Visual Servoing Platform version 3.5.0
vpRobotCamera.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Defines the simplest robot : a free flying camera.
33 *
34 * Authors:
35 * Eric Marchand
36 *
37 *****************************************************************************/
38
44#include <visp3/robot/vpRobotCamera.h>
45
46#if defined(VISP_BUILD_DEPRECATED_FUNCTIONS)
47
48#include <visp3/core/vpDebug.h>
49#include <visp3/core/vpExponentialMap.h>
50#include <visp3/core/vpHomogeneousMatrix.h>
51#include <visp3/robot/vpRobotException.h>
52
72vpRobotCamera::vpRobotCamera() : cMw_() { init(); }
73
81void vpRobotCamera::init()
82{
83 nDof = 6;
84 eJe.eye(6, 6);
85 eJeAvailable = true;
86 fJeAvailable = false;
88 qmin = NULL;
89 qmax = NULL;
90
91 setMaxTranslationVelocity(1.); // vx, vy and vz max set to 1 m/s
92 setMaxRotationVelocity(vpMath::rad(90)); // wx, wy and wz max set to 90 deg/s
93}
94
100
112{
114 cVe = cVe_;
115}
116
124void vpRobotCamera::get_eJe(vpMatrix &eJe_) { eJe_ = this->eJe; }
125
149{
150 switch (frame) {
155 }
156
157 vpColVector v_max(6);
158
159 for (unsigned int i = 0; i < 3; i++)
160 v_max[i] = getMaxTranslationVelocity();
161 for (unsigned int i = 3; i < 6; i++)
162 v_max[i] = getMaxRotationVelocity();
163
164 vpColVector v_sat = vpRobot::saturateVelocities(v, v_max, true);
165
166 this->cMw_ = vpExponentialMap::direct(v_sat, delta_t_).inverse() * this->cMw_;
167 break;
168 }
170 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the reference frame:"
171 "functionality not implemented");
172 break;
174 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the mixt frame:"
175 "functionality not implemented");
176
177 break;
179 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the end-effector frame:"
180 "functionality not implemented");
181 break;
182 }
183}
184
189void vpRobotCamera::getPosition(vpHomogeneousMatrix &cMw) const { cMw = this->cMw_; }
190
191/*
192 Get the current position of the robot.
193
194 \param frame : Control frame type in which to get the position, either :
195 - in the camera cartesien frame,
196 - joint (articular) coordinates of each axes
197 - in a reference or fixed cartesien frame attached to the robot base
198 - in a mixt cartesien frame (translation in reference frame, and rotation in
199 camera frame)
200
201 \param position : Measured position of the robot:
202 - in camera cartesien frame, a 6 dimension vector, set to 0.
203
204 - in articular, a 6 dimension vector corresponding to the articular
205 position of each dof, first the 3 translations, then the 3
206 articular rotation positions represented by a vpRxyzVector.
207
208 - in reference frame, a 6 dimension vector, the first 3 values correspond to
209 the translation tx, ty, tz in meters (like a vpTranslationVector), and the
210 last 3 values to the rx, ry, rz rotation (like a vpRxyzVector).
211*/
213{
214 q.resize(6);
215
216 switch (frame) {
218 q = 0;
219 break;
220
223 // Convert wMc_ to a position
224 // From fMc extract the pose
226 this->cMw_.extract(cRw);
227 vpRxyzVector rxyz;
228 rxyz.buildFrom(cRw);
229
230 for (unsigned int i = 0; i < 3; i++) {
231 q[i] = this->cMw_[i][3]; // translation x,y,z
232 q[i + 3] = rxyz[i]; // Euler rotation x,y,z
233 }
234
235 break;
236 }
238 std::cout << "MIXT_FRAME is not implemented in vpSimulatorCamera::getPosition()" << std::endl;
239 break;
241 std::cout << "END_EFFECTOR_FRAME is not implemented in vpSimulatorCamera::getPosition()" << std::endl;
242 break;
243 }
244}
245
251{
254 }
255
256 this->cMw_ = cMw;
257}
258
259#elif !defined(VISP_BUILD_SHARED_LIBS)
260// Work arround to avoid warning: libvisp_robot.a(vpRobotCamera.cpp.o) has no
261// symbols
262void dummy_vpRobotCamera(){};
263#endif
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
void resize(unsigned int i, bool flagNullify=true)
Definition: vpColVector.h:310
static vpHomogeneousMatrix direct(const vpColVector &v)
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void extract(vpRotationMatrix &R) const
static double rad(double deg)
Definition: vpMath.h:110
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:154
void eye()
Definition: vpMatrix.cpp:449
virtual ~vpRobotCamera()
void get_eJe(vpMatrix &eJe)
void setPosition(const vpHomogeneousMatrix &cMw)
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &v)
void get_cVe(vpVelocityTwistMatrix &cVe) const
vpHomogeneousMatrix cMw_
void getPosition(vpHomogeneousMatrix &cMw) const
Error that can be emited by the vpRobot class and its derivates.
int nDof
number of degrees of freedom
Definition: vpRobot.h:102
vpMatrix eJe
robot Jacobian expressed in the end-effector frame
Definition: vpRobot.h:104
virtual vpRobotStateType getRobotState(void) const
Definition: vpRobot.h:144
double * qmin
Definition: vpRobot.h:113
static vpColVector saturateVelocities(const vpColVector &v_in, const vpColVector &v_max, bool verbose=false)
Definition: vpRobot.cpp:163
vpControlFrameType
Definition: vpRobot.h:75
@ REFERENCE_FRAME
Definition: vpRobot.h:76
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ MIXT_FRAME
Definition: vpRobot.h:86
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ END_EFFECTOR_FRAME
Definition: vpRobot.h:81
double * qmax
Definition: vpRobot.h:114
int areJointLimitsAvailable
Definition: vpRobot.h:112
int fJeAvailable
is the robot Jacobian expressed in the robot reference frame available
Definition: vpRobot.h:110
@ STATE_POSITION_CONTROL
Initialize the position controller.
Definition: vpRobot.h:67
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
double getMaxRotationVelocity(void) const
Definition: vpRobot.cpp:273
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
int eJeAvailable
is the robot Jacobian expressed in the end-effector frame available
Definition: vpRobot.h:106
double getMaxTranslationVelocity(void) const
Definition: vpRobot.cpp:251
void setMaxRotationVelocity(double maxVr)
Definition: vpRobot.cpp:260
void setMaxTranslationVelocity(double maxVt)
Definition: vpRobot.cpp:239
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:184
vpRxyzVector buildFrom(const vpRotationMatrix &R)