the current mode of operation (see below), and that you cannot mix . beam
and. erl files.

Analysis Modes

Dialyzer has two analysis modes: "Byte Code" and "Source Code". They are controlled by the buttons in the top-
middle part of the main window, under Analysis Options.

Controlling the Discrepancies Reported by Dialyzer

Under the War nings pull-down menu, there are buttons that control which discrepancies are reported to the user in the
War nings window. By clicking these buttons, you can enable/disable a whole class of warnings. Information about
the classes of warningsis found on the "Warnings' item under the Help menu (in the rightmost top corner).

If modulesare compiled with inlining, spuriouswarnings can be emitted. Inthe Options menu you can choosetoignore
inline-compiled modules when analyzing byte code. When starting from source code, this is not a problem because
inlining isexplicitly turned off by Dialyzer. The option causes Dialyzer to suppress all warnings from inline-compiled
modules, asthereis currently no way for Dialyzer to find what parts of the code have been produced by inlining.

Running the Analysis

Once you have chosen the modules or directories you want to analyze, click the Run button to start the analysis. If
you for some reason want to stop the analysis while it is running, click the Stop button.

Theinformation from the analysisis displayed in the L og window and the War nings window.

2 | Ericsson AB. All Rights Reserved.: Dialyzer

1.1 Dialyzer

Include Directories and Macro Definitions

When analyzing from source, you might haveto supply Dialyzer with alist of include directories and macro definitions
(as you can do withtheer | ¢ flags- 1 and - D). This can be done either by starting Dialyzer with these flags from
the command line asin:

di al yzer -1 ny_includes -DDEBUG -Dvsn=42 -1 one_nore_dir

or by adding these explicitly using submenu Manage Macro Definitions or Manage Include Directories in the
Options menu.

Saving the Information on the Log and Warnings Windows

The File menu includes options to save the contents of the L og window and the War nings window. Simply choose
the options and enter the file to save the contentsin.

There are also buttons to clear the contents of each window.

Inspecting the Inferred Types of the Analyzed Functions

Diayzer storestheinformation of the analyzed functionsin aPersistent Lookup Table (PLT), see section The Persistent
Lookup Table.

After an analysis, you can inspect this information. In the PLT menu you can choose to either search the PLT or
inspect the contents of the whole PLT. The information is presented in EDoc format.

1.1.6 Feedback and Bug Reports

Wevery much welcome user feedback - even wishlists! If you notice anything weird, especialy if Dialyzer reportsany
discrepancy that is afalse positive, please send an error report describing the symptoms and how to reproduce them.

Ericsson AB. All Rights Reserved.: Dialyzer | 3

1.1 Dialyzer

2 Reference Manual

4 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

dialyzer

Erlang module

Didyzer isastatic analysistool that i dentifies software discrepancies, such as definitetype errors, code that hasbecome
dead or unreachable because of programming error, and unnecessary tests, in single Erlang modules or entire (sets
of) applications.

Dialyzer starts its analysis from either debug-compiled BEAM bytecode or from Erlang source code. The file and
line number of adiscrepancy is reported along with an indication of what the discrepancy is about. Dialyzer bases its
analysis on the concept of success typings, which alows for sound warnings (no false positives).

Using Dialyzer from the Command Line

Diayzer has acommand-line version for automated use. This section provides a brief description of the options. The
same information can be obtained by writing the following in a shell:

di al yzer --help

For more details about the operation of Dialyzer, see section Using Dialyzer from the GUI in the User's Guide.
Exit status of the command-line version:
0

No problems were found during the analysis and no warnings were emitted.
Problems were found during the analysis.

No problems were found during the analysis, but warnings were emitted.

Usage:
dialyzer [--add_to_plt] [--apps applications] [--build_plt]
[--check_plt] [-Ddefine]* [-Dnane]* [--dunp_callgraph file]
[--error_location flag] [files_or_dirs] [--fullpath]

[--get _warnings] [--qui] [--help] [-I include_dir]*
[--no_check_plt] [--no_indentation] [-o0 outfile]
[--output_plt file] [-pa dir]* [--plt plt] [--plt_info]
[--plts plt*] [--quiet] [-r dirs] [--raw] [--rermove_fromplt]
[--shell] [--src] [--statistics] [--verbose] [--version]

[- Whar n] *

* denotes that multiple occurrences of the option are possible. ‘

Options of the command-line version:
--add to_plt

ThePLT isextended to also include thefiles specified with- ¢ and - r . Use- - pl t to specify which PLT to start
from, and - - out put _pl t to specify whereto put the PLT. Notice that the analysis possibly can include files
from the PLT if they depend on the new files. This option only works for BEAM files.

Ericsson AB. All Rights Reserved.: Dialyzer | 5

dialyzer

--apps applications
Thisoption istypically used when building or modifyingaPLT asin:

dialyzer --build_plt --apps erts kernel stdlib mesia ...

to refer conveniently to library applications corresponding to the Erlang/OTP installation. However, this option
is general and can also be used during analysisto refer to Erlang/OTP applications. File or directory names can
aso beincluded, asin:

di al yzer --apps inets ssl ./ebin ../other_Ilib/ebin/m_nodul e. beam

--build plt

Theanalysis startsfrom an empty PLT and creates anew one from thefiles specified with - ¢ and - r . Thisoption
only works for BEAM files. To override the default PLT location, use- - pl t or - - out put _plt.

--check_plt

Check the PLT for consistency and rebuild it if it is not up-to-date.
- Dnan® (or - Dnane=val ue)

When analyzing from source, pass the define to Dialyzer. (**)
--dunp_cal | graph file

Dump the call graph into the specified file whose format is determined by the filename extension. Supported
extensionsare: r aw, dot , and ps. If something elseis used as filename extension, default format . r awis used.

--error_location colum | line

Useapair { Li ne, Col umm} or aninteger Li ne to pinpoint the location of warnings. The default isto use a
pair { Li ne, Col utm} . When formatted, the line and the column are separated by a colon.

files_or_dirs (for backward compatibility alsoas-c files_or_dirs)

Use Diayzer from the command line to detect defects in the specified files or directories containing . er| or
. beamfiles, depending on the type of the analysis.

--full path
Display the full path names of files for which warnings are emitted.
--get _war ni ngs

Make Dialyzer emit warnings even when manipulating the PLT. Warnings are only emitted for files that are
analyzed.

- - gui
Usethe GUI.
--hel p (or-h)
Print this message and exit.
-1 include_dir
When analyzing from source, passthei ncl ude_di r to Dialyzer. (**)
--no_check _plt
Skip the PLT check when running Dialyzer. Thisis useful when working with installed PL Ts that never change.
--no_i ndentation

Do not insert line breaks in types, contracts, and Erlang Code when formatting warnings.

6 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

-0 outfile(or--output outfile)

When using Dialyzer from the command line, send the analysis results to the specified outfile rather than to
st dout .

--output_plt file

Storethe PLT at the specified file after building it.
-pa dir

Includedi r inthepath for Erlang. Thisis useful when analyzing filesthat have- i ncl ude_Ii b() directives.
--plt plt

Usethe specified PLT astheinitial PLT. If the PLT was built during setup, the files are checked for consistency.
--plt_info

Make Dialyzer print information about the PLT and then quit. The PLT can be specified with--pl t (s) .
--plts plt*

Merge the specified PLTsto create theinitial PLT. This requires that the PLTs are digoint (that is, do not have
any module appearing in more than one PLT). The PLTs are created in the usual way:

dialyzer --build_plt --output_plt plt_1 files_to_include
dialyzer --build_plt --output_plt plt_n files_to_include

They can then be used in either of the following ways:

dialyzer files_to_analyze --plts plt_1 ... plt_n
or
dialyzer --plts plt_1 ... plt_n -- files_to_analyze

Noticethe - - delimiter in the second case.
--quiet (or-q)

Make Dialyzer a bit more quiet.
-r dirs

Sameasfil es_or _dirs, but the specified directories are searched recursively for subdirectories containing
. erl or. beamfilesinthem, depending on the type of analysis.

--raw

When using Dialyzer from the command line, output the raw analysis results (Erlang terms) instead of the
formatted result. The raw format is easier to post-process (for example, to filter warnings or to output HTML
pages).

--renove_fromplt

The information from the files specified with - ¢ and - r isremoved from the PLT. Notice that this can cause a
reanalysis of the remaining dependent files.

--shel |
Do not disable the Erlang shell while running the GUI.
--src

Override the default, which isto analyze BEAM files, and analyze starting from Erlang source code instead.

Ericsson AB. All Rights Reserved.: Dialyzer | 7

dialyzer

--statistics

Print information about the progress of execution (analysis phases, time spent in each, and size of the relative
input).

--verbose

Make Dialyzer a bit more verbose.
--version (or-v)

Print the Dialyzer version and some more information and exit.
- Whar n

A family of options that selectively turn on/off warnings. (For help on the names of warnings, use di al yzer
- Whel p.) Notice that the options can also be specified in the file with a- di al yzer () attribute. For details,
see section Requesting or Suppressing Warnings in Source Files.

** options- Dand - | work both from the command line and in the Dialyzer GUI; the syntax of definesand includes
isthe same as that used by erlc(1).

Warning options:
-Werror_handl i ng (***)

Include warnings for functions that only return by an exception.
-\Wextra_return (***)

Warn about functions that return values that are not part of the specification.
-Wh ssi ng_return (***)

Warn about functions whose specification includes types that the function cannot return.
-Who_behavi our s

Suppress warnings about behavior callbacks that drift from the published recommended interfaces.
-Who_contracts

Suppress warnings about invalid contracts.
-Who_fail _call

Suppress warnings for failing calls.
-Who_fun_app

Suppress warnings for fun applications that will fail.
-Who_i nproper _lists

Suppress warnings for construction of improper lists.
-Who_nmt ch

Suppress warnings for patterns that are unused or cannot match.
-Who_nmi ssing_calls

Suppress warnings about calls to missing functions.
- Who_opaque

Suppress warnings for violations of opacity of data types.

8 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

-Who_return

Suppress warnings for functions that will never return avalue.
-Who_undefined_cal | backs

Suppress warnings about behaviors that have no - cal | back attributes for their callbacks.
-Who_unused

Suppress warnings for unused functions.
-Winder specs (***)

Warn about underspecified functions (the specification is strictly more allowing than the success typing).
- Winknown (***)

L et warnings about unknown functions and types affect the exit status of the command-line version. The default
isto ignore warnings about unknown functions and types when setting the exit status. When using Dialyzer from
Erlang, warnings about unknown functions and types are returned; the default is not to return these warnings.

-Winmat ched_r et ur ns (***)

Include warnings for function calls that ignore a structured return value or do not match against one of many
possible return values. However, no warnings are included if the possible return values are a union of atoms or
aunion of numbers.

The following options are also available, but their use is not recommended (they are mostly for Dialyzer developers
and internal debugging):

-Wiver specs (***)

Warn about overspecified functions (the specification is strictly less allowing than the success typing).
-Wspecdi ffs (***)
Warn when the specification is different than the success typing.

*** denotes options that turn on warnings rather than turning them off.

The following option is not strictly needed as it specifies the default. It is primarily intended to be used with the -
di al yzer attribute. For an example see section Requesting or Suppressing Warnings in Source Files.

-Who_under specs
Suppress warnings about underspecified functions (the specification is strictly more alowing than the success
typing).
-Who_extra_return
Suppress warnings about functions that return values that are not part of the specification.
-Who_mi ssing_return
Suppress warnings about functions whose specification includes types that the function cannot return.

Using Dialyzer from Erlang

Dialyzer can be used directly from Erlang. Both the GUI and the command-line versionsare also available. The options
are similar to the ones given from the command line, see section Using Dialyzer from the Command Line.

Ericsson AB. All Rights Reserved.: Dialyzer | 9

dialyzer

Default Dialyzer Options

The (host operating system) environment variable ERL_COVPI LER_OPTI ONS can be used to give default Dialyzer
options. Its value must be avalid Erlang term. If thevalueisalist, itisused asis. If itisnot alist, itisputinto alist.

Thelist is appended to any options given to run/1 or on the command line.
Thelist can be retrieved with compile:env_compiler_options/0.

Currently the only option used istheer r or _| ocat i on option.

Requesting or Suppressing Warnings in Source Files

Attribute- di al yzer () canbeusedfor turning off warningsin amodul e by specifying functions or warning options.
For example, to turn off al warnings for the function f / 0, include the following line:

-dial yzer ({nowarn_function, f/0}).
To turn off warnings for improper lists, add the following line to the source file:
-dialyzer(no_inproper_lists).
Attribute- di al yzer () isalowed after function declarations. Lists of warning options or functions are allowed:
-di alyzer ([{nowarn_function, [f/0]}, no_inproper_lists]).
Warning options can be restricted to functions:
-di al yzer ({no_i nproper_lists, g/0}).
-dialyzer({[no_return, no_match], [g/0, h/0]}).

Thewarning option for underspecified functions, - Winder specs, can result in useful warnings, but often functions
with specificationsthat are strictly more allowing than the success typing cannot easily be modified to belessallowing.
To turn off the warning for underspecified function f / 0, include the following line:

-di al yzer ({no_underspecs, f/0}).

For help on the warning options, use di al yzer -Wel p. The options are aso enumerated, see type
war n_option().

‘Warning option - W ace_condi t i ons has no effect when set in source files. ‘

Attribute- di al yzer () canalso beused for turning on warnings. For example, if amodule has been fixed regarding
unmatched returns, adding the following line can help in assuring that no new unmatched return warnings are
introduced:

-di al yzer (unmat ched_r et urns).

Data Types

dial _option() =
{files, [FileNane :: file:filenanme()]} |
{files_rec, [DirNanme :: file:filename()]} |
{defines, [{Macro :: aton(), Value :: term()}]} |
{from src_code | byte_code} |

10 | Ericsson AB. All Rights Reserved.: Dialyzer

dialyzer

{init _plt, FileName :: file:filenane()}
{plts, [FileNane :: file:filenanme()]}
{include dirs, [DirNane :: file:filenanme()]}
{output file, FileName :: file:filenane()}
{output _plt, FileNane :: file:filenane()}
{check_plt, boolean()}
{anal ysi s_type,

succ_typings | plt_add | plt_build | plt_check | plt_renove}
{warni ngs, [warn_option()]}
{get war ni ngs, bool ean()}
{error _location, error_location()}

Option f r omdefaultsto byt e_code. Optionsi nit _pl t and pl t s change the default.

dial _warn_tag() =
war n_behavi our | warn_bin_construction | warn_call graph
warn_contract _not_equal | warn_contract_range
war n_contract _subtype | warn_contract_supertype
war n_contract_syntax | warn_contract_types
warn_failing_call | warn_fun_app | warn_nmap_construction
war n_mat ching | warn_non_proper_list | warn_not_called
warn_opaque | warn_return_no_exit | warn_return_only_exit
war n_undefi ned_cal | backs | warn_unknown | warn_umat ched_return
dial _warning() =
{Tag :: dial_warn_tag(),

Id :: file_location(),
Msg :: {aton(), [term()]}}
error_location() = colum | line

If the value of thisoptionis| i ne, aninteger Li ne isused as Locat i on in messages. If the valueis col um, a
pair { Li ne, Col um} isused asLocati on. Thedefaultiscol um.
file_ location() =
{File :: file:filenane(), Location :: erl_anno:location()}
warn_option() =
error_handling | no_behaviours | no_contracts | no_fail _call
no_fun_app | no_inproper_lists | no_match | no_missing_calls
no_opaque | no_return | no_undefined_cal |l backs
no_under specs | no_unused | underspecs | unknown
unmat ched_returns | overspecs | specdiffs

See section Warning options for a description of the warning options.

Exports

f or mat _war ni ng(Warni ngs) -> string()
Types:

War ni ngs = di al _warni ng()
Get a string from warnings as returned by r un/ 1.

format _war ni ng(War ni ngs, Options) -> string()
Types:

Ericsson AB. All Rights Reserved.: Dialyzer | 11

dialyzer

War ni ngs = di al _warni ng()
Options = filename_opt() | [format_option()]
format _option() =
{i ndent _opt, boolean()} |
{filename_opt, filename_opt()} |
{error_location, error_location()}
filenane_opt() = basenane | fullpath

Get astring from warnings as returned by r un/ 1.

If i ndent _opt issettotrue (default), line breaks are inserted in types, contracts, and Erlang code to improve
readability.

If error_l ocationissettocol um (default), locations are formatted as Li ne: Col umm if the column number
isavailable, otherwise locations are formatted as Li ne even if the column number is available.

gui () -> ok
gui (Options) -> ok
Types:

Options = [dial _option()]
Diayzer GUI version.

plt_info(PlIt) -> {ok, Result} | {error, Reason}
Types:

Plt = file:filename()

Result = [{files, [file:filename()]}]

Reason = not_valid | no_such_file | read_error

Returns information about the specified PLT.

run(Options) -> Warnings

Types:
Options = [dial _option()]
Warni ngs = [dial _warning()]

Dialyzer command-line version.

12 | Ericsson AB. All Rights Reserved.: Dialyzer

typer

typer

Command

TypEr showstypeinformation for Erlang modules to the user. Additionally, it can annotate the code of files with such
type information.
Using TypEr from the Command Line

TypEr isused from the command-line. This section provides a brief description of the options. The same information
can be obtained by writing the following in a shell:

typer --help
Usage:
typer [--help] [--version] [--plt PLT] [--edoc]

--show | --showexported | --annotate | --annotate-inc-files]
-Ddefine]l]* [-1 include_dir]* [-pa dir]* [-pz dir]*
-T application]* file* [-r directory*]

—— ——

* denotes that multiple occurrences of the option are possible.

Options:
-r
Search directories recursively for .erl files below them. If alist of filesis given, this must be after them.
- - show
Print type specificationsfor all functionson stdout. (Thisisthe default behaviour; thisoptionisnot really needed.)
- -show export ed (or show_export ed)

Sameas - - show, but print specifications for exported functions only. Specs are displayed sorted a phabetically
on the function's name.

--annot ate
Annotate the specified files with type specifications.
--annotate-inc-files

Sameas- - annot at e but annotatesall - i ncl ude() filesaswell asall .erl files. (Usethisoption with caution
- it has not been tested much).

- - edoc

Print type information as Edoc @ pec comments, not as type Specs.
--plt

Use the specified dialyzer PLT file rather than the default one.
-T file*

The specified file(s) already contain type specifications and these are to be trusted in order to print specs for the
rest of thefiles. (Multiplefiles or dirs, separated by spaces, can be specified.)

Ericsson AB. All Rights Reserved.: Dialyzer | 13

typer

- Dnane (or - Dname=val ue)

Pass the defined name(s) to TypEr. (**)
-1

Pass the include _dir to TypEr. (**)
-pa dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have- i ncl ude_1i b() directives
or use parse transforms.

-pz dir

Includedi r inthe path for Erlang. Thisis useful when analyzing filesthat have-i ncl ude_I i b() directives
or use parse transforms.

--version (or-v)

Print the TypEr version and some more information and exit.

** options- Dand - | work both from the command line and in the TypEr GUI; the syntax of defines and includes
isthe same as that used by erlc(1).

14 | Ericsson AB. All Rights Reserved.: Dialyzer

	Dialyzer
	Dialyzer User's Guide
	Dialyzer
	Introduction
	Scope
	Prerequisites

	The Persistent Lookup Table
	Using Dialyzer from the Command Line
	Using Dialyzer from Erlang
	Using Dialyzer from the GUI
	Choosing the Applications or Modules
	Analysis Modes
	Controlling the Discrepancies Reported by Dialyzer
	Running the Analysis
	Include Directories and Macro Definitions
	Saving the Information on the Log and Warnings Windows
	Inspecting the Inferred Types of the Analyzed Functions

	Feedback and Bug Reports

	Reference Manual
	dialyzer
	format_warning/1
	format_warning/2
	gui/0
	gui/1
	plt_info/1
	run/1

	typer

