Library AAC_tactics.Utils
From Coq Require Import Arith NArith List.
From Coq Require Import FMapPositive FMapFacts RelationClasses Equality.
Set Implicit Arguments.
Set Asymmetric Patterns.
Utilities for positive numbers
- indices for morphisms and symbols
- multiplicity of terms in sums
Notation idx := positive.
Fixpoint eq_idx_bool i j :=
match i,j with
| xH, xH ⇒ true
| xO i, xO j ⇒ eq_idx_bool i j
| xI i, xI j ⇒ eq_idx_bool i j
| _, _ ⇒ false
end.
Fixpoint idx_compare i j :=
match i,j with
| xH, xH ⇒ Eq
| xH, _ ⇒ Lt
| _, xH ⇒ Gt
| xO i, xO j ⇒ idx_compare i j
| xI i, xI j ⇒ idx_compare i j
| xI _, xO _ ⇒ Gt
| xO _, xI _ ⇒ Lt
end.
Notation pos_compare := idx_compare (only parsing).
Specification predicate for boolean binary functions
Inductive decide_spec {A} {B} (R : A → B → Prop) (x : A) (y : B) : bool → Prop :=
| decide_true : R x y → decide_spec R x y true
| decide_false : ~(R x y) → decide_spec R x y false.
Lemma eq_idx_spec : ∀ i j, decide_spec (@eq _) i j (eq_idx_bool i j).
Proof.
induction i; destruct j; simpl; try (constructor; congruence).
case (IHi j); constructor; congruence.
case (IHi j); constructor; congruence.
Qed.
| decide_true : R x y → decide_spec R x y true
| decide_false : ~(R x y) → decide_spec R x y false.
Lemma eq_idx_spec : ∀ i j, decide_spec (@eq _) i j (eq_idx_bool i j).
Proof.
induction i; destruct j; simpl; try (constructor; congruence).
case (IHi j); constructor; congruence.
case (IHi j); constructor; congruence.
Qed.
weak specification predicate for comparison functions: only the 'Eq' case is specified
Inductive compare_weak_spec A: A → A → comparison → Prop :=
| pcws_eq: ∀ i, compare_weak_spec i i Eq
| pcws_lt: ∀ i j, compare_weak_spec i j Lt
| pcws_gt: ∀ i j, compare_weak_spec i j Gt.
Lemma pos_compare_weak_spec: ∀ i j, compare_weak_spec i j (pos_compare i j).
Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.
Lemma idx_compare_reflect_eq: ∀ i j, idx_compare i j = Eq → i=j.
Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.
| pcws_eq: ∀ i, compare_weak_spec i i Eq
| pcws_lt: ∀ i j, compare_weak_spec i j Lt
| pcws_gt: ∀ i j, compare_weak_spec i j Gt.
Lemma pos_compare_weak_spec: ∀ i j, compare_weak_spec i j (pos_compare i j).
Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.
Lemma idx_compare_reflect_eq: ∀ i j, idx_compare i j = Eq → i=j.
Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.
Notation cast T H u := (eq_rect _ T u _ H).
Section dep.
Variable U: Type.
Variable T: U → Type.
Lemma cast_eq: (∀ u v: U, {u=v}+{u≠v}) →
∀ A (H: A=A) (u: T A), cast T H u = u.
Proof. intros. rewrite <- Eqdep_dec.eq_rect_eq_dec; trivial. Qed.
Variable f: ∀ A B, T A → T B → comparison.
Definition reflect_eqdep := ∀ A u B v (H: A=B), @f A B u v = Eq → cast T H u = v.
Lemma reflect_eqdep_eq: reflect_eqdep →
∀ A u v, @f A A u v = Eq → u = v.
Proof. intros H A u v He. apply (H _ _ _ _ eq_refl He). Defined.
Lemma reflect_eqdep_weak_spec: reflect_eqdep →
∀ A u v, compare_weak_spec u v (@f A A u v).
Proof.
intros. case_eq (f u v); try constructor.
intro H'. apply reflect_eqdep_eq in H'. subst. constructor. assumption.
Defined.
End dep.
#[universes(template)]
Inductive nelist (A : Type) : Type :=
| nil : A → nelist A
| cons : A → nelist A → nelist A.
Register nil as aac_tactics.nelist.nil.
Register cons as aac_tactics.nelist.cons.
Notation "x :: y" := (cons x y).
Fixpoint nelist_map (A B: Type) (f: A → B) l :=
match l with
| nil x ⇒ nil ( f x)
| cons x l ⇒ cons ( f x) (nelist_map f l)
end.
Fixpoint appne A l l' : nelist A :=
match l with
nil x ⇒ cons x l'
| cons t q ⇒ cons t (appne A q l')
end.
Notation "x ++ y" := (appne x y).
finite multisets are represented with ordered lists with multiplicities
lexicographic composition of comparisons (this is a notation to keep it lazy)
comparison functions
Section c.
Variables A B: Type.
Variable compare: A → B → comparison.
Fixpoint list_compare h k :=
match h,k with
| nil x, nil y ⇒ compare x y
| nil x, _ ⇒ Lt
| _, nil x ⇒ Gt
| u::h, v::k ⇒ lex (compare u v) (list_compare h k)
end.
End c.
Definition mset_compare A B compare: mset A → mset B → comparison :=
list_compare (fun un vm ⇒
let '(u,n) := un in
let '(v,m) := vm in
lex (compare u v) (pos_compare n m)).
Section list_compare_weak_spec.
Variable A: Type.
Variable compare: A → A → comparison.
Hypothesis Hcompare: ∀ u v, compare_weak_spec u v (compare u v).
Lemma list_compare_weak_spec: ∀ h k,
compare_weak_spec h k (list_compare compare h k).
Proof.
induction h as [|u h IHh]; destruct k as [|v k]; simpl; try constructor.
case (Hcompare a a0 ); try constructor.
case (Hcompare u v ); try constructor.
case (IHh k); intros; constructor.
Defined.
End list_compare_weak_spec.
Section mset_compare_weak_spec.
Variable A: Type.
Variable compare: A → A → comparison.
Hypothesis Hcompare: ∀ u v, compare_weak_spec u v (compare u v).
Lemma mset_compare_weak_spec: ∀ h k,
compare_weak_spec h k (mset_compare compare h k).
Proof.
apply list_compare_weak_spec.
intros [u n] [v m].
case (Hcompare u v); try constructor.
case (pos_compare_weak_spec n m); try constructor.
Defined.
End mset_compare_weak_spec.
(sorted) merging functions
Section m.
Variable A: Type.
Variable compare: A → A → comparison.
Definition insert n1 h1 :=
let fix insert_aux l2 :=
match l2 with
| nil (h2,n2) ⇒
match compare h1 h2 with
| Eq ⇒ nil (h1,Pplus n1 n2)
| Lt ⇒ (h1,n1):: nil (h2,n2)
| Gt ⇒ (h2,n2):: nil (h1,n1)
end
| (h2,n2)::t2 ⇒
match compare h1 h2 with
| Eq ⇒ (h1,Pplus n1 n2):: t2
| Lt ⇒ (h1,n1)::l2
| Gt ⇒ (h2,n2)::insert_aux t2
end
end
in insert_aux.
Fixpoint merge_msets l1 :=
match l1 with
| nil (h1,n1) ⇒ fun l2 ⇒ insert n1 h1 l2
| (h1,n1)::t1 ⇒
let fix merge_aux l2 :=
match l2 with
| nil (h2,n2) ⇒
match compare h1 h2 with
| Eq ⇒ (h1,Pplus n1 n2) :: t1
| Lt ⇒ (h1,n1):: merge_msets t1 l2
| Gt ⇒ (h2,n2):: l1
end
| (h2,n2)::t2 ⇒
match compare h1 h2 with
| Eq ⇒ (h1,Pplus n1 n2)::merge_msets t1 t2
| Lt ⇒ (h1,n1)::merge_msets t1 l2
| Gt ⇒ (h2,n2)::merge_aux t2
end
end
in merge_aux
end.
Definition reduce_mset: mset A → mset A := nelist_map (fun x ⇒ (fst x,xH)).
interpretation of a list with a constant and a binary operation
Variable B: Type.
Variable map: A → B.
Variable b2: B → B → B.
Fixpoint fold_map l :=
match l with
| nil x ⇒ map x
| u::l ⇒ b2 (map u) (fold_map l)
end.
mapping and merging
Variable merge: A → nelist B → nelist B.
Fixpoint merge_map (l: nelist A): nelist B :=
match l with
| nil x ⇒ nil (map x)
| u::l ⇒ merge u (merge_map l)
end.
Variable ret : A → B.
Variable bind : A → B → B.
Fixpoint fold_map' (l : nelist A) : B :=
match l with
| nil x ⇒ ret x
| u::l ⇒ bind u (fold_map' l)
end.
End m.
End lists.