Visual Servoing Platform version 3.5.0
servoSimuThetaUCamVelocity.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Simulation of a visual servoing using theta U visual features.
33 * tests the control law
34 * eye-in-hand control
35 * velocity computed in the camera frame
36 * using theta U visual feature
37 *
38 * Authors:
39 * Eric Marchand
40 * Fabien Spindler
41 *
42 *****************************************************************************/
43
52#include <stdio.h>
53#include <stdlib.h>
54
55#include <visp3/core/vpHomogeneousMatrix.h>
56#include <visp3/core/vpMath.h>
57#include <visp3/io/vpParseArgv.h>
58#include <visp3/robot/vpSimulatorCamera.h>
59#include <visp3/visual_features/vpFeatureThetaU.h>
60#include <visp3/visual_features/vpFeatureTranslation.h>
61#include <visp3/vs/vpServo.h>
62
63// List of allowed command line options
64#define GETOPTARGS "h"
65void usage(const char *name, const char *badparam);
66bool getOptions(int argc, const char **argv);
75void usage(const char *name, const char *badparam)
76{
77 fprintf(stdout, "\n\
78Simulation of avisual servoing using theta U visual feature:\n\
79- eye-in-hand control law,\n\
80- velocity computed in the camera frame,\n\
81- without display.\n\
82 \n\
83SYNOPSIS\n\
84 %s [-h]\n", name);
85
86 fprintf(stdout, "\n\
87OPTIONS: Default\n\
88 \n\
89 -h\n\
90 Print the help.\n");
91
92 if (badparam)
93 fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
94}
95
106bool getOptions(int argc, const char **argv)
107{
108 const char *optarg_;
109 int c;
110 while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
111
112 switch (c) {
113 case 'h':
114 usage(argv[0], NULL);
115 return false;
116
117 default:
118 usage(argv[0], optarg_);
119 return false;
120 }
121 }
122
123 if ((c == 1) || (c == -1)) {
124 // standalone param or error
125 usage(argv[0], NULL);
126 std::cerr << "ERROR: " << std::endl;
127 std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
128 return false;
129 }
130
131 return true;
132}
133
134int main(int argc, const char **argv)
135{
136#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
137 try {
138 // Read the command line options
139 if (getOptions(argc, argv) == false) {
140 exit(-1);
141 }
142
143 vpServo task;
144 vpSimulatorCamera robot;
145
146 std::cout << std::endl;
147 std::cout << "-------------------------------------------------------" << std::endl;
148 std::cout << " Test program for vpServo " << std::endl;
149 std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
150 std::cout << " Simulation " << std::endl;
151 std::cout << " task : servo using theta U visual feature " << std::endl;
152 std::cout << "-------------------------------------------------------" << std::endl;
153 std::cout << std::endl;
154
155 // sets the initial camera location
156 vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
157
158 vpHomogeneousMatrix cMo(c_r_o);
159 // Compute the position of the object in the world frame
160 vpHomogeneousMatrix wMc, wMo;
161 robot.getPosition(wMc);
162 wMo = wMc * cMo;
163
164 // sets the desired camera location
165 vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
166 vpHomogeneousMatrix cdMo(cd_r_o);
167
168 // compute the rotation that the camera has to realize
170 cdMc = cdMo * cMo.inverse();
172 tu.buildFrom(cdMc);
173
174 // define the task
175 // - we want an eye-in-hand control law
176 // - robot is controlled in the camera frame
179
180 task.addFeature(tu);
181
182 // - set the gain
183 task.setLambda(1);
184
185 // Display task information
186 task.print();
187
188 unsigned int iter = 0;
189 // loop
190 while (iter++ < 200) {
191 std::cout << "---------------------------------------------" << iter << std::endl;
192 vpColVector v;
193
194 // get the robot position
195 robot.getPosition(wMc);
196 // Compute the position of the object frame in the camera frame
197 cMo = wMc.inverse() * wMo;
198
199 // new rotation to achieve
200 cdMc = cdMo * cMo.inverse();
201 tu.buildFrom(cdMc);
202
203 // compute the control law
204 v = task.computeControlLaw();
205
206 // send the camera velocity to the controller
208
209 std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
210 }
211
212 // Display task information
213 task.print();
214 return EXIT_SUCCESS;
215 } catch (const vpException &e) {
216 std::cout << "Catch a ViSP exception: " << e << std::endl;
217 return EXIT_FAILURE;
218 }
219#else
220 (void)argc;
221 (void)argv;
222 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
223 return EXIT_SUCCESS;
224#endif
225}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
error that can be emited by ViSP classes.
Definition: vpException.h:72
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static double rad(double deg)
Definition: vpMath.h:110
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ DESIRED
Definition: vpServo.h:186
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that defines the simplest robot: a free flying camera.