Visual Servoing Platform version 3.6.0
Loading...
Searching...
No Matches
servoViper650FourPoints2DCamVelocityLs_cur.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2023 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See https://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the camera frame
35 *
36*****************************************************************************/
54#include <fstream>
55#include <iostream>
56#include <sstream>
57#include <stdio.h>
58#include <stdlib.h>
59
60#include <visp3/core/vpConfig.h>
61
62#if defined(VISP_HAVE_VIPER650) && defined(VISP_HAVE_DC1394) && defined(VISP_HAVE_X11)
63
64#include <visp3/blob/vpDot2.h>
65#include <visp3/core/vpHomogeneousMatrix.h>
66#include <visp3/core/vpIoTools.h>
67#include <visp3/core/vpPoint.h>
68#include <visp3/gui/vpDisplayX.h>
69#include <visp3/robot/vpRobotViper650.h>
70#include <visp3/sensor/vp1394TwoGrabber.h>
71#include <visp3/vision/vpPose.h>
72#include <visp3/visual_features/vpFeatureBuilder.h>
73#include <visp3/visual_features/vpFeaturePoint.h>
74#include <visp3/vs/vpServo.h>
75#include <visp3/vs/vpServoDisplay.h>
76
77#define L 0.05 // to deal with a 10cm by 10cm square
78
97void compute_pose(std::vector<vpPoint> &point, std::vector<vpDot2> &dot, vpCameraParameters cam,
98 vpHomogeneousMatrix &cMo, bool init)
99{
100 vpPose pose;
101
102 for (size_t i = 0; i < point.size(); i++) {
103
104 double x = 0, y = 0;
105 vpImagePoint cog = dot[i].getCog();
107 y); // pixel to meter conversion
108 point[i].set_x(x); // projection perspective p
109 point[i].set_y(y);
110 pose.addPoint(point[i]);
111 }
112
113 if (init == true) {
115 } else {
117 }
118}
119
120int main()
121{
122 // Log file creation in /tmp/$USERNAME/log.dat
123 // This file contains by line:
124 // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
125 // - the 6 mesured joint velocities (m/s, rad/s)
126 // - the 6 mesured joint positions (m, rad)
127 // - the 8 values of s - s*
128 std::string username;
129 // Get the user login name
130 vpIoTools::getUserName(username);
131
132 // Create a log filename to save velocities...
133 std::string logdirname;
134 logdirname = "/tmp/" + username;
135
136 // Test if the output path exist. If no try to create it
137 if (vpIoTools::checkDirectory(logdirname) == false) {
138 try {
139 // Create the dirname
140 vpIoTools::makeDirectory(logdirname);
141 } catch (...) {
142 std::cerr << std::endl << "ERROR:" << std::endl;
143 std::cerr << " Cannot create " << logdirname << std::endl;
144 return EXIT_FAILURE;
145 }
146 }
147 std::string logfilename;
148 logfilename = logdirname + "/log.dat";
149
150 // Open the log file name
151 std::ofstream flog(logfilename.c_str());
152
153 try {
154 vpRobotViper650 robot;
155 // Load the end-effector to camera frame transformation obtained
156 // using a camera intrinsic model with distortion
160 robot.get_eMc(eMc);
161 std::cout << "Camera extrinsic parameters (eMc): \n" << eMc << std::endl;
162
163 vpServo task;
164
166
167 bool reset = false;
168 vp1394TwoGrabber g(reset);
170 g.setFramerate(vp1394TwoGrabber::vpFRAMERATE_60);
171 g.open(I);
172
173 g.acquire(I);
174
175 vpDisplayX display(I, 100, 100, "Current image");
178
179 std::vector<vpDot2> dot(4);
180
181 std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
182
183 for (size_t i = 0; i < dot.size(); i++) {
184 dot[i].setGraphics(true);
185 dot[i].initTracking(I);
186 vpImagePoint cog = dot[i].getCog();
189 }
190
192
193 // Update camera parameters
194 robot.getCameraParameters(cam, I);
195 std::cout << "Camera intrinsic parameters: \n" << cam << std::endl;
196
197 // Sets the current position of the visual feature
198 vpFeaturePoint p[4];
199 for (size_t i = 0; i < dot.size(); i++)
200 vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
201
202 // Set the position of the square target in a frame which origin is
203 // centered in the middle of the square
204 std::vector<vpPoint> point(4);
205 point[0].setWorldCoordinates(-L, -L, 0);
206 point[1].setWorldCoordinates(L, -L, 0);
207 point[2].setWorldCoordinates(L, L, 0);
208 point[3].setWorldCoordinates(-L, L, 0);
209
210 // Compute target initial pose
212 compute_pose(point, dot, cam, cMo, true);
213 std::cout << "Initial camera pose (cMo): \n" << cMo << std::endl;
214
215 // Initialise a desired pose to compute s*, the desired 2D point features
216 vpHomogeneousMatrix cMo_d(vpTranslationVector(0, 0, 0.5), // tz = 0.5 meter
217 vpRotationMatrix()); // no rotation
218
219 // Sets the desired position of the 2D visual feature
220 vpFeaturePoint pd[4];
221 // Compute the desired position of the features from the desired pose
222 for (int i = 0; i < 4; i++) {
223 vpColVector cP, p;
224 point[i].changeFrame(cMo_d, cP);
225 point[i].projection(cP, p);
226
227 pd[i].set_x(p[0]);
228 pd[i].set_y(p[1]);
229 pd[i].set_Z(cP[2]);
230 }
231
232 // We want to see a point on a point
233 for (size_t i = 0; i < dot.size(); i++)
234 task.addFeature(p[i], pd[i]);
235
236 // Set the proportional gain
237 task.setLambda(0.3);
238
239 // Define the task
240 // - we want an eye-in-hand control law
241 // - camera velocities are computed
244 task.print();
245
246 // Initialise the velocity control of the robot
248
249 std::cout << "\nHit CTRL-C or click in the image to stop the loop...\n" << std::flush;
250 for (;;) {
251 // Acquire a new image from the camera
252 g.acquire(I);
253
254 // Display this image
256
257 try {
258 // For each point...
259 for (size_t i = 0; i < dot.size(); i++) {
260 // Achieve the tracking of the dot in the image
261 dot[i].track(I);
262 // Display a green cross at the center of gravity position in the
263 // image
264 vpImagePoint cog = dot[i].getCog();
266 }
267 } catch (...) {
268 std::cout << "Error detected while tracking visual features.." << std::endl;
269 break;
270 }
271
272 // During the servo, we compute the pose using a non linear method. For
273 // the initial pose used in the non linear minimization we use the pose
274 // computed at the previous iteration.
275 compute_pose(point, dot, cam, cMo, false);
276
277 for (size_t i = 0; i < dot.size(); i++) {
278 // Update the point feature from the dot location
279 vpFeatureBuilder::create(p[i], cam, dot[i]);
280 // Set the feature Z coordinate from the pose
281 vpColVector cP;
282 point[i].changeFrame(cMo, cP);
283
284 p[i].set_Z(cP[2]);
285 }
286
287 // Compute the visual servoing skew vector
289
290 // Display the current and desired feature points in the image display
291 vpServoDisplay::display(task, cam, I);
292
293 // Apply the computed joint velocities to the robot
295
296 // Save velocities applied to the robot in the log file
297 // v[0], v[1], v[2] correspond to camera translation velocities in m/s
298 // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
299 flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
300
301 // Get the measured joint velocities of the robot
302 vpColVector qvel;
304 // Save measured joint velocities of the robot in the log file:
305 // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
306 // velocities in m/s
307 // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
308 // velocities in rad/s
309 flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
310
311 // Get the measured joint positions of the robot
312 vpColVector q;
313 robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
314 // Save measured joint positions of the robot in the log file
315 // - q[0], q[1], q[2] correspond to measured joint translation
316 // positions in m
317 // - q[3], q[4], q[5] correspond to measured joint rotation
318 // positions in rad
319 flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
320
321 // Save feature error (s-s*) for the 4 feature points. For each feature
322 // point, we have 2 errors (along x and y axis). This error is
323 // expressed in meters in the camera frame
324 flog << task.getError() << std::endl;
325
326 vpDisplay::displayText(I, 10, 10, "Click to quit...", vpColor::red);
327 if (vpDisplay::getClick(I, false))
328 break;
329
330 // Flush the display
332
333 // std::cout << "\t\t || s - s* || = " << ( task.getError()
334 // ).sumSquare() << std::endl;
335 }
336
337 robot.stopMotion();
338
339 std::cout << "Display task information: " << std::endl;
340 task.print();
341 flog.close(); // Close the log file
342 return EXIT_SUCCESS;
343 } catch (const vpException &e) {
344 flog.close(); // Close the log file
345 std::cout << "Catched an exception: " << e.getMessage() << std::endl;
346 return EXIT_FAILURE;
347 }
348}
349
350#else
351int main()
352{
353 std::cout << "You do not have an Viper 650 robot connected to your computer..." << std::endl;
354 return EXIT_SUCCESS;
355}
356#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
Generic class defining intrinsic camera parameters.
@ perspectiveProjWithDistortion
Perspective projection with distortion model.
Implementation of column vector and the associated operations.
static const vpColor red
Definition vpColor.h:211
static const vpColor blue
Definition vpColor.h:217
static const vpColor green
Definition vpColor.h:214
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition vpDisplayX.h:132
static bool getClick(const vpImage< unsigned char > &I, bool blocking=true)
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
static void displayText(const vpImage< unsigned char > &I, const vpImagePoint &ip, const std::string &s, const vpColor &color)
error that can be emitted by ViSP classes.
Definition vpException.h:59
const char * getMessage() const
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition of the vpImage class member functions.
Definition vpImage.h:135
static bool checkDirectory(const std::string &dirname)
static std::string getUserName()
static void makeDirectory(const std::string &dirname)
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition vpPose.h:81
void addPoint(const vpPoint &P)
Definition vpPose.cpp:140
@ DEMENTHON_LAGRANGE_VIRTUAL_VS
Definition vpPose.h:102
@ VIRTUAL_VS
Definition vpPose.h:96
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition vpPose.cpp:469
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
Control of Irisa's Viper S650 robot named Viper650.
@ ARTICULAR_FRAME
Definition vpRobot.h:76
@ CAMERA_FRAME
Definition vpRobot.h:80
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition vpRobot.h:64
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition vpRobot.cpp:198
Implementation of a rotation matrix and operations on such kind of matrices.
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition vpServo.cpp:564
@ EYEINHAND_CAMERA
Definition vpServo.h:151
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition vpServo.cpp:299
void setLambda(double c)
Definition vpServo.h:403
void setServo(const vpServoType &servo_type)
Definition vpServo.cpp:210
vpColVector getError() const
Definition vpServo.h:276
@ PSEUDO_INVERSE
Definition vpServo.h:199
vpColVector computeControlLaw()
Definition vpServo.cpp:930
@ CURRENT
Definition vpServo.h:179
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition vpServo.cpp:487
Class that consider the case of a translation vector.
@ TOOL_PTGREY_FLEA2_CAMERA
Definition vpViper650.h:126