The Versatile Commodore Emulator

Uz uice

Copyright (© 1999-2022 Martin Pottendorfer Copyright (©) 2005-2022 Marco van den Heuvel
Copyright (© 2007-2022 Fabrizio Gennari Copyright (©) 2009-2022 Groepaz Copyright (©
2009-2022 Errol Smith Copyright © 2009-2022 Ingo Korb Copyright (©) 2010-2022 Olaf
Seibert Copyright (©) 2011-2022 Marcus Sutton Copyright (© 2011-2022 Kajtar Zsolt Copy-
right (© 2016-2022 AreaScout Copyright (©) 2016-2022 Bas Wassink Copyright (¢) 2017-2022
Michael C. Martin Copyright (© 2018-2022 Christopher Phillips Copyright (© 2019-2022
David Hogan Copyright (© 2020-2022 Empathic Qubit Copyright (©) 2020-2022 Roberto
Muscedere Copyright (©) 2021-2022 June Tate-Gans Copyright (©) 2021-2022 Pablo Roldan

Copyright (© 2011-2016 Stefan Haubenthal Copyright (©) 2015-2016 BSzili Copyright (©
1999-2016 Andreas Matthies Copyright (©) 2007-2015 Daniel Kahlin Copyright (©) 2012-2014
Benjamin 'BeRo’ Rosseaux Copyright (©) 2011-2014 Ulrich Schulz Copyright (©) 2011-2014
Thomas Giesel Copyright (©) 2008-2014 Antti S. Lankila Copyright © 2006-2014 Chris-
tian Vogelgsang Copyright (©) 1998-2014 Dag Lem Copyright (©) 2000-2011 Spiro Trikaliotis
Copyright (©) 2007-2011 Hannu Nuotio Copyright (©) 1998-2010 Andreas Boose Copyright (©
1998-2010 Tibor Biczo Copyright (©) 2007-2010 M. Kiesel Copyright (© 1999-2007 Andreas
Dehmel Copyright (© 2003-2005 David Hansel Copyright (© 2000-2004 Markus Brenner
Copyright (© 1999-2004 Thomas Bretz Copyright (©) 1997-2001 Daniel Sladic Copyright (©)
1996-2001 André Fachat Copyright (©) 1996-1999 Ettore Perazzoli Copyright (©) 1993-1994,
1997-1999 Teemu Rantanen Copyright (© 1993-1996 Jouko Valta Copyright (©) 1993-1994
Jarkko Sonninen

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

1 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs;
and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain respon-
sibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone un-
derstands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

Chapter 1: GNU GENERAL PUBLIC LICENSE 3

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Chapter 1: GNU GENERAL PUBLIC LICENSE 4

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Chapter 1: GNU GENERAL PUBLIC LICENSE)

6.

10.

Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software

Chapter 1: GNU GENERAL PUBLIC LICENSE 6

which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Chapter 1: GNU GENERAL PUBLIC LICENSE 7

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.

2 About VICE

VICE is the one and only Versatile Commodore Emulator. It provides emulation of the
Commodore C64, C64DTV, C128, VIC20, PET, PLUS4, SCPU64 and CBM-II computers
within a single package. The emulators run as separate programs, but have the same user
interface, share the same settings and support the same file formats.

Important notice: If you have no idea what a Commodore 8-bit computer is, or have
questions about how these machines are used, how the file formats work or anything else
that is not strictly related to VICE, you should read the appropriate FAQs first, as that kind
of information is not available here. See Chapter 20 [Contacts|, page 432. for information
about how to retrieve the FAQs.

All the emulators provide an accurate 6502/6510 emulator, with emulation of all the opcodes
(both documented and undocumented ones) and accurate timing. Unlike other emulators,
VICE aims to be cycle accurate; it tries to emulate chip timings as precisely as possible and
does so efficiently.

Please do not expect the C64DTV, C128, PET, PLUS4, SCPU64 and CBM-II emulators
to be as good as the C64 or VIC20 one, as they are still under construction.

Notice: This documentation is written for the Unix release of VICE, but is slowly being
made universal.

2.1 Emulator features

2.1.1 C64 emulator features

As of version 2.3, two C64 emulators are provided: ‘x64’ (fast) and ‘x64sc’ (accurate). As
of version 3.4 ‘x64’ will no more get built by default and is not contained in the default
binary packages.

The fast C64 emulator, called ‘x64’, features a fairly complete emulation of the VIC-II video
chip: sprites, all registers and all video modes are fully emulated. The emulation has been
fully cycle-accurate since version 0.13.0.

The accurate C64 emulator, called ‘x64sc’, features a cycle-based and pixel-accurate VIC-I1
emulation. This requires a much faster machine than the old ‘x64’.

A rather complete emulation of the SID sound chip is also provided. All the basic features
are implemented as well as most of the complex ones including synchronisation, ring modu-
lation and filters. There are two emulators of the SID chip available: first is the “standard”
VICE emulator, available since VICE 0.12; the second is Dag Lem’s reSID engine. The
reSID engine is a lot more accurate than the standard engine, but it is also a lot slower,
and only suitable for faster machines.

Naturally, also both CIAs (or VIAs, in some cases) are fully emulated and cycle accurate.

2.1.2 C64DTYV emulator features

The C64DTV emulator, called ‘x64dtv’, features emulation of C64DTV revisions 2 and
3. The emulator is under construction, but most of the DTV specific features are already
supported (with varying accuracy).

Chapter 2: About VICE 9

Video cache is disabled by default as it currently doesn’t work with some of C64DTV’s new
video modes. The new video modes have a simple "fake" video cache implementation that
may give incorrect results and decreased performance.

2.1.3 C128 emulator features

The C128 emulator, called ‘x128’, features a complete emulation of the internal MMU
(Memory Management Unit), 80 column VDC screen, fast IEC bus emulation, 2 MHz
mode, Z80 emulation plus all the features of the C64 emulation.

2.1.4 VIC20 emulator features

The VIC20 emulates all the internal hardware, including the VIA chips. The VIC-I video
chip is fully emulated except NTSC interlace mode, so most graphical effects will work
correctly.

The VIC20 emulator allows the use of the VIC1112 IEEE488 interface. You have to enable
the hardware (by menu, resource, or commandline option) and then load the IEEE488
ROM (see for example http://www.funet.fi/pub/cbm/schematics/cartridges/
vic20/ieee-488/325329-04.bin, but you have to double the size to 4KiB for now). The
IEEE-488 code is then started by SYS45065.

2.1.5 PET emulator features

The PET emulator emulates the 2001, 3032, 4032, 8032, 8096, 8296 and SuperPET (Micro-
MainFrame 9000) models, covering the whole series. The hardware is pretty much the same
in each and that is why one single program is enough to emulate all of them. For more
detailed information about PET hardware please refer to the PETDoc (https://
sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc. txt?
format=raw) file.

Both the 40 column and 80 column CRTC video chips are emulated (from the 4032 onward),
but a few of the features are not implemented yet (numbers of rasterlines per char and lines
per screen). Fortunately, they are not very important for average applications.

The PET 8096 is basically a PET 8032 with a 64KiB extension board which allows remap-
ping the upper 32KiB with RAM. You have to write to a special register at $££f0 to remap
the memory. The PET 8296 is a 8096 but with a completely redesigned motherboard with
128KiB RAM in total. Of the additional 32KiB RAM you can use only some in blocks of
4KiB, but you have to set jumpers on the motherboard for it. VICE uses the command line
options ‘-petram9’ and ‘-petramh’ instead. Also, the video controller can handle a larger
address range. The PET 8x96 model emulations run the Commodore LOS-96 operating
system - basically an improved BASIC 4 version with up to 32KiB for BASIC text and
32KiB for variables. See PETDoc (https://sourceforge.net/p/vice-emu/code/HEAD/
tree/techdocs/PET/PETdoc. txt?format=raw) for more information.

The PET 8296D is an 8296 with built-in 8250 low-profile dual disk drive.

The PET 8296GD is an 8296D with additionally a "HiRes Emulator" (HRE). This is a
cheaper version of a "HRG" hi-res board which was based on Thomson chips. This version
instead uses no additional hardware support apart from some memory mapping tricks. It
has supporting software in the hre-*.bin rom files.

The SuperPET also is a PET 8032 with an expansion board. It can map 4KiB at a time
out of 64KiB into the $9*** area. Also it has an ACIA 6551 for RS232 communication.

http://www.funet.fi/pub/cbm/schematics/cartridges/vic20/ieee-488/325329-04.bin
http://www.funet.fi/pub/cbm/schematics/cartridges/vic20/ieee-488/325329-04.bin
https://sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc.txt?format=raw
https://sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc.txt?format=raw
https://sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc.txt?format=raw
https://sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc.txt?format=raw
https://sourceforge.net/p/vice-emu/code/HEAD/tree/techdocs/PET/PETdoc.txt?format=raw

Chapter 2: About VICE 10

The 6809 CPU that is built into the SuperPET is now emulated, since release 2.4, including
the 6702 dongle chip.

The Super-OS-9 MMU expansion, developed by TPUG (Toronto PET Users Group) is also
emulated.

The PET computers came with three major ROM revisions, so-called BASIC 1, 2 and 4,
all of which are provided. The PET 2001 uses the version 1, the PET 3032 uses version 2,
and the others use version 4. The 2001 ROM is horribly broken with respect to IEEF488
(they shipped it before they tested it with the floppy drive, so only tape worked. Therefore
the emulator patches the ROM to fix the IEEE488 routines.

As well as other low-level fixes the 2001 patch obtains the load address for a program file
from the first two bytes of the file. This allows the loading of both PET2001-saved files (that
have $0400 as their load address) and other PET files (that have $0401). The PET2001
saves from $0400 and not from $0401 as other PETs do.

Moreover, the secondary addresses used are now 0 and 1 for load and save, respectively,
and not arbitrary unused secondary addresses.

To select which model to run, specify it on the command line with the -model MODEL option,
where MODEL can be one of a list of PET model numbers, all described in see Section 7.7.1
[PET model], page 184,

2.1.6 CBM-II emulator features

The CBM-II emulator emulates several types of CBM-II models. Those models are known
under different names in the USA and Europe. In the States they have been sold as B128
and B256, in Europe as CBM 610, CBM 620 (low-profile case) or CBM 710 and CBM 720 (high-
profile case with monitor). In addition to that now an experimental C510 emulation is
included. The C510 (also known as P500) is the little brother of the C600/700 machines.
It runs at roughly 1 MHz and, surprise, it has a VIC-II instead of the CRTC. Otherwise
the different line of computers are very similar.

These computers are prepared to take a coprocessor board with an 8088 or Z80 CPU. Indeed
there are models CBM 630 and CBM 730 that supposedly had those processors. However these
models are not emulated.

The basic difference is the amount of RAM these machines have been supplied with. The
B128 and the CBM *10 models had 128KiB RAM, the others 256KiB. This implies some
banking scheme, as the 6502 can only address 64KiB. And indeed those machines use a
6509, that can address 1 MiB of RAM. It has 2 registers at addresses 0 and 1. The indirect
bank register at address 1 determines the bank (0-15) where the opcodes LDA (zp),Y and
STA (zp),Y take the data from. The exec bank register at address 0 determines the bank
where all other read and write addresses take place.

The business line machines (C6xx/7xx) have the RAM in banks 1-2, resp. 1-4. All available
banks are used for BASIC, where program code is separated from all variables, resp. from
normal variables, strings and arrays that are distributed over other banks. The C510 instead
has RAM in banks 0 and 1, and uses bank 1 for program and all variables. Bank 0, though,
can be accessed by the VIC-II to display graphics.

Many models have been expanded to more than the built-in memory. In fact some machines
have been expanded to the full 1IMiB. Bank 15 is used as system bank, with only little
RAM, and lots of expansion cartridge ROM area, the I/O and the kernal/basic ROMs.

Chapter 2: About VICE 11

Some models have been modified to map RAM into the expansion ROM area. Those
modifications can be emulated as well.

The different settings are described in see Section 7.8.1 [CBM-II model|, page 195.

2.1.7 SCPU64 emulator features

The XSCPU64 emulator is a simulation of a C64 equipped with a SuperCPU64 V2B. Fea-
tures:

e 20 MHz asynchronous single cycle 65816 CPU core with proper dummy and invalid
cycle handling.

e 128 KiB static RAM, 0-16 MiB SIMM RAM, 64-512 KiB EPROM emulated and their
respective timing details.

e All RAM optimization configurations supported with write buffer.

e 1/O area access delays, write through to SRAM implemented.

e Memory mappings including cartridge and boot memory map and kernal shadow.

e Hardware registers and switches implemented.

e Replacement SCPU64 ROM compatible with the original to avoid distribution problems

e [t’s using the single cycle VICII core for accurate simulation

Still to do:
e Measure and verify VICII interrupt phase shift
e Measure and verify BA phase shift
e SIMM RAM extra 7.5 cycle refresh delay every 10us missing.
e CPU NMI support for “reset” button

The emulation is quite accurate but not perfect. If you code something timing intensive
using this simulation please always check it on real hardware to avoid bad surprises.

The hardware itself is asynchronous in nature, therefore caution must be taken to not do
long timing loops without synchronization in 20 MHz mode. Also don’t squeeze out the last
remaining cycles without leaving a safety buffer. Synchronization points can be created by
doing I/0O reads or writes and leaving a few hundred cycles left each frame will not hurt.

Otherwise it can happen that the code is running on this version of VICE or my SCPU64
V2+C128D perfectly but nowhere else due to manufacturing variations and frequency drifts.

2.2 The keyboard emulation

There are two fundamentally different ways of emulating the keyboard in VICE, both of
which have their individual shortcomings and strengths:

Symbolic Mapping

The default way (symbolic mapping) is to map every key - as far as possible - in a way that
inside the emulation the symbol that is printed on the host key is produced. For example,
if you press *, which is bound to Shift-8 on a U.S. keyboard, in the C64 emulator, the
emulated machine will have just the unshifted * key pressed (as * is unshifted on the C64
keyboard). Likewise, pressing > on the same U.S. keyboard without any shift key will cause
the combination Shift-7 to be pressed in the emulated C64. This way, it becomes quite

Chapter 2: About VICE 12

obvious what keys should be typed to obtain all the symbols. The key printed on the host
keyboard will be pressed in the emulator.

Note that while these mappings will allow easier typing if you are used to your host keymap,
it might cause various problems in the emulation and not all emulated keys are accessible.
If you encounter such problems, try the positional mapping.

e Some keys really need to be mapped specially regardless (those that do not exist on a
PC keyboard). Some examples are the Commodore key, RUN/STOP, Clear/Home. The
exact mapping depends on your host layout, but should follow mostly the layouts shown
below. If in doubt, you can read the keyboard mapping files.

e the emulator has to "de-shift" (remove the shift modifier) from some keys. For exam-
ple, if you want to get a ":" on a german keyboard, you have to press "." and shift
simulaneously. Then, the emulator sees the events "shift pressed" and ":" pressed. At
the moment you have pressed shift, the emulator does not know what key you are using
next (or even if you are actually going to use another key before releasing shift again),
so it has to deliver this state to the keyboard matrix. If you press ".", then shift, to
achive a ":", the emulator has to take back the shift key although it is still pressed, as
the ":" is an unshifted key in the c64/c128 keyboard matrix.

e A similar problem exists when you press a key that is unshifted on the host keyboard,
and the emulator must "shift" (add the shift modifier) for the emulated keyboard. For
example on a US keyboard the brackets ([,]) are such a case. Unlike what would happen
on the real C64 when typing, VICE “presses” the Shift key together with the key to
shift when the Shift must be forced. In most cases this should work fine, but some
keyboard routines are quite picky (eg x128 in CP/M mode) and tend not to recognize
the shift key because of this. For instance, F6 (which on the real C64 is obtained with
Shift + F5) could be recognized as F5. In that case, use the shift key manually (i.e.,
type Shift + F5 in the example).

Yes, we know this is a bug. Unfortunately it is less than trivial to fix 100%. If you encounter
any problems, please use a positional keymap as a workaround - that should always work
as expected.

PROs:

e Mostly intuitive typing if your muscle memory is conditioned strong to your host key-
board.

CONs:

e Does not preserve the position of the keys.

e Due to how the key mapping may add or remove the SHIFT flag from individual keys,
strange side effects may occur (see above).

e SHIFT/LOCK is added to the emulated keys - which may give unexpected results
depending on your host OS and keymap (It is really emulating the SHIFT-LOCK key
and not working as a CAPS-LOCK like in your host OS anymore).

Positional Mapping

For the positional mappings first all keys are mapped at their exact positions, as far as
possible, and then the remaining few (usually 2 or 3) will be mapped to other, yet unused,
keys. This is the recommended mapping for playing games or other programs that require

Chapter 2: About VICE 13

keys+modifiers (shift/control/cbm) to work exactly like on the emulated machine. This
way the keyboard is more comfortable to use in those programs (such as some games) that
require the keys to be in the correct positions. On the other hand it can be quite confusing
if you are not very familiar with the original emulated keyboards. Also not all keys can
be mapped exactly this way either, which means some of them still need to be mapped to
other keys (see further down).

Like with symbolic mapping, some keys really need to be mapped specially regardless (eg
RUN/STOP). The exact mapping depends on your host layout, but should follow mostly the
layouts shown below. If in doubt, you can read the keyboard mapping files.

PROs:

e Mostly intuitive typing if your muscle memory is conditioned strong to your (eg) C64
keyboard.

e Does preserve the position of (most of) the keys.
e Natural SHIFT and SHIFT/LOCK behaviour

CONs:
e Weird to use if you are not familiar with the emulated (eg) C64 keyboard.

Notes

We depend a lot on your support to improve the keyboard maps, as we can not test all
emulators in all possible configurations and using all host keyboard mappings. Please report
any problems to us so we can fix them!

If you experience problems with ’accent’ keys such as acute, grave, tilde, circumflex, diaresis
(and possibly more/other, depending on your host keyboard layout) try switching to a "no
deadkeys" layout in your OS. Note that currently SDL requires using a "no deadkeys"
keyboard layout! In any case, please also report these problems so we can fix them!

For more information on making your own keymaps (or helping to fix/update the existing
ones), see see Section 4.2 [Keymap files], page 35.

2.2.1 C64 & VIC20 Keyboard Map

This mapping applies to the C64, SCPU, VIC20 and DTV emulators.

Chapter 2: About VICE 14

2.2.1.1 Symbolic (US)

CLE) CE -0 (L L IS0)]

TEEEEELEEEF EIFE S
= Tslisleleded=adesedal L Teel L1 IBEJ
L 8 o o o o 5]
T Taalpelebdslindod T L1 1 [BEE
"LIL1L ~ 1 I1LILILILEE

2.2.1.2 Positional (US)

A) B] CL | |:|

e vl = s ™

i T S [) e e A e
BN % Y 8 P ()
el B B T B

2.2.1.3 Symbolic (DE)

fd@dlEdddIEENE| | |

| el fnfnnficol oo, < s fon]™
P T T e .

Chapter 2: About VICE 15

2.2.1.4 Positional (DE)

B JIF: Fi M =
P * HsS = o ol ' T
3 R O A TR 1 OFF || B Al
= WNE

Rl 7 S R e e O e

N P 5 o e o e o O AEE
leoldesiallid L L L BEE
"L Ll - 11l Iﬁﬁ .

2.2.2 C128 Keyboard Map

APE LIHE F2
ALT Ao Teweg : .

: i = T
s melfaseol|acrfarefocenfs s e o o D 45T L f 2
- — . I I I
I T T O O e e e e S
AEmmmaEmmEE IR
- * s Qo
" Eeekealeclealznloalost B E P =1 | - |
el [l ¢

This mapping applies to the C128 emulator. It is for a large part identical with the respective
C64 mapping, plus the added function- and extra keys.

2.2.2.1 Symbolic (US)

e =1 F? Fi Fa ET s
Ib I.H'I - - — LN (e e

T | |
T) T) R O ﬂﬁﬁ ===

N e e o v an
T Tkl L L L1 [CLL
FEC L

Chapter 2: About VICE 16

2.2.2.2 Positional (US)

LA IR I_ll-
0 0 0

WFEEEE‘EFFHF.HFMFHFIIW Iﬂﬂ

" el TP T)]

2.2.2.3 Symbolic (DE)

5]
L W -

N O O T S
N) R S 5 2 O 2))
MR % 7 I P G

2.2.2.4 Positional (DE)

CCCAC T R ‘
B : S o TPy -

2.2.3 C16 & Plus4 Keyboard Map
TODO

Chapter 2: About VICE

2.2.4 PET Graphics Keyboard Map
The PET2001 uses the original graphics keyboard made from "chiclet" keys:

17

¥ i H &] CLR = s
I = —_ O r 9 = 5 - - — - HoMe || crsr | cass | DEL
2 W E R T ¥ L] P] 7 i g
& [Of Jf Hf L 0} =« &l O O n = = = W
n — —— — - - — —
®| ™} =i H | my S Fiy QO C oy o) 1
~elum
£ X C W 3 M g . 7 1 2 a l
& EFy = @) T A) N &} o M =] =| H| H
siFt]vs e [1) . | HL Tsrt [v
= = W[" Ll L El a1 | &
The 3032 and 4032 use "real" graphics keyboard, which is based on the same keyboard
matrix and looks like this:
] 5 » L y] 1 [1 BT '
- L = L] Ll | LIl fad A sl F | + | -
I-I'_rI L W E] T ¥ u o 4 1 1
) L a || ™ I I F- | L] ™ =|]
I\..|:.I X ' k] ! i] R I 3
Wl My =l =)0 ol & A = el of of O
aHE1 & L W il d K ¥ HE1 1 i
L D = Bl M L= 8 F‘
l e h L]

For practical reasons, there is no extra keymap for the chiclet keyboard - any attempt to
somehow reproduce that would end up too similar to what we are using now for the graphics

keyboard anyway:

Chapter 2: About VICE 18

2.2.4.1 Symbolic (US)

ErEEEEREErEEEEee

¥ Ul =l'cl o of el siel o] -

Tl dd T bl T
bt =k - - 'l h ! I .

n - L

1 = - 4 | | [] . - = k.

= el s = e o ol e s el Al]

SR E
4 5 Y

Chapter 2: About VICE 19

2.2.4.4 Positional (DE)

¥ Ul =lal ol ol el slel ol o o

= Lol o[l Lol ol ol ol el ol
L -

2.2.5 PET Business Keyboard Map

This Layout is used for the "big" PET models, like the 8032. The matrix is not compatible
to the graphics keyboard:

= [lmus
-+
1 1 m'l'
e 1wl sl o ol ol sl el o e
- ! - . . J) . : !
LOCK. - . = % 2
* - — 1 il e + |
s | ' ' ' ' ' < W= ' CLR
aFr & - — ! #ICAE
i £ — i i w8 =

2.2.5.1 Symbolic (US)

COENEEENEEEREEN
FEEELLEELELL
HEs

[. .

e Vsl wl ol o ol el sl el
G T) T

T el sl el LT L
b w - -~ i el T

Chapter 2: About VICE 20

2.2.5.2 Positional (US)

CUdNE NN EEEEEEE

B
Sl w] S wl af l e] e

2.2.5.3 Symbolic (DE)

CdNNEEEN EEEN

LR E R T
. nEL b oFF
Hidain 1 |
L o - — [L =1 | u

G) S T T

r . .

i T N
| w - - 'l hl

2.2.5.4 Positional (DE)

CELO OO O IO

e Vsl sl o s o ol el sl el ol |
S S T T

2.2.6 CBM2 Keyboard Map
TODO

Chapter 2: About VICE 21

2.3 The joystick emulation

Joysticks can be emulated both via the keyboard and via a real joystick connected to the

host machine.

There are two keyboard layouts for joystick use, known as numpad and custom.

The numpad layout uses the numeric keypad keys, i.e., the numbers 1...9 which emulate

all the directions including the diagonal ones; 0 emulates the fire button.

The custom layout is configurable to your liking.

For some of the emulators there can be extra joysticks besides the built-in joystick ports,

the following list provides the mappings for the currently supported joystick/joypad ports:

The internal joystick port 1 [x64/xscpu64/x64dtv/x128/xvic/xplusd/xcbmbx0] is mapped

to joystick device #1.

The internal joystick port 2 [x64/xscpu64/x64dtv/x128/xplusd /xcbmb5x0] is mapped to joy-

stick device #2.

The CGA userport joystick adapter ports 1 and 2 (x64/xscpu64/x128/xvic/xpet/xcbm?2)

are mapped to extra joystick devices #1 & #2 respectively.

The PET userport joystick adapter ports 1 and 2 (x64/xscpu64/x128/xvic/xplus4/xpet /xcbm2)

are mapped to extra joystick devices #1 & #2 respectively.

The C64DTV HUMMER userport joystick adapter port (x64/xscpu64/x128/xvic/xplusd/xpet/xcbm?2)
is mapped to extra joystick device #1.

The OEM userport joystick adapter port (x64/xscpu64/x128/xvic/xplusd/xpet/xcbm?2) is

mapped to extra joystick device #1.

The HIT userport joystick adapter ports 1 & 2 (x64/xscpu64/x128) are mapped to extra

joystick devices #1 & #2 respectively.

The KingSoft userport joystick adapter ports 1 & 2 (x64/xscpu64/x128) are mapped to

extra joystick devices #1 & #2 respectively.

The StarByte userport joystick adapter ports 1 & 2 (x64/xscpu64/x128) are mapped to

extra joystick devices #1 & #2 respectively.

The Petscii userport SNES pad adapter port (x64/xscpu64/x128/xvic/xcbm2) is mapped

to extra joystick device #1.

The Superpad64 userport SNES pad adapter ports 1, 2, 3, 4, 5, 6, 7 & 8
(x64/xscpu64/x128 /xvic/xcbm?2) are mapped to extra joystick devices #1, #2, #3, #4,

#5, #6, #7 & #8 respectively.

The Inception joystick adapter ports 1, 2, 3, 4, 5, 6, 7 & 8 (x64/x64sc/xscpu64/x64dtv/x128 /xcbmbx0/xvic)
are mapped to extra joystick devices #1, #2, #3, #4, #5, #6, #7 & #8 respectively.

The MultiJoy joystick adapter ports 1, 2, 3, 4, 5, 6, 7 & 8 (x64/x64sc/xscpubd /x64dtv /x128 /xcbm5x0)
are mapped to extra joystick devices #1, #2, #3, #4, #5, #6, #7 & #8 respectively.

The SpaceBalls joystick adapter ports 1, 2, 3,4, 5, 6, 7 & 8 (x64 /x64sc/xscpub4 /x64dtv/x128 /xcbmbx0)
are mapped to extra joystick devices #1, #2, #3, #4, #5, #6, #7 & #8 respectively.

The Ninja SNES pad adapter ports 1, 2 & 3 (x64/x64sc/xscpu64/x64dtv/x128 /xcbmb5x0/xplusd)

are mapped to extra joystick devices #1, #2 & #3 respectively.

The Stupid Pet Tricks joystick adapter port (x64/x64sc/xscpu64/x128/xcbm2/xpet/xvic)
is mapped to port extra joystick device #3.

Chapter 2: About VICE 22

The ProtoPad SNES pad adapter port is mapped to the same port it is attached to.
The Trap-Them SNES pad adapter port is mapped to the same port it is attached to.
The MicroFlyte analog joystick is mapped to the same port it is attached to.

The SID cartridge joystick port (xplus4) is mapped to extra joystick device #4.

2.4 The disk drive emulation

All the emulators support up to 4 external disk drives as devices 8, 9, 10 and 11. Each of
these devices can emulate virtual Commodore 1541, 1541-I1, 1571, 1581, 2031, 2040, 3040,
4040, 1001, 8050, 8250, and D9090/60 drives in one of the following ways:

e using disk images, i.e., files that contain a dump of all the blocks contained in a real
floppy disk;

e accessing file system directories, thus giving you the use of files without having to copy
them to disk images; this also allows you to read and write files in the POO format.

e accessing a real device connected to the host machine. This works using the OpenCBM
library. You can get it from https://spiro.trikaliotis.net/opencbm. Make sure
to pick the right library (32 or 64bit) for your system.

e To use it in the emulators, go to the drive tab in the settings and choose "IEC
Device" and "Real Drive (OpenCBM)". Note that this will not work with all
emulators right now.

e If you want to use OpenCBM with ¢1541, start it with ¢1541 /dev/cbm (on Linux).

When using disk images there are two available types of drive emulation. One of them the
virtual drive emulation. It does not really emulate the serial line, but patches the kernal
ROM (with the so-called kernal traps) so that serial line operations can be emulated via
C language routines. This emulation is very fast, but only allows use of standard DOS
functions (and not even all of them). For real device access it is required to enable this type
of emulation.

The IEEEA488 drives (2031, 2040, 3040, 4040, 1001, 8050, 8250, and D9090/60) do not use
kernal traps. Instead the IEEE488 interface lines are monitored and the data is passed to
the drive emulation. To use them on the C64, you need to enable the IEEE488 interface
emulation. Only if the IEEE488 emulation is enabled, those drives can be selected.

The other alternative is a true drive emulation. The Commodore disk drives are provided
with their own CPU (a 6502 as the VIC20 and the PETSs) and their own RAM and ROM.
So, in order to more closely emulate its features, a complete emulation of this hardware
must be provided and that is what the hardware level emulation does. When the hardware
level emulation is used, the kernal routines remain unpatched and the serial line is fully
emulated. The problem with this emulation is that it needs a lot of processing power,
mainly because the emulator has to emulate two CPUs instead of one.

The PETs do not use a serial IEC bus to communicate with the floppy drive but instead
use the parallel IEEE488 bus. This does byte by byte transfers, as opposed to the bit by bit
transfers of the C64 and VIC20, so making it feasible to emulate the parallel line completely
while emulating the drive at DOS level only. The IEEE488 line interpreter maps the drives
8-11 (as described above) to the IEEE488 disk units, and no kernal traps are needed. The
same emulation of the Commodore IEEE488 bus interface is available for the C64 and the

https://spiro.trikaliotis.net/opencbm

Chapter 2: About VICE 23

VIC20. With IEEE488 drives you can have true 2031 emulation at unit #8, and still have
filesystem access at units #10 or #11, because monitoring the IEEE488 lines does not
interfere with the true drive emulation.

The IEEE488 disk units 2040, 3040, 4040, 8050 and 8250 are Dual Drive Floppy Disks.
This means that these devices handle two disks. The drives are numbered 0 and 1.

The Commodore 2040, 3040, 4040, 1001, 8050, 8250, and D9090/60 drives are so-called
"old-style" disk drives. Their architecture includes not one, but two processors of the 6502
type, namely a 6502 for the file handling and communication with the PET (IP), and a 6504
(which is a 6502 with reduced address space) for the drive handling (FDC). Both processors
communicate over a shared memory area. The IP writes commands to read/write blocks to
this area and the FDC executes them. To make the emulation feasible, the FDC processor is
not emulated cycle-exactly as a 6504, but simply by checking the commands and executing
them on the host. This provides a fast FDC emulation, but disallows the sending the FDC
processor commands to execute code. Applications where this is necessary are believed to
be rather seldom. Only the format command uses this feature, but this is checked for.

The dual disk drive 2040 emulates one of the very first CBM disk drives. This drive has
DOS version 1. DOS1 uses an own disk type, that is closely related to the 1541 disk image.
Only on tracks 18-24 DOS1 disks have a sector more than 1541 disks. DOS1 disk images
have the extension .d67.

The dual disk drives 3040 and 4040 use the same logical disk format as the VC1541 and
the 2031. In fact, the 4040 was the first disk with DOS version 2. The 3040 emulated here
originally was the same as 2040, only for the european 30xx PET series. As many of the
original DOS1 disk drives were upgraded (a simple ROM upgrade!) to DOS2, I use the 3040
number for a DOS 2.0 disk drive, and 4040 for a revised DOS 2 disk drive. It is, however,
not yet clear whether the disks here are write compatible to the 1541, as rumors exist that
the write gap between sectors is different. But read compatible they are. As VICE emulates
the FDC processor in C and not as 6504 emulation, this does not matter in VICE.

The drives 1001, 8050 and 8250 do actually have the very same DOS ROM. Only the code
in the FDC is different, which is taken care of by VICE. So for all three of those disk drives,
only dos1001 is needed. The DOS version used is 2.7.

The D9090/60 is the only Commodore branded hard drive produced for the PET series
computers, and were often used by C64 and C128 users for their significant storage capacity
(29162/19441 free blocks). Just like the other IEEE drives before it, it uses a separate CPU
as the FDC which in turn communicates with the SASI-to-ST506 bridge (which is controlled
by an AM2910). The hardware design is very similar to the 8050/8250 drive.

Creative Micro Designs (CMD) produced the last drives for the Commodore 8-bit systems.
They first released the hard drive (HD) line, and later the floppy drive (FD) line. The CMD
HD series can support up to 4 GiB HDs with 255 separate partitions, while the CMD FD
series can support up to 3.3 MB extended density floppy disks with 31 separate partitions.
The FD series are also backwards compatible with 1581 media. The DOS for the FD series
is stored on a ROM (dos2000 and dos4000, the latest versions being 1.40).

The CMD HD uses a small boot ROM (dosCMDHD, the latest version is 2.80) which loads
the primary DOS (latest is 1.92) off the HD itself. This allows for easy upgrades and
expandability. This is also the only drive to use the front panel buttons to control the
mode of the drive on reset. There are three modes of operation: normal, configuration,

Chapter 2: About VICE 24

and installation. VICE supports placing the drive in either of these modes through the
"Reset" sub-menu on the status bar for the GTK3 interface, and the "Reset" menu in the
SDL interface. When creating a new DHD image, simply create an EMPTY file and VICE
will automatically place the drive in installation mode. The DOS will detect the drive as
the size specified by "Drive#FixedSize" (or "-drive#tfixedsize") which is 8GB by default.
To use a specific sized disk, set this value to the maximum size, or set this value to "0"
and set the image file on disk to the desired size (it should be a multiple of 512 bytes).
Once the DOS is installed, the CMD "hd-tools" program can be used to configure various
settings and partition the drive; this is done in configuration mode for safety. When in
either configuration or installation mode, the device number is set to 30. Therefore, it
is not suggested to place two or more CMD HDs in either of these modes on the same
bus at the same time. When migrating from real CMD hardware, use any HDD imaging
software ("dd" or GNU "ddrescue" on Linux) to copy the raw contents of a device to a
file. The destination file should have a "DHD" extension. For those users with multiple
disks, SCSI ID 0, LUN 0 should have the extension "DHD", but any other drives should
have ".S<ID><LUN>" where <ID> is the SCSI ID and <LUN> is the LUN or logical unit.
Place all the files in the same folder when attaching to the "DHD™" file. The other files
will automatically be scanned for and connected as well. The CMD HD boot ROM is used
for partition management, and ALL versions have a known bug which corrupts data when
deleting paritions across multiple SCSI drives. To avoid this scenario, it is highly suggested
that another full DHD image be created in VICE (on another unit) and all the files be
copied over from multi-disk configurations, using CMD "fcopy" for example, to the new
unit. This will allow the user to take advantage of all the CMD HD features without the
potential for data loss.

2.5 Supported file formats

VICE supports the most popular Commodore file formats:
e X64 or D64 disk image files; Used by the 1541, 2031, 3040, 4040 drives.
e G64 GCR-encoded 1541 disk image files
e P64 lowlevel NRZI flux pulse disk image files
e D67 CBM2040 (DOS1) disk image format
e D71 VC1571 disk image format
e D81 V(1581 disk image format
e D80 CBMS050 disk image format
e D82 CBMS8250/1001 disk image format
e D90 CBM D9090/60 disk image format
e D1M FD2000/FD4000 DD disk image format
e D2M FD2000/FD4000 HD disk image format
e D4M FD4000 ED disk image format
e DHD CMD HD disk image format
e T64 tape container files (read-only)

e TAP lowlevel tape image files

e P00 program files

Chapter 2: About VICE 25

e CRT C64 cartridge image files
e TCRT tapecart image files

A utility (c1541, see Chapter 14 [c1541], page 264) is provided to allow transfers and
conversions between these formats.

Notice that the use of the X64 file format is deprecated now.
You can convert an X64 file back into a D64 file with the UNIX dd command:
dd bs=64 skip=1 if=IMAGE.X64 of=IMAGE.D64

See Chapter 17 [File formats], page 278. for a technical description of the supported file
formats.

2.6 Common problems

This section tries to describe the most common known problems with VICE, and how to
resolve them.

2.6.1 Sound problems

VICE should compile and run without major problems on many systems, but there are
some known issues related to the sound driver.

If you are having sound problems, such as skipping, first monitor how much CPU time the
respective emulator is taking on your system. To run smoothly, on a modern system, it
should really never go over 50% or so, except for very short peaks that should also stay well
beyond 90%. If you see it takes more, try disabling some of the most CPU intense features
(disable CRT emulation, use fastsid instead of reSID, disable true drive emulation).

If the CPU usage is ok, try using a different sound driver. You may also try increasing the
sound buffer size (although the default should be ok for modern systems).

All platforms that can run the SDL port (like Amiga, BeOS, etc) should be able to play
sound via SDL.

2.6.2 Video problems

If you don’t get video output, the problem may be that your system has no suitable Open-
GL driver - which is strictly required for the GTK3 port. Have a look at the logfile to see
if this is the problem.

2.6.3 Printer problems

VICE supports the emulation of a printer either on the userport or as IEC device 4. Un-
fortunately the Commodore IEC routines do not send all commands to the IEC bus. For
example an OPEN 1,4 is not seen on the IEC bus. Also a CLOSE 1 after that is not seen.
VICE can see from printing that there was an OPEN, but it cannot see when the close was.
Also a "finish print job" cannot be seen on the userport device. To flush the printer buffer
(write to print.dump or to the printer) now a menu entry can be used. Disabling and
re-enabling the printer should work as well.

The printing services have not been extensively tested but apart from the problem mentioned
above it should work fine now.

Chapter 2: About VICE 26

2.6.4 PET keyboard problems

If you find that the German keyboard mapping (plus German charset) does not print up-
percase umlauts, then you are right. The umlauts replace the [,\ and | characters in the
charset. The keys that make these characters do not have a different entry in the PET
editor ROM tables when shifted. Thus it is not possible to get the uppercase umlauts in
the editor. Nevertheless other programs are reported to change the keyboard mapping table
and thus allow the use of the shifted (uppercase) umlauts.

Anyway, the VICE keyboard mappings are far from being perfect and we are open to any
suggestions.

27

3 Invoking the emulators

The names of the available emulators are:

e vsid, the SID player

e x64, the fast C64 emulator

e x64sc, the accurate C64 emulator

e x64dtv, the C64DTV emulator

e x128, the C128 emulator

e xvic, the VIC20 emulator

e xpet, the PET emulator

e xplus4, the PLUS4 emulator

e xcbm2, the CBM-II emulator (CRTC models)

e xcbm5x0, the CBM-II emulator (VIC-IT models)

e xscpu64, the SCPU64 emulator
You can run each of them by simply typing the name from a shell or by configuring your
window manager for example to use them to open disk images.

If you want to look at the log output run them from a terminal window such as xterm or
rxvt. For example, you could do

xterm -e x64sc

3.1 Command-line options used during initialization

There are several options you can specify on the command line. Some of them are used to
specify emulation settings and will be described in detail later (see Chapter 6 [Settings and
resources|, page 53, for a complete list). The remaining options are used only to give usage
information or to initialize the emulator in some way:

-help
-7 List all the available command-line options and their meaning.

-version Show the program name and version.

-features
List all compile time features

-default Set default resources (see Chapter 6 [Settings and resources], page 53). This
will override all the settings specified before, but not the settings specified
afterwards on the command line.

-config <filename>
Specify config file

—addconfig <filename>
Specify extra config file for loading additional resources. This can be used to
add "patch sets" for various configurations.

Chapter 3: Invoking the emulators 28

—dumpconfig <filename>
Write the complete config into file. Normally only resources that have been
changed from their default value would be written to the config file, however
with this option you can see all resources and their current values.

-settings—-node <path>
Activate settings dialog at node <path> after starting the emulator (Gtk3 only).
Meant for use during development, the <path> is string pointing to a node in
the settings tree (see src/arch/gtk3/uisettings.c).

-logfile <name>
Specify log file name (LogFileName).

-verbose Enable verbose log output.
-silent Disable all log output (except errors).

-seed <value>
Set the random seed (for debugging).

-keybuf <string>
Put the specified string into the keyboard buffer.

-console Console mode (for music playback, or for running the emulator test programs)

-limitcycles <cycles>
Automatically exit the emulator after a given number of cycles.

—-chdir <directory>
Change the working directory.

-autostart <name>
Autostart <name> (see Section 3.2 [Command-line autostart], page 29).

—autoload <name>
Attach and autoload tape/disk image <name>

-1 <Name> Attach <Name> as a tape image file.
-2 <Name> Attach <Name> as a tape image file for datasette #2 (PET)

-8 <Name>
-9 <Name>
-10 <Name>
-11 <Name>
Attach <Name> as a disk image to device 8, 9, 10 or 11.

-8d1 <Name>

-9d1 <Name>

-10d1 <Name>

-11d1 <Name>
Attach <Name> as a disk image to the second drive of a dual-drive device 8, 9,
10 or 11.

Chapter 3: Invoking the emulators 29

—attach8ro

—attach9ro

—attach10ro

—attachlliro
Attach disk image for drive #8-11 read only (AttachDevice8dOReadonly=1,
AttachDevice9dOReadonly=1, AttachDevicel0dOReadonly=1,

AttachDevicelldOReadonly=1) (all emulators except vsid).

—attach8dlro

—attach9dlro

—attach10dlro

—attachlldlro
Attach disk image for second drive of a dual-drive #8-11 read
only (AttachDevice8d1Readonly=1, AttachDevice9d1Readonly=1,
AttachDevicelOd1Readonly=1, AttachDevicelldlReadonly=1) (all
emulators except vsid).

—attach8rw

—attach9rw

—attachlOrw

—attachlirw
Attach disk image for drive #8-11 read write (if possible)
(AttachDevice8dOReadonly=0, AttachDevice9dOReadonly=0,
AttachDevice10dOReadonly=0, AttachDevicel1dOReadonly=0) (all
emulators except vsid).

—attach8dirw

—attach9dlrw

-attachl0dirw

-attachlldirw
Attach disk image for second drive of a dual-drive #8-11 read write (if
possible) (AttachDevice8d1Readonly=0, AttachDevice9d1Readonly=0,
AttachDevicel0d1Readonly=0, AttachDevicelld1Readonly=0) (all
emulators except vsid).

—exitscreenshot <name>
Specify name of a screenshot file that will be written when the emulator exits.
(ExitScreenshotName).

-exitscreenshotvicii <name>
Specify name of a screenshot file that will be written when the emulator exits.
(ExitScreenshotNamel). (x128)

3.2 Autostarting programs from the command-line

It is possible to let the emulator autostart a disk or tape image file, by simply specifying
its name as the last argument on the command line, for example

x64sc lovelygame.d64

Chapter 3: Invoking the emulators 30

will start the C64 emulator, attaching lovelygame.d64 as a disk image and running the
first program on it. You can also specify the name of the program on the fisk image by
appending a colon (‘:’) the name itself to the argument; for example

x64sc "lovelygame.d64:run me"

will run the program named run me on lovelygame.d64 instead of the first one.

Using the command-line option —autostart is equivalent; so the same result can be obtained
with

x64sc -autostart "lovelygame.d64:run me"

Note that if you specify a raw CBM or P00 file, the emulator will load the file, and after
doing so revert all settings to what they were before autostarting.

If you want to allow the started program to access the host file system, you will have to
enable "virtual device traps". If you want the autostart logic to disable true drive emulation
temporarily to speed up the autostart, then enable "handle TDE at autostart.

See Section 5.5 [Disk and tape images|, page 50. for more information about images and
autostart.

31

4 System files

In order to work properly, the emulators need to load a few system files:

e the system ROMs, raw binary files containing copies of the original ROMs of the
machine you are emulating;

e the keyboard maps, text files describing the keyboard layout;
e the palette files, text files describing the colors of the machine you are emulating.
e the romset files, text files describing the different ROMs to load.
The place where they will be searched for depends on the value of the Directory resource,

which is a colon (:)-separated search path list, like the UNIX PATH environment variable.
The default value is

$HOME/ .local/share/vice/EMU:PREFIX/1ib/vice/EMU: BOOTPATH/EMU

Where PREFIX is the installation prefix (usually /usr/local), EMU is the name of the em-
ulated machine (C64, C64DTV, C128, PET, PLUS4, CBM-II, SCPU64 or VIC20) and BOOTPATH
is the directory where the executable resides. The disk drive ROMs are looked for in a
directory with EMU set to DRIVES. $HOME is the user’s home directory.

For example, if you have the C64 emulator installed in
/usr/local/bin/x64
then the value will be
$HOME/ .local/share/vice/C64: /usr/local/lib/vice/C64:/usr/local/bin/C64
And system files will be searched for under the following directories, in the specified order:
1. $HOME/.local/share/vice/C64
2. /usr/local/lib/VICE/C64
3. /usr/local/bin/C64
System files can still be installed in a different directory if you specify a complete path
instead of just a file name. For example, if you specify ./kernal as the kernal image name,
the kernal image will be loaded from the current directory. This can be done by using

command-line options or by modifying resource values (see Section 6.1 [Resource files],
page 53).

4.1 ROM files

Every emulator requires its own ROM set. For the VIC20 and the C64, the ROM set
consists of the following files:

e kernal, the Kernal ROM (8 KiB)
e basic, the Basic ROM (8 KiB)
e chargen, the character generator ROM (4 KiB)

The C128 needs the following files:
e kernal, the Kernal ROM (8 KiB)
e basic, the Basic + Editor ROM (32 KiB)
e chargen, the character generator ROM (4 KiB)

Chapter 4: System files 32

The C128, VIC20, SCPU64 and C64 emulators also need the following DOS ROMs for the
hardware-level emulation of the 1540, 1541, 1571, 1581, 2000, and 4000 disk drives, as well
as the CMD hard drive:

dos1540-325302+3-01.bin, the 1540 drive ROM (16 KiB) (DOS 2.6 V170, Com-
modore ROM images 325302-01 and 325303-01)
dos1541-325302-01+901229-05.bin, the 1541 drive ROM (16 KiB) (DOS 2.6, Com-
modore ROM images 325302-01 and 901229-05.bin)

dos1541ii-251968-03.bin, the 1541-IT drive ROM (16 KiB) (DOS 2.6, Commodore
ROM image 251968-03)

dos1551-318008-01.bin, the 1551 drive ROM (16 KiB) (DOS 2.6 TDISK, Commodore
ROM image 318008-01)

dos1570-315090-01.bin, the 1570 drive ROM (32 KiB) (DOS 3.0, Commodore ROM
image 315090-01)

dos1571-310654-05.bin, the 1571 drive ROM (32 KiB) (DOS 3.0, Commodore ROM
image 310654-05)

dos1571cr-318047-01.bin, the 1571CR drive ROM (32 KiB) (DOS 3.0, Commodore
ROM image 318047-01)

dos1581-318045-02.bin, the 1581 drive ROM (32 KiB) (DOS 10, Commodore ROM
image 318045-02)

d0s2000-cs-33cc6f .bin, the CMD FD-2000 drive ROM (32 KiB) (CMD FD DOS
1.4, CMD ROM image cs-33cc6f)

d0s4000-£d-350022. bin, the CMD FD-4000 drive ROM (32 KiB) (CMD FD DOS
1.4, CMD ROM image fd-350022.bin)

bootromCMDHD-v2-80.bin, the CMD HD boot ROM (16 KiB) (Boot ROM V2.80,
CMD ROM image)

In addition to those all emulators can handle a parallel IEEE488 interface (the C64 and
C128 via $df** extension, the VIC20 via VIC1112 emulation) so they also need the DOS
ROM for the IEEE disk drives:

dos2031-901484-03+05.bin, the 2031 drive ROM (16 KiB) (DOS 2.6, Commodore
ROM images 901484-03 and 901484-05)

dos2040-901468-06+07 . bin, the 2040 drive ROM (8 KiB) (DOS 1, Commodore ROM
images 901468-06, 901468-07)

dos3040-901468-11-13.bin, the 3040 drive ROM (12 KiB) (DOS 2, Commodore
ROM images 901468-11, 901468-12 and 901468-13)

dos4040-901468-14-16.bin, the 4040 drive ROM (12 KiB) (DOS 2, Commodore
ROM images 901468-14, 901468-15 and 901468-16)

dos1001-901887+8-01.bin, the 1001/8050/8250 drive ROM (16 KiB) (DOS 2.7, Com-
modore ROM images 901887-01 and 901888-01)

dos9000-300516+7-revC.bin, the D9090/60 drive ROM (16 KiB) (DOS 3.0, Com-
modore ROM images 300516-RevC and 300517-RevC)

Note that there are other DOS images on the internet. The DOS 2.5 images might be used
with the 8050, but it cannot handle the double sided drives of the 1001 and 8250 and it is
not supported by VICE.

Chapter 4: System files 33

The PET emulator uses an expanded setup, because there are three major versions of the
Basic and the Kernal, and many versions of the Editor ROM. In addition there are cartridge
ROM sockets.

The Kernal files contain the memory from range $F000-$FFFF, the Basic ROMs either the
range $C000-$DFFF or $B000-$DFFF. To handle the different screen sizes and keyboards,
different so-called “editor-ROMSs” for the memory range $E000-$E800 are provided. The
PET ROMs have the following names:

kernal-1.901439-04-07.bin, the PET2001 Kernal ROM (4 KiB) (Commodore ROM
images 901447-06 and 901447-07, same as 901439-04 and 901439-07)

kernal-2.901465-03.bin, the PET3032 Kernal ROM (4 KiB) (Commodore ROM
image 901465-03)

kernal-4.901465-22.bin, the PET4032/8032 Kernal ROM (4 KiB) (Commodore
ROM image 901465-22)

basic-1.901439-09-05-02-06.bin, the PET2001 Basic 1 ROM (8 KiB) (Commodore
ROM images 901447-09, 901447-02, 901447-03, 901447-04.bin. The -09 ROM is the
revised -01 ROM. Same as images 901439-09, 901439-05, 901439-02, 901439-06. The
-09 ROM is the revised -01 ROM)

basic-2.901465-01-02.bin, the PET3032 Basic 2 ROM (8 KiB) (Commodore ROM
images 901465-01 and 901465-01)

basic-4.901465-23-20-21.bin, the PET4032/8032 Basic 4 ROM (12 KiB) (Com-
modore ROM images 901465-23, 901465-20 and 901465-21. The -23 ROM is a revised
-19 ROM)

edit-1-n.901439-03.bin, the PET2001 editor for graphics keyboards (2 KiB) (Com-
modore ROM image 901447-05, same as 901439-03)

edit-2-b.901474-01.bin, the PET3032 editor for business keyboards (2 KiB) (Com-
modore ROM image 901474-01)

edit-2-n.901447-24.bin, the PET3032 editor for graphics keyboards (2 KiB) (Com-
modore ROM image 901447-24)

edit-4-40-n-50Hz.901498-01.bi, the PET4032 editor for graphics keyboards (2 KiB)
(Commodore ROM image 901498-01)

edit-4-40-b-50Hz.ts.bin, the PET4032 editor for business keyboards (2 KiB) (Said
to be "901498-01 modified to use a business keyboard on a 50Hz 4032")

edit-4-80-b-50Hz.901474-04_.bin, the PET8032 editor for business keyboards (2
KiB) (Commodore ROM image 901474-04-7)

characters-1.901447-08.bin, the character generator ROM (2KiB) for the PET
2001. It has two sets with 128 chars each. The second (inverted) half of each set is
computed from the first half by inverting it. This is a PET hardware feature. Com-
pared to the character ROMs for later models, it has the upper case and lower case
letters swapped: to get lower case letters, you need to use the shift key (so the basic
abbreviation for "LIST" looks like "Li", instead of "1I" for "list". (Commodore ROM
image 901447-08)

characters-2.901447-10.bin, the character generator ROM (2KiB). It has two sets
with 128 chars each. The second (inverted) half of each set is computed from the

Chapter 4: System files 34

first half by inverting it. This is a PET hardware feature. (Commodore ROM image
901447-10)

e chargen.de, the character generator ROM (2KiB). This version is a patched German
charset, with the characters [, \ and] replaced by umlauts. It has been provided by U.
Guettich and he reports that it is supported by some programs.

e characters.901640-01.bin, the SuperPET character generator ROM (4KiB). The
first half is the same as characters-2.901447-10.bin, the second half contains, in-

stead of an upper and lower case set, an ASCII character set and an APL character
set. For these sets, the screen code is equal to the ASCII/APL code.

e waterloo-[abcdf]000.901898-0[1-5] .bin, waterloo-e000.901897-01.bin. The
Waterloo system ROMs for the 6809 CPU in the SuperPET.

e hre-9000.324992-02.bin HiRes Emulator (at $9000) and hre-a000.324993-02.bin
HiRes BASIC (at $A000). These are the two roms for supporting the HRE on the
8296. The ROMs are initialized by the command SYS 36864.

The PETSs also have sockets for extension ROMs for the addresses $9000-$9FFF, $A000-
$AFFF and $B000-$BFFF (the last one for PET2001 and PET3032 only). You can spec-
ify ROM image files for those extensions command line options —petrom9, -petromA and
-petromB resp.

An alternative would be to specify a long kernal ROM with the ~kernal option that includes
the extension ROM areas.

Also, you can specify replacements for the basic ROM at $B000-$DFFF with the
-petromBasic option and for the editor ROM at $E000-$E7FF with the -petromEditor
option.

The CBM-II emulator again uses another setup. For those models the kernal used is the
same for all. However, for different amounts of memory exist different versions of the
BASIC ROMs. The 128KiB RAM version (C610, C710, B128) uses one bank of 64KiB for
the BASIC text and another one for all the variables. The 256KiB RAM version uses one
bank for text, one for variables, one for arrays and one for strings.

Also the character generator ROMs have a format different from the above. The other
character ROMs have 8 bytes of pixel data per character. Those ROMs have 16 bytes per
character instead. The C6x0 only uses the first 8 of it, but the C7x0 uses 14 lines per
character and needs those larger ROMs. Both ROMs hold, like the PET, two character
sets with 128 characters each. Again the second half of the full (256 char) character set is
computed by inverting.

e kernal, the KERNAL (8KiB) for the business machines (6xx/7xx)

e kernal.500, the KERNAL (8KiB) for the personal machine (510) (901234-02)
e basic.128, the CBM-II 128KiB BASIC (16KiB)

e basic.256, CBM-II 256KiB BASIC (16KiB)

e basic.500, C510 BASIC (16KiB) (901236-02 + 901235-02)

e chargen.500, character generator ROM for the C5x0 (4KiB) (901225-01)

e chargen.600, character generator ROM for the C6x0 (4KiB)

e chargen.700, character generator ROM for the C7x0 (4KiB)

Chapter 4: System files 35

The SCPU64 needs the following files:
o scpubd4, the SCPU64 ROM (128 KiB)
e chargen, the character generator ROM (4 KiB)

4.2 Keymap files

Keymap files are used to define the keyboard layout, defining which key (or combination of
keys) must be mapped to each keysym.

In other words, the keyboard emulation works like this: whenever the user presses or releases
a key while the emulation window has the input focus, the emulator receives an event with
a value that identifies that key. That value is called a keysym and is unique to that key.
The emulator then looks up that keysym in an internal table that tells it which key(s) to
press or release on the emulated keyboard.

VICE keymap files have the .vkm default extension, and every emulator comes with a default
positional mapping and a default symbolic mapping, see Section 2.2 [Keyboard emulation],
page 11.

To find out the keycodes to use, incase you want to edit the keymaps yourself, you can
enable showing the keycodes in the status bar in the settings.

4.2.1 Comments

e Any line starting with the # sign, is completely ignored.

e Any characters in "C-style" comments is ignored (/* this is a comment */).

When creating new keymaps, please copy over the usual set of leading comments (have a
look at the default US keymaps).

In particular each file at the very least should contain a line indicating what type of mapping
it is supposed to be, for what host layout, what emulator, and which UI, like this:

Symbolic Mapping, US Layout, C64, GTK

4.2.2 Control commands

There are some special commands you can put into the keyboard file, these usually appear at
the beginning of the file, before any actual keycode definitions; they are recognized because
they start with an exclamation mark:

e !CLEAR clears the currently loaded keyboard map; it is necessary to put this at the
beginning of the file if you want the keymap file to override all of the current internal
settings;

e !INCLUDE followed by "filename" reads (inserts) file as mapping file. This is useful
when adding local mappings to an otherwise generic file (so you dont have to copy the
while file, but just add/modify a few keys).

e !UNDEF followed by keysym removes keysym from mapping table.

e !LSHIFT, !'RSHIFT, followed by a row and a column value, specify where the left and
right shift keys are located on the emulated keyboard; for example, C64 default keymaps
will specify
ILSHIFT 1 7
IRSHIFT 6 4

Chapter 4: System files 36

e !VSHIFT, followed by a shiftkey (RSHIFT or LSHIFT), specify what key will be used
as a virtual shift key when the shift flag is set.

e !SHIFTL, followed by a shiftkey (RSHIFT or LSHIFT), specify what key will be used
as a virtual shift-lock key; for example, C64 default keymaps will specify

IVSHIFT LSHIFT
ISHIFTL LSHIFT

For emulated keyboards that have only one shift key, set both 'LSHIFT and !'RSHIFT to the
same row/col and use RSHIFT for !VSHIFT and !SHIFTL.

e !LCTRL, followed by a row and a column value, specifiy where the left control key is
located on the emulated keyboard.

e ILCBN, followed by a row and a column value, specifiy where the left CBM key is located
on the emulated keyboard.

e !VCTRL, followed by a ctrlkey (LCTRL), specify what key will be used as a virtual
control key.

e !VCBM, followed by a cbmkey (LCBM), specify what key will be used as a virtual CBM

key.

For example, a C64 keymap would usually start with this block:

ICLEAR

ILSHIFT 1 7

IRSHIFT 6 4

IVSHIFT RSHIFT

ISHIFTL LSHIFT

ILCBM 7 5

1VCBM LCBM

ILCTRL 7 2

I'VCTRL LCTRL

When creating new keymaps, make sure to create the respective set of commands first and
make sure the row/column values are correct.

Before you fix the rest of your mapping, make sure to create mappings for all modifier keys
that relate to the used row/column pairs and update their SHIFTFLAG accordingly. Getting
those right is the key to making more complex mappings possible later.

For a example a typical GTK C64 symbolic mapping would contain something like this:

Shift_R 6 4 0x0004 /* right SHIFT -> right SHIFT */
Shift_L 1 7 0x0002 /* left SHIFT -> left SHIFT %/
Caps_Lock 1 7 0x0040 /* CAPS lock -> SHIFT lock */
Tab 7 5 0x2008 /* TAB -> CBM (can be combined with SHIFT) */
Control_L 7 2 0x4008 /* left CTRL -> CTRL (can be combined with SHIFT) */

4.2.3 Key mappings

This table is described by the keymap file, which is made up of lines like the following:
KEYSYM ROW COLUMN SHIFTFLAG /* COMMENT */

Where:

e KEYSYM identifying the keysym: In (GTK) it is a literal keyboard symbol as a string
(for example "space"), in (SDL) it is a numeric keycode (for example "32").

Chapter 4: System files

37

You can use the "show keycodes in statusbar" feature to see what keysym is bound to

any key.

e ROW and COLUMN refer to the row and column of the emulated key on the emulated key-
board - all existing keymaps have the respective keyboard matrix in them in comments,

have a look.

e The SHIFTFLAG controls various aspects of how a host key is mapped to the emulated
keyboard. For example you may want to artificially add or remove certain modifiers
to/from the emulated keypress.

A keymap is parsed line by line. More complex mappings can be created by mapping the
same key with different SHIFTFLAG to different emulated keys in multiple lines:

e A key mapping is found when the key symbol matches

e and when none of the following reject conditions apply:

Value Hex

0 0x0000
8 0x0008
128 0x0080
256 0x0100
512 0x0200
1024 0x0400

Description
The key is never shifted.

The key can be (optionally)

shifted by the user.

SHIFT modifier required on host.
Key is used for an alternative key-
board mapping

ALT-R (ALT-GR) modifier re-
quired on host.

CTRL modifier required on host.

Action

If any SHIFT modifiers pressed,
then reject key.

If any SHIFT modifiers pressed on
the host, and this flag is not set,
then reject key.

If SHIFT modifier(s) not pressed
on the host, and this flag is set,
then reject key.

if no alternative mapping is en-
abled (eg C64 mode in x128), re-
ject key.

If ALT-R modifier not pressed on
the host, and this flag is set, then
reject key.

If CTRL modifier not pressed on
the host, and this flag is set, then
reject key.

e If no reject condition was true then we found a possible match. If no other mapping
will be found, this is the one that will be used. We may or may not look for another
match, depending on:

Value Hex

Description

32 0x0020 Another definition for this keysym /scancode follows later in the file. If
this flag is not set, stop looking for another match.

e Once a match was found, the virtual modifiers are applied:

Value Hex Description

1 0x0001 The key is shifted on the emulated
keyboard

16 0x0010 Deshift key for this
keysym /scancode.

Action

virtual shift will be used when it is
not shifted on the host keyboard.
When the key is pressed with
shift on the host keyboard, shift
will not be used on the emulated
keyboard.

Chapter 4: System files

2048 0x0800 Key is combined with CBM for
this keysym/scancode

4096 0x1000 Key is combined with CTRL for
this keysym /scancode

e and last not least these are the flags left:

Value Hex Description

38

virtual CBM will be used when it
is not combined with CBM via an-
other mapped key.

virtual CTRL will be used when
it is not combined with CTRL via
another mapped key.

32768 0x8000 Do not emulate a "locked" switch for this key. This can be useful when
your host keyboard provides physical locking by itself. (currently works
only for the C128 40/80 and CAPS-lock keys)

For example this is is from the SDL C64 symbolic DE mapping:

32+1 not shifted on host, shifted on c64

60 5 7 0x0021 /* < -> <

32+128 shifted on host, shifted on c64

60 5 4 0x00a0 /* > => >

512+16 alt-gr on host, deshift for c64

60 6 0 0x0210 /* altr+< -> pound

4.2.3.1 Special Rows

*/

*/

*/

Besides the keyboard matrix of the emulated keyboard, there are a bunch of special keys

available in the negative rows as below:

Row Column Description

-1 n Joystick keymap A, direction n

-2 n Joystick keymap B, direction n

-3 0 First RESTORE key

-3 1 Second RESTORE key

-4 0 40/80 column key (x128)

-4 1 CAPS (ASCII/DIN) key (x128)

-5 n Joyport keypad, key n (not supported in x128)

For example, a lot of (GTK) keymaps would map RESTORE like this:

Restore key mapping
F12 -30
Page_Up -3 1

Joystick keymap direction column values for rows -1 and -2:

6 (N/W) 7 (North) 8 (N/E)
4 (West) 0 (Fire) 5 (East)
1(S/W) 2 (South) 3 (S/E)

Joyport keypad direction column values for row -5:

Chapter 4: System files 39

15 16 17 18 19

When a bigger spaced key is used, it uses the upper left most column value.

4.2.3.2 Modifier Flags

The SHIFTFLAG can have one of the following values. Flags can be combined by simply
ORing (or adding) them together:

Value Hex Description
0 0x0000 The key is never shifted.
1 0x0001 The key is shifted on the emulated keyboard, virtual shift will be used

when it is not shifted on the host keyboard.

2 0x0002 The key is the left shift key.

4 0x0004 The key is the right shift key. Use only this flag for emulated keyboards
that have only one shift key.

8 0x0008 The key can be (optionally) shifted by the user.

16 0x0010 Deshift key for this keysym/scancode. That means when the key is
pressed with shift on the host keyboard, shift will not be used on the
emulated keyboard.

32 0x0020 Another definition for this keysym/scancode follows later in the file

64 0x0040 Key is SHIFT-lock on the emulated machine. Usually you’d use this
for the CAPS lock key on the host keyboard.

128 0x0080 SHIFT modifier required on host.

256 0x0100 Key is used for an alternative keyboard mapping (e.g. C64 mode in
x128). Note that any alternative mappings must occur before the
normal mappings for the same key/symbol in the file.

512 0x0200 ALT-R (ALT-GR) modifier required on host.

1024 0x0400 CTRL modifier required on host.

2048 0x0800 Key is combined with CBM for this keysym /scancode.

4096 0x1000 Key is combined with CTRL for this keysym/scancode.

8192 0x2000 Key is (left) CBM on emulated machine.

16384 0x4000 Key is (left) CTRL on emulated machine.

32768 0x8000 Do not emulate a "locked" switch for this key. This can be useful when

your host keyboard provides physical locking by itself. (currently works
only for the C128 40/80 and CAPS-lock keys)

The SHIFTFLAG can be used to control various aspects of how the host key will map to the
emulated keyboard. For example it is useful if you want certain keys to be “artificially”
shifted by the emulator, and not by the user. Or the other way around, a key can be
“deshifted”.

For example, F2 is shifted on the C64 keyboard, but you might want it to be mapped to the
unshifted F2 key on the PC keyboard. For example, a typical C64 keymap would contain
the following:

F1 04 8 /* F1 -> F1 (+SHIFT allowed) */
F2 0 4 1 /*x F2 -> F1 + SHIFT */
F3 05 8 /* F3 -> F3 (+SHIFT allowed) */
F4 051 /* F4 -> F3 + SHIFT */
F5 0 6 8 /* F5 -> F5 (+SHIFT allowed) x/

Chapter 4: System files 40

F6 0 6 1 /*x F6 -> F5 + SHIFT %/
F7 0 3 8 /* F7 -> F7 (+SHIFT allowed) */
F8 0 31 /* F8 -> F7 + SHIFT x*/

where 0 and 4 identify the key (row 0, column 4 on the keyboard matrix), and 1 specifies
that every time the user presses F2 the shift key on the C64 keyboard must be pressed.

4.3 Palette files

Palette files are used to specify the colors used in the emulators. They are made up of lines
like the following:

RED GREEN BLUE DITHER
where RED, GREEN and BLUE are hexadecimal values ranging from 0 to FF and specifying the

amount of red, green and blue you want for each color and DITHER is a 4-bit hexadecimal
number specifying the pattern you want when rendering on a B/W display.

You have to include as many lines as the number of colors the emulated machine has, and
the order of the lines must respect the one used in the machine (so the N’th line must
contain the specifications for color N - 1 in the emulated machine).

Lines starting with the # sign are completely ignored. This is useful for adding comments
(such as color names) within the palette file.

For example, the default PET palette file (which has only two colors, 0 for background and
1 for foreground), looks like the following:

VICE Palette file

#
#
Syntax:
Red Green Blue Dither
#

Background
00 00 00 O

Foreground
00 FF 00 F

4.4 Romset files

The Romset files are not used by default on all emulators. You might have recognized that
the names of the ROM images are saved in resources. Loading a Romset file now just means
a ‘shortcut’ to changing all the resources with ROM image names and reloading the ROMs.

The PET and CBM-II emulators use this feature to change between the different ROM
versions available for those machines. E.g. the Romset file for the PET 2001 is

KernalName="pet2001"

EditorName=
ChargenName="chargen"
RomModule9Name=

RomModuleAName=

Chapter 4: System files 41

RomModuleBName=

As you can see, the file even uses the same syntax as the resource file, it is just a bit stripped
down.

While a Romset file is processed, the directory where the Romset file was found is tem-
porarily prepended to the search path (Directory resource). This also means that if you
have a setting for Directory in it, its effect is limited to the Romset file itself.

4.4.1 Romset command line options

-romsetfile <File>
load the given romset file

-romsetarchive <File>
load the given romset archive

-romsetarchiveselect <Item number>
select the given item from the current romset archive

4.5 Gtk3 Hotkeys files

The Gtk3 port of VICE allows setting custom keyboard shortcuts, which we refer to as
hotkeys. These hotkeys can be set either through the user interface or by editing hotkeys
files, which are stored either in the VICE data directory or in the user’s VICE configuration
directory.

VICE’s hotkeys files are read from VICE’s data directory, which we’ll refer to as $VICEDIR
and the (optional) user’s hotkeys will be in the user’s VICE configuration directory, which
we’ll refer to as $USERDIR.

On Unix, $VICEDIR will point to /usr/local/share/vice/, when using the default install
prefix, and $USERDIR will point to $HOME/.config/vice/. On Windows, $VICEDIR will
point to the root directory of the bindist and $USERDIR will point to %APPDATA%\vice,
which usually is C:\Users\%USERNAME),\AppData\Roaming\vice.

A custom path can be specified by using the command line interface: x64sc -hotkeyfile
<some-file>, or by using the UI (TODO).

4.6 Syntax of the hotkeys files

The syntax of the hotkeys files is pretty straightforward, a file can contain mappings, di-
rectives and comments. Leading and trailing whitespace is ignored by the parser.

4.6.1 Comments

Comments are started with either ; or # and occupy the rest of the line, they can also
appear inline after a directive or mapping.

For example:

This is a comment

monitor-open <Alt>h # This is an inline comment

Chapter 4: System files 42

4.6.2 Directives

Directives are special commands for the parser. They start with ! and are case-insensitive.

4.6.2.1 !CLEAR
Syntax

Iclear

Clear all registered hotkeys. Best used as the first directive in the (main) hotkeys file.

4.6.2.2 'DEBUG

Syntax
Idebug <enable|disable|on|off>

Enable or disable debugging messages via VICE’s log system. Messages will be prefixed
with 'Hotkeys:’. Debugging is disabled by default.

4.6.2.3 'INCLUDE

Syntax
linclude <file>

Process <file> as if its contents were injected into the current file being processed. This can
be used recursively. The <file> argument can be inside quotes (") to be able to use paths
or filenames with spaces in them, and quotes inside quotes can be used by escaping them
with \, for example: !include "foo \"bar\".vhk". Special variables As mentioned before,
a few special variables exist to use in the argument to the !'include directive: $VICEDIR
and $USERDIR. These can be used to avoid hardcoded, absolute paths.

For example:
linclude "$VICEDIR/common/gtk3-hotkeys-drive.vhk"

will include /usr/local/share/vice/common/gtk3-hotkeys-drive.vhk, assuming the de-
fault install prefix for VICE was used.

4.6.2.4 'UNDEF

Syntax

lundef [<modifier>..]<keyname>

Remove a hotkey from whatever action it is mapped to.
For example:

lundef <Alt>r # Unmap Alt+r from ’restore display’
reset-soft <Alt>r # Map Alt+r to soft reset

4.6.3 Hotkey mappings
4.6.3.1 Syntax

<action-name> [<modifier>...]<keyname>

Create a mapping of a hotkey to an action, where <action-name> is a string refering to an
operation triggered by a menu item — such as toggling Warp Mode, or attaching a disk to
a drive — followed by a keyname, optionally prefixed with one or more modifiers.

Chapter 4: System files 43

For example:

monitor-open <Alt>m
settings-open KP_Divide # map ’/’ on the keypad to the settings dialog
edit-paste <Control><Alt>Insert

The key names are case-sensitive and map directly to the symbolic constants GDK uses,
but without the leading GDK_KEY_ component. In the above example the string 'Insert’
would map to GDK_KEY_Insert.

For a list of available symbolic key names, see the gdkkeysyms.h header of
the GDK development headers. On a Debian system the file is located at
/usr/include/gtk-3.0/gdk/gdkkeysyms.h. It can also be viewed online at
https://gitlab.gnome.org/ GNOME /gtk /blob/master /gdk /gdkkeysyms.h (https://
gitlab.gnome.org/GNOME/gtk/blob/master/gdk/gdkkeysyms.h)

4.6.4 List of modifiers

Windows/Unix MacOS GDK symbolic constant
<Alt> <Option> GDK_MOD1_MASK
<Control> <Command> GDK_CONTROL_MASK
<Hyper> GDK_HYPER_MASK

<Shift> <Shift> GDK_SHIFT_MASK
<Super> <Super> GDK_SUPER_MASK

Please be aware that some modifier+key combinations are either mapped to the emulated
machine’s keyboard — such as <Control>1 being mapped to CBM+1 when using a posi-
tional keymap — or to the operating system/window manager. Mappings using <Alt> or

<A1t><Shift> are usually fine.

4.6.5 List of action names

name

advance-frame

cart-attach

cart-detach

cart-freeze
debug-autoplayback-frames
debug-core-dump-toggle
debug-trace-cpu-toggle
debug-trace-drive-10-toggle
debug-trace-drive-11-toggle
debug-trace-drive-8-toggle
debug-trace-drive-9-toggle
debug-trace-iec-toggle
drive-attach-8:1
drive-attach-9:0
drive-attach-9:1
drive-create
drive-detach-10:0

description

Advance emulation one frame
Attach cartridge

Detach cartridge

Press cartridge freeze button

Set autoplayback frames

Toggle saving core dump

Toggle CPU trace

Toggle Drive 10 CPU trace
Toggle Drive 11 CPU trace
Toggle Drive 8 CPU trace
Toggle Drive 9 CPU trace
Toggle IEC bus trace

Attach disk to unit 8, drive 1
Attach disk to unit 9, drive 0
Attach disk to unit 9, drive 1
Create and attach empty disk image
Detach disk from unit 10, drive 0

https://gitlab.gnome.org/GNOME/gtk/blob/master/gdk/gdkkeysyms.h
https://gitlab.gnome.org/GNOME/gtk/blob/master/gdk/gdkkeysyms.h

Chapter 4: System files

drive-detach-10:1
drive-detach-11:0
drive-detach-11:1
drive-detach-8:0
drive-detach-8:1
drive-detach-9:0
drive-detach-9:1
drive-detach-all
edit-copy
edit-paste
fliplist-add-8:0

fliplist-add-8:1
fliplist-add-9:0
fliplist-add-9:1
fliplist-add-10:0
fliplist-add-10:1
fliplist-add-11:0
fliplist-add-11:1

fliplist-clear-8:0
fliplist-clear-8:1
fliplist-clear-9:0
fliplist-clear-9:1
fliplist-clear-10:
fliplist-clear-10:
fliplist-clear-11:
fliplist-clear-11:
fliplist-load-8:0

fliplist-load-8:1

fliplist-load-9:0

fliplist-load-9:1

fliplist-load-10:0
fliplist-load-10:1
fliplist-load-11:0
fliplist-load-11:1
fliplist-next-8:0

fliplist-next-8:1

= O = O

44

Detach disk from unit 10, drive 1

Detach disk from unit 11, drive 0

Detach disk from unit 11, drive 1

Detach disk from unit 8, drive 0

Detach disk from unit 8, drive 1

Detach disk from unit 9, drive 0

Detach disk from unit 9, drive 1
Detach all disks

Copy screen content to clipboard

Paste clipboard content into machine

Add current disk to fliplist of unit 8, drive
0

Add current disk to fliplist of unit 8, drive
1

Add current disk to fliplist of unit 9, drive
0

Add current disk to fliplist of unit 9, drive
1

Add current disk to fliplist of unit 10, drive
0

Add current disk to fliplist of unit 10, drive
1

Add current disk to fliplist of unit 11, drive
0

Add current disk to fliplist of unit 11, drive
1

Clear fliplist of unit 8, drive 0

Clear fliplist of unit 8, drive 1

Clear fliplist of unit 9, drive 0

Clear fliplist of unit 9, drive 1

Clear fliplist of unit 10, drive 0

Clear fliplist of unit 10, drive 1

Clear fliplist of unit 11, drive 0

Clear fliplist of unit 11, drive 1

Load fliplist for unit 8, drive 0

Load fliplist for unit 8, drive 1

Load fliplist for unit 9, drive 0

Load fliplist for unit 9, drive 1

Load fliplist for unit 10, drive 0

Load fliplist for unit 10, drive 1

Load fliplist for unit 11, drive 0

Load fliplist for unit 11, drive 1

Attach next disk in fliplist of unit 8, drive
0

Attach next disk in fliplist of unit 8, drive
1

Chapter 4: System files

fliplist-next-9:0
fliplist-next-9:1
fliplist-next-10:0
fliplist-next-10:1
fliplist-next-11:0
fliplist-next-11:1
fliplist-previous—-8:0
fliplist-previous-8:1
fliplist-previous-9:0
fliplist-previous-9:1
fliplist-previous-10:0
fliplist-previous-10:1
fliplist-previous-11:0
fliplist-previous-11:1
fliplist-remove-8:0
fliplist-remove-8:1
fliplist-remove-9:0
fliplist-remove-9:1
fliplist-remove-10:0
fliplist-remove-10:1
fliplist-remove-11:0
fliplist-remove-11:1

fliplist-save-8:0

45

Attach next disk in fliplist of unit 9, drive
0

Attach next disk in fliplist of unit 9, drive
1

Attach next disk in fliplist of unit 10, drive
0

Attach next disk in fliplist of unit 10, drive
1

Attach next disk in fliplist of unit 11, drive
0

Attach next disk in fliplist of unit 11, drive
1

Attach previous disk in fliplist of unit 8,
drive 0

Attach previous disk in fliplist of unit 8,
drive 1

Attach previous disk in fliplist of unit 9,
drive 0

Attach previous disk in fliplist of unit 9,
drive 1

Attach previous disk in fliplist of unit 10,
drive 0

Attach previous disk in fliplist of unit 10,
drive 1

Attach previous disk in fliplist of unit 11,
drive 0

Attach previous disk in fliplist of unit 11,
drive 1

Remove current disk from fliplist of unit 8,
drive 0

Remove current disk from fliplist of unit 8,
drive 1

Remove current disk from fliplist of unit 9,
drive 0

Remove current disk from fliplist of unit 9,
drive 1

Remove current disk from fliplist of unit 10,
drive 0

Remove current disk from fliplist of unit 10,
drive 1

Remove current disk from fliplist of unit 11,
drive 0

Remove current disk from fliplist of unit 11,
drive 1

Save fliplist of unit 8, drive 0

Chapter 4: System files

fliplist-save-8:1
fliplist-save-9:0
fliplist-save-9:1
fliplist-save-10:0
fliplist-save-10:1
fliplist-save-11:0
fliplist-save-11:1

fullscreen-decorations-toggle

fullscreen-toggle
help-about
help-command-line
help-compile-time
help-hotkeys
help-manual

history-milestone-reset
history-milestone-set
history-playback-start
history-playback-stop

history-record-start
history-record-stop

keyset-joystick-enable

media-record
media-stop
monitor-open
mouse-grab-toggle
pause-toggle
hotkeys-clear
hotkeys-default
hotkeys-load
hotkeys-load-from
hotkeys-save
hotkeys-save-to
psid-load
psid-override-toggle
psid-subtune-1
psid-subtune-2
psid-subtune-3
psid-subtune-4
psid-subtune-5
psid-subtune-6
psid-subtune-7
psid-subtune-8
psid-subtune-9
psid-subtune-10
psid-subtune-11
psid-subtune-12
psid-subtune-13

Save fliplist of unit 8, drive 1
Save fliplist of unit 9, drive 0
Save fliplist of unit 9, drive 1
Save fliplist of unit 10, drive 0
Save fliplist of unit 10, drive 1
Save fliplist of unit 11, drive 0
Save fliplist of unit 11, drive 1
Show menu/status in fullscreen
Toggle fullscreen

Show about dialog

Command line options
Compile time features
Hotkeys

Browse VICE manual

Return to recording milestone
Set recording milestone

Start playing back events
Stop playing back events
Start recording events

Stop recording events

Allow keyset joystick

Record media

Stop media recording

Open monitor

Toggle Mouse Grab

Toggle Pause

Clear all hotkeys

Load default hotkeys

Load hotkeys from current file
Load hotkeys from custom file
Save hotkeys to current file
Save hotkeys to custom file
Load PSID file

Override PSID settings

Play PSID subtune #1

Play PSID subtune #2

Play PSID subtune #3

Play PSID subtune #4

Play PSID subtune #5

Play PSID subtune #6

Play PSID subtune #7

Play PSID subtune #8

Play PSID subtune #9

Play PSID subtune #10

Play PSID subtune #11

Play PSID subtune #12

Play PSID subtune #13

Chapter 4: System files

psid-subtune-14
psid-subtune-15
psid-subtune-16
psid-subtune-17
psid-subtune-18
psid-subtune-19
psid-subtune-20
psid-subtune-21
psid-subtune-22
psid-subtune-23
psid-subtune-24
psid-subtune-25
psid-subtune-26
psid-subtune-27
psid-subtune-28
psid-subtune-29
psid-subtune-30
psid-subtune-next
psid-subtune-previous
psid-play
psid-pause
psid-stop
psid-ffwd
psid-loop-toggle
psid-playlist-first
psid-playlist-previous
psid-playlist-next
psid-playlist-last
psid-playlist-add
psid-playlist-load
psid-playlist-save
psid-playlist-clear
quit

reset-drive-10
reset-drive-11
reset-drive-8
reset-drive-9
reset-hard
reset-soft
restore-display
screenshot-quicksave

settings—-default
settings—-dialog
settings-load
settings-load-extra

47

Play PSID subtune #14

Play PSID subtune #15

Play PSID subtune #16

Play PSID subtune #17

Play PSID subtune #18

Play PSID subtune #19

Play PSID subtune #20

Play PSID subtune #21

Play PSID subtune #22

Play PSID subtune #23

Play PSID subtune #24

Play PSID subtune #25

Play PSID subtune #26

Play PSID subtune #27

Play PSID subtune #28

Play PSID subtune #29

Play PSID subtune #30

Play next subtune

Play previous subtune

Play

Pause playback

Stop playback

Fast forward

Toggle looping

Play first tune in the playlist
Play previous tune in the playlist
Play next tune in the playlist
Play last tune in the playlist
Show dialog to add files to the playlist
Show dialog to load a platlist
Show dialog to save the playlist
Clear the playlist

Quit emulator

Reset drive 10

Reset drive 11

Reset drive 8

Reset drive 9

Hard reset the machine

Soft reset the machine

Resize application window to fit contents
Save screenshot in current working
directory

Restore default settings

Open settings dialog

Load settings

Load additional settings

Chapter 4: System files 48

settings-load-from Load settings from alternate file
settings-save Save settings
settings-save-to Save settings to alternate file
smart-attach Attach a medium to the emulator inspect-
ing its type
snapshot-load Load snapshot file
snapshot-quickload Quickload snapshot
snapshot-quicksave Quicksave snapshot
snapshot-save Save snapshot file
swap-controlport-toggle Swap controlport joysticks
tape-attach-1 Attach tape to datasette 1
tape-attach-2 Attach tape to datasette 2
tape-create-1 Create tape and attach to datasette 1
tape-create-2 Create tape and attach to datasette 2
tape-detach-1 Detach tape from datasette 1
tape-detach-2 Detach tape from datasette 2
tape-ffwd-1 Press FFWD on datasette 1
tape-ffwd-2 Press FFWD on datasette 2
tape-play-1 Press PLAY on datasette 1
tape-play-2 Press PLAY on datasette 2
tape-record-1 Press RECORD on datasette 1
tape-record-2 Press RECORD on datasette 2
tape-reset-1 Reset datasette 1
tape-reset-1 Reset datasette 2
tape-reset-counter-1 Reset datasette 1 counter
tape-reset-counter-2 Reset datasette 2 counter
tape-rewind-1 Press REWIND on datasette 1
tape-rewind-2 Press REWIND on datasette 2
tape-stop-1 Press STOP on datasette 1
tape-stop-2 Press STOP on datasette 2
warp-mode-toggle Toggle Warp Mode

To see which emulators support which actions please look at doc/gtk3-hotkeys.md or
src/arch/gtk3/uiactions.h.

4.6.6 Syntax highlighting

Vim syntax highlighting files can be found in doc/vim/. Currently there are two files:
syntax/vhk.vim and ftdetect/vhk.vim, these can be copied to $VIMFILES/ to enable
hotkeys syntax highlighting in Vim.

49

5 Basic operation
This section describes the basic things you can do once the emulator has been fired up.

5.1 The emulation window

When the emulator is run, the screen of the emulated machine is displayed in a window which
we will call the emulation window. This window will be updated in real time, displaying
the same contents that a real monitor or TV set would.

Below the emulation window there is an area which is used to display information about
the state of the emulator; we will call this area the status bar.

On the extreme left of the status bar, there is a performance meter. This displays the current
relative speed of the emulator (as a percentage) and the update frequency (in frames per
second). All the machines emulated are PAL, so the update frequency will be 50 frames per
second if your system is fast enough to allow emulation at the speed of the real machine.

On the extreme right of the status bar, there is a drive status indicator. This is only visible
if the hardware-level (“True”) 1541 emulation is turned on. In that case, the drive status
indicator will contain a rectangle emulating the drive LED and will display the current
track position of the drive’s read/write head.

5.2 Using the menus

It is possible to execute some commands and change emulation parameters while the emu-
lator is running: most emulation settings can be changed in the options menu. Additionally
clicking on the various widgets in the status bar gives access to related settings. Settings
can be saved and later used with the “Save settings” and “Load settings” menu items,
respectively. Also by default, settings will get saved when exiting the emulator. “Restore
default settings” restores the factory defaults. See See Chapter 6 [Settings and resources],
page 53, for more information about how settings work in VICE.

A lot of settings and actions can be reached via shortcuts or hotkeys, i.e., it is possible to
execute them by pressing a sequence of keys instead of going through the menu with the
mouse. Where shortcuts exist, they are displayed in parentheses at the right edge of the
menu item. In VICE, all shortcuts must begin with the Meta or Alt key. So, for example,
to attach a disk image to drive #8 (the corresponding menu item displays “M-8”), you have
to press the Meta (or Alt) and then 8.

Note that no other key presses are passed on to the emulated machine while either Meta or
Alt are held down.

5.3 Getting help

At any time, if you get stuck or do not remember how to perform a certain action, you can
use the “Browse manuals” command (from the help menu). This will open either the PDF
or popup a browser and open the HTML version of the documentation.

Notice that on Linux this requires VICE to be properly (and fully) installed, eg with a
‘make install’.

Chapter 5: Basic operation 50

5.4 Using the file selector

In those situations where it is necessary to specify a file name, all of the VICE emulators
will pop up a file selector window allowing you to select or specify a file interactively.

To the le