Library AAC_tactics.Utils


Require Import Arith NArith.
Require Import List.
Require Import FMapPositive FMapFacts.
Require Import RelationClasses Equality.

Set Implicit Arguments.
Set Asymmetric Patterns.

Utilities for positive numbers

which we use as:
  • indices for morphisms and symbols
  • multiplicity of terms in sums

Notation idx := positive.

Fixpoint eq_idx_bool i j :=
  match i,j with
    | xH, xHtrue
    | xO i, xO jeq_idx_bool i j
    | xI i, xI jeq_idx_bool i j
    | _, _false
  end.

Fixpoint idx_compare i j :=
  match i,j with
    | xH, xHEq
    | xH, _Lt
    | _, xHGt
    | xO i, xO jidx_compare i j
    | xI i, xI jidx_compare i j
    | xI _, xO _Gt
    | xO _, xI _Lt
  end.

Notation pos_compare := idx_compare (only parsing).

Specification predicate for boolean binary functions
Inductive decide_spec {A} {B} (R : A B Prop) (x : A) (y : B) : bool Prop :=
| decide_true : R x y decide_spec R x y true
| decide_false : ~(R x y) decide_spec R x y false.

Lemma eq_idx_spec : i j, decide_spec (@eq _) i j (eq_idx_bool i j).
Proof.
  induction i; destruct j; simpl; try (constructor; congruence).
   case (IHi j); constructor; congruence.
   case (IHi j); constructor; congruence.
Qed.

weak specification predicate for comparison functions: only the 'Eq' case is specified
Inductive compare_weak_spec A: A A comparison Prop :=
| pcws_eq: i, compare_weak_spec i i Eq
| pcws_lt: i j, compare_weak_spec i j Lt
| pcws_gt: i j, compare_weak_spec i j Gt.

Lemma pos_compare_weak_spec: i j, compare_weak_spec i j (pos_compare i j).
Proof. induction i; destruct j; simpl; try constructor; case (IHi j); intros; constructor. Qed.

Lemma idx_compare_reflect_eq: i j, idx_compare i j = Eq i=j.
Proof. intros i j. case (pos_compare_weak_spec i j); intros; congruence. Qed.

Dependent types utilities


Notation cast T H u := (eq_rect _ T u _ H).

Section dep.
  Variable U: Type.
  Variable T: U Type.

  Lemma cast_eq: ( u v: U, {u=v}+{uv})
     A (H: A=A) (u: T A), cast T H u = u.
  Proof. intros. rewrite <- Eqdep_dec.eq_rect_eq_dec; trivial. Qed.

  Variable f: A B, T A T B comparison.
  Definition reflect_eqdep := A u B v (H: A=B), @f A B u v = Eq cast T H u = v.

  Lemma reflect_eqdep_eq: reflect_eqdep
     A u v, @f A A u v = Eq u = v.
  Proof. intros H A u v He. apply (H _ _ _ _ eq_refl He). Defined.

  Lemma reflect_eqdep_weak_spec: reflect_eqdep
     A u v, compare_weak_spec u v (@f A A u v).
  Proof.
    intros. case_eq (f u v); try constructor.
    intro H'. apply reflect_eqdep_eq in H'. subst. constructor. assumption.
  Defined.
End dep.

Utilities about (non-empty) lists and multisets


#[universes(template)]
Inductive nelist (A : Type) : Type :=
| nil : A nelist A
| cons : A nelist A nelist A.

Register nil as aac_tactics.nelist.nil.
Register cons as aac_tactics.nelist.cons.

Notation "x :: y" := (cons x y).

Fixpoint nelist_map (A B: Type) (f: A B) l :=
  match l with
    | nil xnil ( f x)
    | cons x lcons ( f x) (nelist_map f l)
  end.

Fixpoint appne A l l' : nelist A :=
  match l with
    nil xcons x l'
    | cons t qcons t (appne A q l')
  end.

Notation "x ++ y" := (appne x y).

finite multisets are represented with ordered lists with multiplicities
Definition mset A := nelist (A×positive).

lexicographic composition of comparisons (this is a notation to keep it lazy)
Notation lex e f := (match e with Eqf | _e end).

Section lists.

comparison functions

  Section c.
    Variables A B: Type.
    Variable compare: A B comparison.
    Fixpoint list_compare h k :=
      match h,k with
        | nil x, nil ycompare x y
        | nil x, _Lt
        | _, nil xGt
        | u::h, v::klex (compare u v) (list_compare h k)
      end.
  End c.
  Definition mset_compare A B compare: mset A mset B comparison :=
    list_compare (fun un vm
      let '(u,n) := un in
        let '(v,m) := vm in
        lex (compare u v) (pos_compare n m)).

  Section list_compare_weak_spec.
    Variable A: Type.
    Variable compare: A A comparison.
    Hypothesis Hcompare: u v, compare_weak_spec u v (compare u v).
    Lemma list_compare_weak_spec: h k,
      compare_weak_spec h k (list_compare compare h k).
    Proof.
      induction h as [|u h IHh]; destruct k as [|v k]; simpl; try constructor.

      case (Hcompare a a0 ); try constructor.
      case (Hcompare u v ); try constructor.
      case (IHh k); intros; constructor.
    Defined.
  End list_compare_weak_spec.

  Section mset_compare_weak_spec.
    Variable A: Type.
    Variable compare: A A comparison.
    Hypothesis Hcompare: u v, compare_weak_spec u v (compare u v).
    Lemma mset_compare_weak_spec: h k,
      compare_weak_spec h k (mset_compare compare h k).
    Proof.
      apply list_compare_weak_spec.
      intros [u n] [v m].
       case (Hcompare u v); try constructor.
       case (pos_compare_weak_spec n m); try constructor.
    Defined.
  End mset_compare_weak_spec.

(sorted) merging functions

  Section m.
    Variable A: Type.
    Variable compare: A A comparison.
    Definition insert n1 h1 :=
      let fix insert_aux l2 :=
      match l2 with
        | nil (h2,n2)
          match compare h1 h2 with
            | Eqnil (h1,Pplus n1 n2)
            | Lt(h1,n1):: nil (h2,n2)
            | Gt(h2,n2):: nil (h1,n1)
          end
        | (h2,n2)::t2
          match compare h1 h2 with
            | Eq(h1,Pplus n1 n2):: t2
            | Lt(h1,n1)::l2
            | Gt(h2,n2)::insert_aux t2
          end
      end
      in insert_aux.

    Fixpoint merge_msets l1 :=
      match l1 with
        | nil (h1,n1)fun l2insert n1 h1 l2
        | (h1,n1)::t1
          let fix merge_aux l2 :=
            match l2 with
               | nil (h2,n2)
                match compare h1 h2 with
                  | Eq(h1,Pplus n1 n2) :: t1
                  | Lt(h1,n1):: merge_msets t1 l2
                  | Gt(h2,n2):: l1
                end
              | (h2,n2)::t2
                match compare h1 h2 with
                  | Eq(h1,Pplus n1 n2)::merge_msets t1 t2
                  | Lt(h1,n1)::merge_msets t1 l2
                  | Gt(h2,n2)::merge_aux t2
                end
            end
            in merge_aux
      end.

    Definition reduce_mset: mset A mset A := nelist_map (fun x(fst x,xH)).

interpretation of a list with a constant and a binary operation

    Variable B: Type.
    Variable map: A B.
    Variable b2: B B B.
    Fixpoint fold_map l :=
      match l with
        | nil xmap x
        | u::lb2 (map u) (fold_map l)
      end.

mapping and merging

    Variable merge: A nelist B nelist B.
    Fixpoint merge_map (l: nelist A): nelist B :=
      match l with
        | nil xnil (map x)
        | u::lmerge u (merge_map l)
      end.

    Variable ret : A B.
    Variable bind : A B B.
    Fixpoint fold_map' (l : nelist A) : B :=
      match l with
        | nil xret x
        | u::lbind u (fold_map' l)
      end.

  End m.
End lists.