{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1998

-}

{-# LANGUAGE DeriveDataTypeable, ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE AllowAmbiguousTypes #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

-- | Core literals
module GHC.Types.Literal
        (
        -- * Main data type
          Literal(..)           -- Exported to ParseIface
        , LitNumType(..)

        -- ** Creating Literals
        , mkLitInt, mkLitIntWrap, mkLitIntWrapC, mkLitIntUnchecked
        , mkLitWord, mkLitWordWrap, mkLitWordWrapC, mkLitWordUnchecked
        , mkLitInt8, mkLitInt8Wrap, mkLitInt8Unchecked
        , mkLitWord8, mkLitWord8Wrap, mkLitWord8Unchecked
        , mkLitInt16, mkLitInt16Wrap, mkLitInt16Unchecked
        , mkLitWord16, mkLitWord16Wrap, mkLitWord16Unchecked
        , mkLitInt32, mkLitInt32Wrap, mkLitInt32Unchecked
        , mkLitWord32, mkLitWord32Wrap, mkLitWord32Unchecked
        , mkLitInt64, mkLitInt64Wrap, mkLitInt64Unchecked
        , mkLitWord64, mkLitWord64Wrap, mkLitWord64Unchecked
        , mkLitFloat, mkLitDouble
        , mkLitChar, mkLitString
        , mkLitBigNat
        , mkLitNumber, mkLitNumberWrap

        -- ** Operations on Literals
        , literalType
        , pprLiteral
        , litNumIsSigned
        , litNumRange
        , litNumCheckRange
        , litNumWrap
        , litNumCoerce
        , litNumNarrow
        , litNumBitSize
        , isMinBound
        , isMaxBound

        -- ** Predicates on Literals and their contents
        , litIsDupable, litIsTrivial, litIsLifted
        , inCharRange
        , isZeroLit, isOneLit
        , litFitsInChar
        , litValue, mapLitValue
        , isLitValue_maybe, isLitRubbish

        -- ** Coercions
        , narrowInt8Lit, narrowInt16Lit, narrowInt32Lit, narrowInt64Lit
        , narrowWord8Lit, narrowWord16Lit, narrowWord32Lit, narrowWord64Lit
        , convertToIntLit, convertToWordLit
        , charToIntLit, intToCharLit
        , floatToIntLit, intToFloatLit, doubleToIntLit, intToDoubleLit
        , nullAddrLit, floatToDoubleLit, doubleToFloatLit
        ) where

import GHC.Prelude

import GHC.Builtin.Types.Prim
import GHC.Core.TyCo.Rep ( RuntimeRepType )
import GHC.Core.Type
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Basic
import GHC.Utils.Binary
import GHC.Settings.Constants
import GHC.Platform
import GHC.Utils.Panic
import GHC.Utils.Encoding

import Data.ByteString (ByteString)
import Data.Int
import Data.Word
import Data.Char
import Data.Data ( Data )
import GHC.Exts
import Numeric ( fromRat )

{-
************************************************************************
*                                                                      *
\subsection{Literals}
*                                                                      *
************************************************************************
-}

-- | So-called 'Literal's are one of:
--
-- * An unboxed numeric literal or floating-point literal which is presumed
--   to be surrounded by appropriate constructors (@Int#@, etc.), so that
--   the overall thing makes sense.
--
--   We maintain the invariant that the 'Integer' in the 'LitNumber'
--   constructor is actually in the (possibly target-dependent) range.
--   The mkLit{Int,Word}*Wrap smart constructors ensure this by applying
--   the target machine's wrapping semantics. Use these in situations
--   where you know the wrapping semantics are correct.
--
-- * The literal derived from the label mentioned in a \"foreign label\"
--   declaration ('LitLabel')
--
-- * A 'LitRubbish' to be used in place of values that are never used.
--
-- * A character
-- * A string
-- * The NULL pointer
--
data Literal
  = LitChar    Char             -- ^ @Char#@ - at least 31 bits. Create with
                                -- 'mkLitChar'

  | LitNumber !LitNumType !Integer
                                -- ^ Any numeric literal that can be
                                -- internally represented with an Integer.

  | LitString !ByteString       -- ^ A string-literal: stored and emitted
                                -- UTF-8 encoded, we'll arrange to decode it
                                -- at runtime.  Also emitted with a @\'\\0\'@
                                -- terminator. Create with 'mkLitString'

  | LitNullAddr                 -- ^ The @NULL@ pointer, the only pointer value
                                -- that can be represented as a Literal. Create
                                -- with 'nullAddrLit'

  | LitRubbish RuntimeRepType   -- ^ A nonsense value of the given
                                -- representation. See Note [Rubbish literals].
                                --
                                -- The Type argument, rr, is of kind RuntimeRep.
                                -- The type of the literal is forall (a:TYPE rr). a
                                --
                                -- INVARIANT: the Type has no free variables
                                --    and so substitution etc can ignore it
                                --

  | LitFloat   Rational         -- ^ @Float#@. Create with 'mkLitFloat'
  | LitDouble  Rational         -- ^ @Double#@. Create with 'mkLitDouble'

  | LitLabel   FastString (Maybe Int) FunctionOrData
                                -- ^ A label literal. Parameters:
                                --
                                -- 1) The name of the symbol mentioned in the
                                --    declaration
                                --
                                -- 2) The size (in bytes) of the arguments
                                --    the label expects. Only applicable with
                                --    @stdcall@ labels. @Just x@ => @\<x\>@ will
                                --    be appended to label name when emitting
                                --    assembly.
                                --
                                -- 3) Flag indicating whether the symbol
                                --    references a function or a data
  deriving Data

-- | Numeric literal type
data LitNumType
  = LitNumBigNat  -- ^ @Bignat@ (see Note [BigNum literals])
  | LitNumInt     -- ^ @Int#@ - according to target machine
  | LitNumInt8    -- ^ @Int8#@ - exactly 8 bits
  | LitNumInt16   -- ^ @Int16#@ - exactly 16 bits
  | LitNumInt32   -- ^ @Int32#@ - exactly 32 bits
  | LitNumInt64   -- ^ @Int64#@ - exactly 64 bits
  | LitNumWord    -- ^ @Word#@ - according to target machine
  | LitNumWord8   -- ^ @Word8#@ - exactly 8 bits
  | LitNumWord16  -- ^ @Word16#@ - exactly 16 bits
  | LitNumWord32  -- ^ @Word32#@ - exactly 32 bits
  | LitNumWord64  -- ^ @Word64#@ - exactly 64 bits
  deriving (Data,Enum,Eq,Ord)

-- | Indicate if a numeric literal type supports negative numbers
litNumIsSigned :: LitNumType -> Bool
litNumIsSigned nt = case nt of
  LitNumBigNat  -> False
  LitNumInt     -> True
  LitNumInt8    -> True
  LitNumInt16   -> True
  LitNumInt32   -> True
  LitNumInt64   -> True
  LitNumWord    -> False
  LitNumWord8   -> False
  LitNumWord16  -> False
  LitNumWord32  -> False
  LitNumWord64  -> False

-- | Number of bits
litNumBitSize :: Platform -> LitNumType -> Maybe Word
litNumBitSize platform nt = case nt of
  LitNumBigNat  -> Nothing
  LitNumInt     -> Just (fromIntegral (platformWordSizeInBits platform))
  LitNumInt8    -> Just 8
  LitNumInt16   -> Just 16
  LitNumInt32   -> Just 32
  LitNumInt64   -> Just 64
  LitNumWord    -> Just (fromIntegral (platformWordSizeInBits platform))
  LitNumWord8   -> Just 8
  LitNumWord16  -> Just 16
  LitNumWord32  -> Just 32
  LitNumWord64  -> Just 64

instance Binary LitNumType where
   put_ bh numTyp = putByte bh (fromIntegral (fromEnum numTyp))
   get bh = do
      h <- getByte bh
      return (toEnum (fromIntegral h))

{-
Note [BigNum literals]
~~~~~~~~~~~~~~~~~~~~~~
GHC supports 2 kinds of arbitrary precision numbers (a.k.a BigNum):

   * data Natural = NS Word# | NB BigNat#

   * data Integer = IS Int# | IN BigNat# | IP BigNat#

In the past, we had Core constructors to represent Integer and Natural literals.
These literals were then lowered into their real Core representation only in
Core prep. The issue with this approach is that literals have two
representations and we have to ensure that we handle them the same everywhere
(in every optimisation, etc.).

For example (0 :: Integer) was representable in Core with both:

    Lit (LitNumber LitNumInteger 0)                          -- literal
    App (Var integerISDataCon) (Lit (LitNumber LitNumInt 0)) -- real representation

Nowadays we always use the real representation for Integer and Natural literals.
However we still have two representations for BigNat# literals. BigNat# literals
are still lowered in Core prep into a call to a constructor function (BigNat# is
ByteArray# and we don't have ByteArray# literals yet so we have to build them at
runtime).

Note [String literals]
~~~~~~~~~~~~~~~~~~~~~~
String literals are UTF-8 encoded and stored into ByteStrings in the following
ASTs: Haskell, Core, Stg, Cmm. TH can also emit ByteString based string literals
with the BytesPrimL constructor (see #14741).

It wasn't true before as [Word8] was used in Cmm AST and in TH which was quite
bad for performance with large strings (see #16198 and #14741).

To include string literals into output objects, the assembler code generator has
to embed the UTF-8 encoded binary blob. See Note [Embedding large binary blobs]
for more details.

-}

instance Binary Literal where
    put_ bh (LitChar aa)     = do putByte bh 0; put_ bh aa
    put_ bh (LitString ab)   = do putByte bh 1; put_ bh ab
    put_ bh (LitNullAddr)    = putByte bh 2
    put_ bh (LitFloat ah)    = do putByte bh 3; put_ bh ah
    put_ bh (LitDouble ai)   = do putByte bh 4; put_ bh ai
    put_ bh (LitLabel aj mb fod)
        = do putByte bh 5
             put_ bh aj
             put_ bh mb
             put_ bh fod
    put_ bh (LitNumber nt i)
        = do putByte bh 6
             put_ bh nt
             put_ bh i
    put_ _ (LitRubbish b) = pprPanic "Binary LitRubbish" (ppr b)
     -- We use IfaceLitRubbish; see Note [Rubbish literals], item (6)

    get bh = do
            h <- getByte bh
            case h of
              0 -> do
                    aa <- get bh
                    return (LitChar aa)
              1 -> do
                    ab <- get bh
                    return (LitString ab)
              2 -> return (LitNullAddr)
              3 -> do
                    ah <- get bh
                    return (LitFloat ah)
              4 -> do
                    ai <- get bh
                    return (LitDouble ai)
              5 -> do
                    aj <- get bh
                    mb <- get bh
                    fod <- get bh
                    return (LitLabel aj mb fod)
              6 -> do
                    nt <- get bh
                    i  <- get bh
                    return (LitNumber nt i)
              _ -> pprPanic "Binary:Literal" (int (fromIntegral h))

instance Outputable Literal where
    ppr = pprLiteral id

instance Eq Literal where
    a == b = compare a b == EQ

-- | Needed for the @Ord@ instance of 'AltCon', which in turn is needed in
-- 'GHC.Data.TrieMap.CoreMap'.
instance Ord Literal where
    compare = cmpLit

{-
        Construction
        ~~~~~~~~~~~~
-}

{- Note [Word/Int underflow/overflow]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
According to the Haskell Report 2010 (Sections 18.1 and 23.1 about signed and
unsigned integral types): "All arithmetic is performed modulo 2^n, where n is
the number of bits in the type."

GHC stores Word# and Int# constant values as Integer. Core optimizations such
as constant folding must ensure that the Integer value remains in the valid
target Word/Int range (see #13172). The following functions are used to
ensure this.

Note that we *don't* warn the user about overflow. It's not done at runtime
either, and compilation of completely harmless things like
   ((124076834 :: Word32) + (2147483647 :: Word32))
doesn't yield a warning. Instead we simply squash the value into the *target*
Int/Word range.
-}

-- | Make a literal number using wrapping semantics if the value is out of
-- bound.
mkLitNumberWrap :: Platform -> LitNumType -> Integer -> Literal
mkLitNumberWrap platform nt i = case nt of
  LitNumInt -> case platformWordSize platform of
    PW4 -> wrap @Int32
    PW8 -> wrap @Int64
  LitNumWord -> case platformWordSize platform of
    PW4 -> wrap @Word32
    PW8 -> wrap @Word64
  LitNumInt8    -> wrap @Int8
  LitNumInt16   -> wrap @Int16
  LitNumInt32   -> wrap @Int32
  LitNumInt64   -> wrap @Int64
  LitNumWord8   -> wrap @Word8
  LitNumWord16  -> wrap @Word16
  LitNumWord32  -> wrap @Word32
  LitNumWord64  -> wrap @Word64
  LitNumBigNat
    | i < 0     -> panic "mkLitNumberWrap: trying to create a negative BigNat"
    | otherwise -> LitNumber nt i
  where
    wrap :: forall a. (Integral a, Num a) => Literal
    wrap = LitNumber nt (toInteger (fromIntegral i :: a))

-- | Wrap a literal number according to its type using wrapping semantics.
litNumWrap :: Platform -> Literal -> Literal
litNumWrap platform (LitNumber nt i) = mkLitNumberWrap platform nt i
litNumWrap _        l                = pprPanic "litNumWrap" (ppr l)

-- | Coerce a literal number into another using wrapping semantics.
litNumCoerce :: LitNumType -> Platform -> Literal -> Literal
litNumCoerce pt platform (LitNumber _nt i) = mkLitNumberWrap platform pt i
litNumCoerce _  _        l                 = pprPanic "litNumWrapCoerce: not a number" (ppr l)

-- | Narrow a literal number by converting it into another number type and then
-- converting it back to its original type.
litNumNarrow :: LitNumType -> Platform -> Literal -> Literal
litNumNarrow pt platform (LitNumber nt i)
   = case mkLitNumberWrap platform pt i of
      LitNumber _ j -> mkLitNumberWrap platform nt j
      l             -> pprPanic "litNumNarrow: got invalid literal" (ppr l)
litNumNarrow _ _ l = pprPanic "litNumNarrow: invalid literal" (ppr l)


-- | Check that a given number is in the range of a numeric literal
litNumCheckRange :: Platform -> LitNumType -> Integer -> Bool
litNumCheckRange platform nt i =
    maybe True (i >=) m_lower &&
    maybe True (i <=) m_upper
  where
    (m_lower, m_upper) = litNumRange platform nt

-- | Get the literal range
litNumRange :: Platform -> LitNumType -> (Maybe Integer, Maybe Integer)
litNumRange platform nt = case nt of
     LitNumInt     -> (Just (platformMinInt platform), Just (platformMaxInt platform))
     LitNumWord    -> (Just 0, Just (platformMaxWord platform))
     LitNumInt8    -> bounded_range @Int8
     LitNumInt16   -> bounded_range @Int16
     LitNumInt32   -> bounded_range @Int32
     LitNumInt64   -> bounded_range @Int64
     LitNumWord8   -> bounded_range @Word8
     LitNumWord16  -> bounded_range @Word16
     LitNumWord32  -> bounded_range @Word32
     LitNumWord64  -> bounded_range @Word64
     LitNumBigNat  -> (Just 0, Nothing)
  where
    bounded_range :: forall a . (Integral a, Bounded a) => (Maybe Integer,Maybe Integer)
    bounded_range = case boundedRange @a of
      (mi,ma) -> (Just mi, Just ma)

-- | Create a numeric 'Literal' of the given type
mkLitNumber :: Platform -> LitNumType -> Integer -> Literal
mkLitNumber platform nt i =
  assertPpr (litNumCheckRange platform nt i) (integer i)
  (LitNumber nt i)

-- | Creates a 'Literal' of type @Int#@
mkLitInt :: Platform -> Integer -> Literal
mkLitInt platform x = assertPpr (platformInIntRange platform x) (integer x)
                       (mkLitIntUnchecked x)

-- | Creates a 'Literal' of type @Int#@.
--   If the argument is out of the (target-dependent) range, it is wrapped.
--   See Note [Word/Int underflow/overflow]
mkLitIntWrap :: Platform -> Integer -> Literal
mkLitIntWrap platform i = mkLitNumberWrap platform LitNumInt i

-- | Creates a 'Literal' of type @Int#@ without checking its range.
mkLitIntUnchecked :: Integer -> Literal
mkLitIntUnchecked i = LitNumber LitNumInt i

-- | Creates a 'Literal' of type @Int#@, as well as a 'Bool'ean flag indicating
--   overflow. That is, if the argument is out of the (target-dependent) range
--   the argument is wrapped and the overflow flag will be set.
--   See Note [Word/Int underflow/overflow]
mkLitIntWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitIntWrapC platform i = (n, i /= i')
  where
    n@(LitNumber _ i') = mkLitIntWrap platform i

-- | Creates a 'Literal' of type @Word#@
mkLitWord :: Platform -> Integer -> Literal
mkLitWord platform x = assertPpr (platformInWordRange platform x) (integer x)
                        (mkLitWordUnchecked x)

-- | Creates a 'Literal' of type @Word#@.
--   If the argument is out of the (target-dependent) range, it is wrapped.
--   See Note [Word/Int underflow/overflow]
mkLitWordWrap :: Platform -> Integer -> Literal
mkLitWordWrap platform i = mkLitNumberWrap platform LitNumWord i

-- | Creates a 'Literal' of type @Word#@ without checking its range.
mkLitWordUnchecked :: Integer -> Literal
mkLitWordUnchecked i = LitNumber LitNumWord i

-- | Creates a 'Literal' of type @Word#@, as well as a 'Bool'ean flag indicating
--   carry. That is, if the argument is out of the (target-dependent) range
--   the argument is wrapped and the carry flag will be set.
--   See Note [Word/Int underflow/overflow]
mkLitWordWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitWordWrapC platform i = (n, i /= i')
  where
    n@(LitNumber _ i') = mkLitWordWrap platform i

-- | Creates a 'Literal' of type @Int8#@
mkLitInt8 :: Integer -> Literal
mkLitInt8  x = assertPpr (inBoundedRange @Int8 x) (integer x) (mkLitInt8Unchecked x)

-- | Creates a 'Literal' of type @Int8#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt8Wrap :: Integer -> Literal
mkLitInt8Wrap i = mkLitInt8Unchecked (toInteger (fromIntegral i :: Int8))

-- | Creates a 'Literal' of type @Int8#@ without checking its range.
mkLitInt8Unchecked :: Integer -> Literal
mkLitInt8Unchecked i = LitNumber LitNumInt8 i

-- | Creates a 'Literal' of type @Word8#@
mkLitWord8 :: Integer -> Literal
mkLitWord8 x = assertPpr (inBoundedRange @Word8 x) (integer x) (mkLitWord8Unchecked x)

-- | Creates a 'Literal' of type @Word8#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord8Wrap :: Integer -> Literal
mkLitWord8Wrap i = mkLitWord8Unchecked (toInteger (fromIntegral i :: Word8))

-- | Creates a 'Literal' of type @Word8#@ without checking its range.
mkLitWord8Unchecked :: Integer -> Literal
mkLitWord8Unchecked i = LitNumber LitNumWord8 i

-- | Creates a 'Literal' of type @Int16#@
mkLitInt16 :: Integer -> Literal
mkLitInt16  x = assertPpr (inBoundedRange @Int16 x) (integer x) (mkLitInt16Unchecked x)

-- | Creates a 'Literal' of type @Int16#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt16Wrap :: Integer -> Literal
mkLitInt16Wrap i = mkLitInt16Unchecked (toInteger (fromIntegral i :: Int16))

-- | Creates a 'Literal' of type @Int16#@ without checking its range.
mkLitInt16Unchecked :: Integer -> Literal
mkLitInt16Unchecked i = LitNumber LitNumInt16 i

-- | Creates a 'Literal' of type @Word16#@
mkLitWord16 :: Integer -> Literal
mkLitWord16 x = assertPpr (inBoundedRange @Word16 x) (integer x) (mkLitWord16Unchecked x)

-- | Creates a 'Literal' of type @Word16#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord16Wrap :: Integer -> Literal
mkLitWord16Wrap i = mkLitWord16Unchecked (toInteger (fromIntegral i :: Word16))

-- | Creates a 'Literal' of type @Word16#@ without checking its range.
mkLitWord16Unchecked :: Integer -> Literal
mkLitWord16Unchecked i = LitNumber LitNumWord16 i

-- | Creates a 'Literal' of type @Int32#@
mkLitInt32 :: Integer -> Literal
mkLitInt32  x = assertPpr (inBoundedRange @Int32 x) (integer x) (mkLitInt32Unchecked x)

-- | Creates a 'Literal' of type @Int32#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt32Wrap :: Integer -> Literal
mkLitInt32Wrap i = mkLitInt32Unchecked (toInteger (fromIntegral i :: Int32))

-- | Creates a 'Literal' of type @Int32#@ without checking its range.
mkLitInt32Unchecked :: Integer -> Literal
mkLitInt32Unchecked i = LitNumber LitNumInt32 i

-- | Creates a 'Literal' of type @Word32#@
mkLitWord32 :: Integer -> Literal
mkLitWord32 x = assertPpr (inBoundedRange @Word32 x) (integer x) (mkLitWord32Unchecked x)

-- | Creates a 'Literal' of type @Word32#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord32Wrap :: Integer -> Literal
mkLitWord32Wrap i = mkLitWord32Unchecked (toInteger (fromIntegral i :: Word32))

-- | Creates a 'Literal' of type @Word32#@ without checking its range.
mkLitWord32Unchecked :: Integer -> Literal
mkLitWord32Unchecked i = LitNumber LitNumWord32 i

-- | Creates a 'Literal' of type @Int64#@
mkLitInt64 :: Integer -> Literal
mkLitInt64  x = assertPpr (inBoundedRange @Int64 x) (integer x) (mkLitInt64Unchecked x)

-- | Creates a 'Literal' of type @Int64#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt64Wrap :: Integer -> Literal
mkLitInt64Wrap i = mkLitInt64Unchecked (toInteger (fromIntegral i :: Int64))

-- | Creates a 'Literal' of type @Int64#@ without checking its range.
mkLitInt64Unchecked :: Integer -> Literal
mkLitInt64Unchecked i = LitNumber LitNumInt64 i

-- | Creates a 'Literal' of type @Word64#@
mkLitWord64 :: Integer -> Literal
mkLitWord64 x = assertPpr (inBoundedRange @Word64 x) (integer x) (mkLitWord64Unchecked x)

-- | Creates a 'Literal' of type @Word64#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord64Wrap :: Integer -> Literal
mkLitWord64Wrap i = mkLitWord64Unchecked (toInteger (fromIntegral i :: Word64))

-- | Creates a 'Literal' of type @Word64#@ without checking its range.
mkLitWord64Unchecked :: Integer -> Literal
mkLitWord64Unchecked i = LitNumber LitNumWord64 i

-- | Creates a 'Literal' of type @Float#@
mkLitFloat :: Rational -> Literal
mkLitFloat = LitFloat

-- | Creates a 'Literal' of type @Double#@
mkLitDouble :: Rational -> Literal
mkLitDouble = LitDouble

-- | Creates a 'Literal' of type @Char#@
mkLitChar :: Char -> Literal
mkLitChar = LitChar

-- | Creates a 'Literal' of type @Addr#@, which is appropriate for passing to
-- e.g. some of the \"error\" functions in GHC.Err such as @GHC.Err.runtimeError@
mkLitString :: String -> Literal
-- stored UTF-8 encoded
mkLitString [] = LitString mempty
mkLitString s  = LitString (utf8EncodeString s)

mkLitBigNat :: Integer -> Literal
mkLitBigNat x = assertPpr (x >= 0) (integer x)
                    (LitNumber LitNumBigNat x)

isLitRubbish :: Literal -> Bool
isLitRubbish (LitRubbish {}) = True
isLitRubbish _               = False

inBoundedRange :: forall a. (Bounded a, Integral a) => Integer -> Bool
inBoundedRange x  = x >= toInteger (minBound :: a) &&
                    x <= toInteger (maxBound :: a)

boundedRange :: forall a. (Bounded a, Integral a) => (Integer,Integer)
boundedRange = (toInteger (minBound :: a), toInteger (maxBound :: a))

isMinBound :: Platform -> Literal -> Bool
isMinBound _        (LitChar c)        = c == minBound
isMinBound platform (LitNumber nt i)   = case nt of
   LitNumInt     -> i == platformMinInt platform
   LitNumInt8    -> i == toInteger (minBound :: Int8)
   LitNumInt16   -> i == toInteger (minBound :: Int16)
   LitNumInt32   -> i == toInteger (minBound :: Int32)
   LitNumInt64   -> i == toInteger (minBound :: Int64)
   LitNumWord    -> i == 0
   LitNumWord8   -> i == 0
   LitNumWord16  -> i == 0
   LitNumWord32  -> i == 0
   LitNumWord64  -> i == 0
   LitNumBigNat  -> i == 0
isMinBound _        _                  = False

isMaxBound :: Platform -> Literal -> Bool
isMaxBound _        (LitChar c)        = c == maxBound
isMaxBound platform (LitNumber nt i)   = case nt of
   LitNumInt     -> i == platformMaxInt platform
   LitNumInt8    -> i == toInteger (maxBound :: Int8)
   LitNumInt16   -> i == toInteger (maxBound :: Int16)
   LitNumInt32   -> i == toInteger (maxBound :: Int32)
   LitNumInt64   -> i == toInteger (maxBound :: Int64)
   LitNumWord    -> i == platformMaxWord platform
   LitNumWord8   -> i == toInteger (maxBound :: Word8)
   LitNumWord16  -> i == toInteger (maxBound :: Word16)
   LitNumWord32  -> i == toInteger (maxBound :: Word32)
   LitNumWord64  -> i == toInteger (maxBound :: Word64)
   LitNumBigNat  -> False
isMaxBound _        _                  = False

inCharRange :: Char -> Bool
inCharRange c =  c >= '\0' && c <= chr tARGET_MAX_CHAR

-- | Tests whether the literal represents a zero of whatever type it is
isZeroLit :: Literal -> Bool
isZeroLit (LitNumber _ 0) = True
isZeroLit (LitFloat  0)   = True
isZeroLit (LitDouble 0)   = True
isZeroLit _               = False

-- | Tests whether the literal represents a one of whatever type it is
isOneLit :: Literal -> Bool
isOneLit (LitNumber _ 1) = True
isOneLit (LitFloat  1)   = True
isOneLit (LitDouble 1)   = True
isOneLit _               = False

-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char' and numbers.
litValue  :: Literal -> Integer
litValue l = case isLitValue_maybe l of
   Just x  -> x
   Nothing -> pprPanic "litValue" (ppr l)

-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char' and numbers.
isLitValue_maybe  :: Literal -> Maybe Integer
isLitValue_maybe (LitChar   c)     = Just $ toInteger $ ord c
isLitValue_maybe (LitNumber _ i)   = Just i
isLitValue_maybe _                 = Nothing

-- | Apply a function to the 'Integer' contained in the 'Literal', for when that
-- makes sense, e.g. for 'Char' and numbers.
-- For fixed-size integral literals, the result will be wrapped in accordance
-- with the semantics of the target type.
-- See Note [Word/Int underflow/overflow]
mapLitValue  :: Platform -> (Integer -> Integer) -> Literal -> Literal
mapLitValue _        f (LitChar   c)      = mkLitChar (fchar c)
   where fchar = chr . fromInteger . f . toInteger . ord
mapLitValue platform f (LitNumber nt i)   = mkLitNumberWrap platform nt (f i)
mapLitValue _        _ l                  = pprPanic "mapLitValue" (ppr l)

{-
        Coercions
        ~~~~~~~~~
-}

charToIntLit, intToCharLit,
  floatToIntLit, intToFloatLit,
  doubleToIntLit, intToDoubleLit,
  floatToDoubleLit, doubleToFloatLit
  :: Literal -> Literal

-- | Narrow a literal number (unchecked result range)
narrowLit' :: forall a. Integral a => LitNumType -> Literal -> Literal
narrowLit' nt' (LitNumber _ i)  = LitNumber nt' (toInteger (fromInteger i :: a))
narrowLit' _   l                = pprPanic "narrowLit" (ppr l)

narrowInt8Lit, narrowInt16Lit, narrowInt32Lit, narrowInt64Lit,
  narrowWord8Lit, narrowWord16Lit, narrowWord32Lit, narrowWord64Lit :: Literal -> Literal
narrowInt8Lit   = narrowLit' @Int8   LitNumInt8
narrowInt16Lit  = narrowLit' @Int16  LitNumInt16
narrowInt32Lit  = narrowLit' @Int32  LitNumInt32
narrowInt64Lit  = narrowLit' @Int64  LitNumInt64
narrowWord8Lit  = narrowLit' @Word8  LitNumWord8
narrowWord16Lit = narrowLit' @Word16 LitNumWord16
narrowWord32Lit = narrowLit' @Word32 LitNumWord32
narrowWord64Lit = narrowLit' @Word64 LitNumWord64

-- | Extend or narrow a fixed-width literal (e.g. 'Int16#') to a target
-- word-sized literal ('Int#' or 'Word#'). Narrowing can only happen on 32-bit
-- architectures when we convert a 64-bit literal into a 32-bit one.
convertToWordLit, convertToIntLit :: Platform -> Literal -> Literal
convertToWordLit platform (LitNumber _nt i)  = mkLitWordWrap platform i
convertToWordLit _platform l                 = pprPanic "convertToWordLit" (ppr l)
convertToIntLit  platform (LitNumber _nt i)  = mkLitIntWrap platform i
convertToIntLit  _platform l                 = pprPanic "convertToIntLit" (ppr l)

charToIntLit (LitChar c)       = mkLitIntUnchecked (toInteger (ord c))
charToIntLit l                 = pprPanic "charToIntLit" (ppr l)
intToCharLit (LitNumber _ i)   = LitChar (chr (fromInteger i))
intToCharLit l                 = pprPanic "intToCharLit" (ppr l)

floatToIntLit (LitFloat f)      = mkLitIntUnchecked (truncate f)
floatToIntLit l                 = pprPanic "floatToIntLit" (ppr l)
intToFloatLit (LitNumber _ i)   = LitFloat (fromInteger i)
intToFloatLit l                 = pprPanic "intToFloatLit" (ppr l)

doubleToIntLit (LitDouble f)     = mkLitIntUnchecked (truncate f)
doubleToIntLit l                 = pprPanic "doubleToIntLit" (ppr l)
intToDoubleLit (LitNumber _ i)   = LitDouble (fromInteger i)
intToDoubleLit l                 = pprPanic "intToDoubleLit" (ppr l)

floatToDoubleLit (LitFloat  f) = LitDouble f
floatToDoubleLit l             = pprPanic "floatToDoubleLit" (ppr l)
doubleToFloatLit (LitDouble d) = LitFloat  d
doubleToFloatLit l             = pprPanic "doubleToFloatLit" (ppr l)

nullAddrLit :: Literal
nullAddrLit = LitNullAddr

{-
        Predicates
        ~~~~~~~~~~
-}

-- | True if there is absolutely no penalty to duplicating the literal.
-- False principally of strings.
--
-- "Why?", you say? I'm glad you asked. Well, for one duplicating strings would
-- blow up code sizes. Not only this, it's also unsafe.
--
-- Consider a program that wants to traverse a string. One way it might do this
-- is to first compute the Addr# pointing to the end of the string, and then,
-- starting from the beginning, bump a pointer using eqAddr# to determine the
-- end. For instance,
--
-- @
-- -- Given pointers to the start and end of a string, count how many zeros
-- -- the string contains.
-- countZeros :: Addr# -> Addr# -> -> Int
-- countZeros start end = go start 0
--   where
--     go off n
--       | off `addrEq#` end = n
--       | otherwise         = go (off `plusAddr#` 1) n'
--       where n' | isTrue# (indexInt8OffAddr# off 0# ==# 0#) = n + 1
--                | otherwise                                 = n
-- @
--
-- Consider what happens if we considered strings to be trivial (and therefore
-- duplicable) and emitted a call like @countZeros "hello"# ("hello"#
-- `plusAddr`# 5)@. The beginning and end pointers do not belong to the same
-- string, meaning that an iteration like the above would blow up terribly.
-- This is what happened in #12757.
--
-- Ultimately the solution here is to make primitive strings a bit more
-- structured, ensuring that the compiler can't inline in ways that will break
-- user code. One approach to this is described in #8472.
litIsTrivial :: Literal -> Bool
--      c.f. GHC.Core.Utils.exprIsTrivial
litIsTrivial (LitString _)    = False
litIsTrivial (LitNumber nt _) = case nt of
  LitNumBigNat  -> False
  LitNumInt     -> True
  LitNumInt8    -> True
  LitNumInt16   -> True
  LitNumInt32   -> True
  LitNumInt64   -> True
  LitNumWord    -> True
  LitNumWord8   -> True
  LitNumWord16  -> True
  LitNumWord32  -> True
  LitNumWord64  -> True
litIsTrivial _                  = True

-- | True if code space does not go bad if we duplicate this literal
litIsDupable :: Platform -> Literal -> Bool
--      c.f. GHC.Core.Utils.exprIsDupable
litIsDupable platform x = case x of
   LitNumber nt i -> case nt of
      LitNumBigNat  -> i <= platformMaxWord platform * 8 -- arbitrary, reasonable
      LitNumInt     -> True
      LitNumInt8    -> True
      LitNumInt16   -> True
      LitNumInt32   -> True
      LitNumInt64   -> True
      LitNumWord    -> True
      LitNumWord8   -> True
      LitNumWord16  -> True
      LitNumWord32  -> True
      LitNumWord64  -> True
   LitString _ -> False
   _           -> True

litFitsInChar :: Literal -> Bool
litFitsInChar (LitNumber _ i) = i >= toInteger (ord minBound)
                              && i <= toInteger (ord maxBound)
litFitsInChar _               = False

litIsLifted :: Literal -> Bool
litIsLifted (LitNumber nt _) = case nt of
  LitNumBigNat  -> True
  LitNumInt     -> False
  LitNumInt8    -> False
  LitNumInt16   -> False
  LitNumInt32   -> False
  LitNumInt64   -> False
  LitNumWord    -> False
  LitNumWord8   -> False
  LitNumWord16  -> False
  LitNumWord32  -> False
  LitNumWord64  -> False
litIsLifted _                        = False
  -- Even RUBBISH[LiftedRep] is unlifted, as rubbish values are always evaluated.

{-
        Types
        ~~~~~
-}

-- | Find the Haskell 'Type' the literal occupies
literalType :: Literal -> Type
literalType LitNullAddr       = addrPrimTy
literalType (LitChar _)       = charPrimTy
literalType (LitString  _)    = addrPrimTy
literalType (LitFloat _)      = floatPrimTy
literalType (LitDouble _)     = doublePrimTy
literalType (LitLabel _ _ _)  = addrPrimTy
literalType (LitNumber lt _)  = case lt of
   LitNumBigNat  -> byteArrayPrimTy
   LitNumInt     -> intPrimTy
   LitNumInt8    -> int8PrimTy
   LitNumInt16   -> int16PrimTy
   LitNumInt32   -> int32PrimTy
   LitNumInt64   -> int64PrimTy
   LitNumWord    -> wordPrimTy
   LitNumWord8   -> word8PrimTy
   LitNumWord16  -> word16PrimTy
   LitNumWord32  -> word32PrimTy
   LitNumWord64  -> word64PrimTy

-- LitRubbish: see Note [Rubbish literals]
literalType (LitRubbish rep)
  = mkForAllTy a Inferred (mkTyVarTy a)
  where
    a = mkTemplateKindVar (mkTYPEapp rep)

{-
        Comparison
        ~~~~~~~~~~
-}

cmpLit :: Literal -> Literal -> Ordering
cmpLit (LitChar      a)     (LitChar       b)     = a `compare` b
cmpLit (LitString    a)     (LitString     b)     = a `compare` b
cmpLit (LitNullAddr)        (LitNullAddr)         = EQ
cmpLit (LitFloat     a)     (LitFloat      b)     = a `compare` b
cmpLit (LitDouble    a)     (LitDouble     b)     = a `compare` b
cmpLit (LitLabel     a _ _) (LitLabel      b _ _) = a `lexicalCompareFS` b
cmpLit (LitNumber nt1 a)    (LitNumber nt2  b)
  = (nt1 `compare` nt2) `mappend` (a `compare` b)
cmpLit (LitRubbish b1)      (LitRubbish b2)       = b1 `nonDetCmpType` b2
cmpLit lit1 lit2
  | isTrue# (dataToTag# lit1 <# dataToTag# lit2) = LT
  | otherwise                                    = GT

{-
        Printing
        ~~~~~~~~
* See Note [Printing of literals in Core]
-}

pprLiteral :: (SDoc -> SDoc) -> Literal -> SDoc
pprLiteral _       (LitChar c)     = pprPrimChar c
pprLiteral _       (LitString s)   = pprHsBytes s
pprLiteral _       (LitNullAddr)   = text "__NULL"
pprLiteral _       (LitFloat f)    = float (fromRat f) <> primFloatSuffix
pprLiteral _       (LitDouble d)   = double (fromRat d) <> primDoubleSuffix
pprLiteral _       (LitNumber nt i)
   = case nt of
       LitNumBigNat  -> integer i
       LitNumInt     -> pprPrimInt i
       LitNumInt8    -> pprPrimInt8 i
       LitNumInt16   -> pprPrimInt16 i
       LitNumInt32   -> pprPrimInt32 i
       LitNumInt64   -> pprPrimInt64 i
       LitNumWord    -> pprPrimWord i
       LitNumWord8   -> pprPrimWord8 i
       LitNumWord16  -> pprPrimWord16 i
       LitNumWord32  -> pprPrimWord32 i
       LitNumWord64  -> pprPrimWord64 i
pprLiteral add_par (LitLabel l mb fod) =
    add_par (text "__label" <+> b <+> ppr fod)
    where b = case mb of
              Nothing -> pprHsString l
              Just x  -> doubleQuotes (text (unpackFS l ++ '@':show x))
pprLiteral _       (LitRubbish rep)
  = text "RUBBISH" <> parens (ppr rep)

{-
Note [Printing of literals in Core]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function `add_par` is used to wrap parenthesis around labels (`LitLabel`),
if they occur in a context requiring an atomic thing (for example function
application).

Although not all Core literals would be valid Haskell, we are trying to stay
as close as possible to Haskell syntax in the printing of Core, to make it
easier for a Haskell user to read Core.

To that end:
  * We do print parenthesis around negative `LitInteger`, because we print
  `LitInteger` using plain number literals (no prefix or suffix), and plain
  number literals in Haskell require parenthesis in contexts like function
  application (i.e. `1 - -1` is not valid Haskell).

  * We don't print parenthesis around other (negative) literals, because they
  aren't needed in GHC/Haskell either (i.e. `1# -# -1#` is accepted by GHC's
  parser).

Literal         Output             Output if context requires
                                   an atom (if different)
-------         -------            ----------------------
LitChar         'a'#
LitString       "aaa"#
LitNullAddr     "__NULL"
LitInt          -1#
LitIntN         -1#N
LitWord          1##
LitWordN         1##N
LitFloat        -1.0#
LitDouble       -1.0##
LitBigNat       1
LitLabel        "__label" ...      ("__label" ...)
LitRubbish      "RUBBISH[...]"

Note [Rubbish literals]
~~~~~~~~~~~~~~~~~~~~~~~
Sometimes, we need to cough up a rubbish value of a certain type that is used
in place of dead code we thus aim to eliminate. The value of a dead occurrence
has no effect on the dynamic semantics of the program, so we can pick any value
of the same representation.

Exploiting the results of absence analysis in worker/wrapper is a scenario where
we need such a rubbish value, see examples in Note [Absent fillers] in
GHC.Core.Opt.WorkWrap.Utils.

It's completely undefined what the *value* of a rubbish value is, e.g., we could
pick @0#@ for @Int#@ or @42#@; it mustn't matter where it's inserted into a Core
program. We embed these rubbish values in the 'LitRubbish' case of the 'Literal'
data type. Here are the moving parts:

1. Source Haskell: No way to produce rubbish lits in source syntax. Purely
   an IR feature.

2. Core: 'LitRubbish' carries a `Type` of kind RuntimeRep,
   describing the runtime representaion of the literal (is it a
   pointer, an unboxed Double#, or whatever).

   We have it that `RUBBISH[rr]` has type `forall (a :: TYPE rr). a`.
   See the `LitRubbish` case of `literalType`.

   The function GHC.Core.Make.mkLitRubbish makes a Core rubbish literal of
   a given type.  It obeys the following invariants:

   INVARIANT 1: 'rr' has no free variables. Main reason: we don't need to run
   substitutions and free variable finders over Literal. The rules around
   levity/runtime-rep polymorphism naturally uphold this invariant.

   INVARIANT 2: we never make a rubbish literal of type (a ~# b). Reason:
   see Note [Core type and coercion invariant] in GHC.Core.  We can't substitute
   a LitRubbish inside a coercion, so it's best not to make one. They are zero
   width anyway, so passing absent ones around costs nothing.  If we wanted
   an absent filler of type (a ~# b) we should use (Coercion (UnivCo ...)),
   but it doesn't seem worth making a new UnivCoProvenance for this purpose.

   This is sad, though: see #18983.

3. STG: The type app in `RUBBISH[IntRep] @Int# :: Int#` is erased and we get
   the (untyped) 'StgLit' `RUBBISH[IntRep] :: Int#` in STG.

   It's treated mostly opaque, with the exception of the Unariser, where we
   take apart a case scrutinisation on, or arg occurrence of, e.g.,
   `RUBBISH[TupleRep[IntRep,DoubleRep]]` (which may stand in for `(# Int#, Double# #)`)
   into its sub-parts `RUBBISH[IntRep]` and `RUBBISH[DoubleRep]`, similar to
   unboxed tuples. `RUBBISH[VoidRep]` is erased.
   See 'unariseRubbish_maybe' and also Note [Post-unarisation invariants].

4. Cmm: We translate 'LitRubbish' to their actual rubbish value in 'cgLit'.
   The particulars are boring, and only matter when debugging illicit use of
   a rubbish value; see Modes of failure below.

5. Bytecode: In GHC.ByteCode.Asm we just lower it as a 0 literal, because it's
   all boxed to the host GC anyway.

6. IfaceSyn: `Literal` is part of `IfaceSyn`, but `Type` really isn't.  So in
   the passage from Core to Iface I put LitRubbish into its owns IfaceExpr data
   constructor, IfaceLitRubbish. The remaining constructors of Literal are
   fine as IfaceSyn.

Wrinkles

a) Why do we put the `Type` (of kind RuntimeRep) inside the literal?  Could
   we not instead /apply/ the literal to that RuntimeRep?  Alas no, becuase
   then LitRubbish :: forall (rr::RuntimeRep) (a::TYPE rr). a
   and that's am ill-formed type because its kind is `TYPE rr`, which escapes
   the binding site of `rr`. Annoying.

b) A rubbish literal is not bottom, and replies True to exprOkForSpeculation.
   For unboxed types there is no bottom anyway.  If we have
       let (x::Int#) = RUBBISH[IntRep] @Int#
   we want to convert that to a case!  We want to leave it as a let, and
   probably discard it as dead code soon after because x is unused.

c) We can see a rubbish literal at the head of an application chain.
   Most obviously, pretty much every rubbish literal is the head of a
   type application e.g. `RUBBISH[IntRep] @Int#`.  But see also
   Note [How a rubbish literal can be the head of an application]

c) Literal is in Ord, because (and only because) we use Ord on AltCon when
   building a TypeMap. Annoying.  We use `nonDetCmpType` here; the
   non-determinism won't matter because it's only used in TrieMap.
   Moreover, rubbish literals should not appear in patterns anyway.

d) Why not lower LitRubbish in CoreToStg? Because it enables us to use
   LitRubbish when unarising unboxed sums in the future, and it allows
   rubbish values of e.g.  VecRep, for which we can't cough up dummy
   values in STG.

Modes of failure
----------------
Suppose there is a bug in GHC, and a rubbish value is used after all. That is
undefined behavior, of course, but let us list a few examples for failure modes:

 a) For an value of unboxed numeric type like `Int#`, we just use a silly
    value like 42#. The error might propoagate indefinitely, hence we better
    pick a rather unique literal. Same for Word, Floats, Char and VecRep.
 b) For AddrRep (like String lits), we mit a null pointer, resulting in a
    definitive segfault when accessed.
 c) For boxed values, unlifted or not, we use a pointer to a fixed closure,
    like `()`, so that the GC has a pointer to follow.
    If we use that pointer as an 'Array#', we will likely access fields of the
    array that don't exist, and a seg-fault is likely, but not guaranteed.
    If we use that pointer as `Either Int Bool`, we might try to access the
    'Int' field of the 'Left' constructor (which has the same ConTag as '()'),
    which doesn't exists. In the best case, we'll find an invalid pointer in its
    position and get a seg-fault, in the worst case the error manifests only one
    or two indirections later.

Note [How a rubbish literal can be the head of an application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#19824):

    h :: T3 -> Int -> blah
    h _ (I# n) = ...

    f :: (T1 -> T2 -> T3) -> T4 -> blah
    f g x = ....(h (g n s) x)...

Demand analysis finds that h does not use its first argument, and w/w's h to

    {-# INLINE h #-}
    h a b = case b of I# n -> $wh n

Demand analysis also finds that f does not use its first arg,
so the worker for f look like

    $wf x = let g = RUBBISH in
            ....(h (g n s) x)...

Now we inline g to get:

    $wf x = ....(h (RUBBISH n s) x)...

And lo, until we inline `h`, we have that application of
RUBBISH in $wf's RHS.  But surely `h` will inline? Not if the
arguments look boring.  Well, RUBBISH doesn't look boring.  But it
could be a bit more complicated like
   f g x = let t = ...(g n s)...
           in ...(h t x)...

and now the call looks more boring.  Anyway, the point is that we
might reasonably see RUBBISH at the head of an application chain.

It would be fine to rewrite
  RUBBISH @(ta->tb->tr) a b  --->   RUBBISH @tr
but we don't currently do so.

It is NOT ok to discard the entire continuation:
  case RUBBISH @ty of DEFAULT -> blah
does not return RUBBISH!
-}