Visual Servoing Platform version 3.5.0
servoSimuPoint2DhalfCamVelocity1.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Simulation of a 2 1/2 D visual servoing.
33 *
34 * Authors:
35 * Eric Marchand
36 * Fabien Spindler
37 *
38 *****************************************************************************/
39
50#include <stdio.h>
51#include <stdlib.h>
52
53#include <visp3/core/vpHomogeneousMatrix.h>
54#include <visp3/core/vpMath.h>
55#include <visp3/core/vpPoint.h>
56#include <visp3/io/vpParseArgv.h>
57#include <visp3/robot/vpSimulatorCamera.h>
58#include <visp3/visual_features/vpFeatureBuilder.h>
59#include <visp3/visual_features/vpFeaturePoint.h>
60#include <visp3/visual_features/vpFeatureThetaU.h>
61#include <visp3/visual_features/vpGenericFeature.h>
62#include <visp3/vs/vpServo.h>
63
64// List of allowed command line options
65#define GETOPTARGS "h"
66
67void usage(const char *name, const char *badparam);
68bool getOptions(int argc, const char **argv);
69
78void usage(const char *name, const char *badparam)
79{
80 fprintf(stdout, "\n\
81Simulation of a 2 1/2 D visual servoing (x,y,Z,theta U):\n\
82- eye-in-hand control law,\n\
83- velocity computed in the camera frame,\n\
84- without display.\n\
85 \n\
86SYNOPSIS\n\
87 %s [-h]\n", name);
88
89 fprintf(stdout, "\n\
90OPTIONS: Default\n\
91 \n\
92 -h\n\
93 Print the help.\n");
94
95 if (badparam) {
96 fprintf(stderr, "ERROR: \n");
97 fprintf(stderr, "\nBad parameter [%s]\n", badparam);
98 }
99}
100
111bool getOptions(int argc, const char **argv)
112{
113 const char *optarg_;
114 int c;
115 while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
116
117 switch (c) {
118 case 'h':
119 usage(argv[0], NULL);
120 return false;
121
122 default:
123 usage(argv[0], optarg_);
124 return false;
125 }
126 }
127
128 if ((c == 1) || (c == -1)) {
129 // standalone param or error
130 usage(argv[0], NULL);
131 std::cerr << "ERROR: " << std::endl;
132 std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
133 return false;
134 }
135
136 return true;
137}
138
139int main(int argc, const char **argv)
140{
141#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
142 try {
143 // Read the command line options
144 if (getOptions(argc, argv) == false) {
145 exit(-1);
146 }
147
148 vpServo task;
149 vpSimulatorCamera robot;
150
151 std::cout << std::endl;
152 std::cout << "-------------------------------------------------------" << std::endl;
153 std::cout << " Test program for vpServo " << std::endl;
154 std::cout << " task : 2 1/2 D visual servoing " << std::endl;
155 std::cout << "-------------------------------------------------------" << std::endl;
156 std::cout << std::endl;
157
158 // sets the initial camera location
159 vpPoseVector c_r_o(0.1, 0.2, 2, vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
160
161 vpHomogeneousMatrix cMo(c_r_o);
162 // Compute the position of the object in the world frame
163 vpHomogeneousMatrix wMc, wMo;
164 robot.getPosition(wMc);
165 wMo = wMc * cMo;
166
167 // sets the desired camera location
168 vpPoseVector cd_r_o(0, 0, 1, vpMath::rad(0), vpMath::rad(0), vpMath::rad(0));
169 vpHomogeneousMatrix cdMo(cd_r_o);
170
171 // sets the point coordinates in the world frame
172 vpPoint point(0, 0, 0);
173 // computes the point coordinates in the camera frame and its 2D
174 // coordinates
175 point.track(cMo);
176
177 vpPoint pointd(0, 0, 0);
178 pointd.track(cdMo);
179 //------------------------------------------------------------------
180 // 1st feature (x,y)
181 // want to it at (0,0)
183 vpFeatureBuilder::create(p, point);
184
186 vpFeatureBuilder::create(pd, pointd);
187
188 //------------------------------------------------------------------
189 // 2nd feature (Z)
190 // not necessary to project twice (reuse p)
192 vpFeatureBuilder::create(Z, point); // retrieve x,y and Z of the vpPoint structure
193
194 // want to see it one meter away (here again use pd)
196 vpFeatureBuilder::create(Zd, pointd); // retrieve x,y and Z of the vpPoint structure
197
198 //------------------------------------------------------------------
199 // 3rd feature ThetaU
200 // compute the rotation that the camera has to achieve
202 cdMc = cdMo * cMo.inverse();
203
205 tu.buildFrom(cdMc);
206
207 // sets the desired rotation (always zero !)
208 // since s is the rotation that the camera has to achieve
209
210 //------------------------------------------------------------------
211 // define the task
212 // - we want an eye-in-hand control law
213 // - robot is controlled in the camera frame
215
216 task.addFeature(p, pd);
218 task.addFeature(tu);
219
220 // set the gain
221 task.setLambda(1);
222
223 // Display task information
224 task.print();
225
226 unsigned int iter = 0;
227 // loop
228 while (iter++ < 200) {
229 std::cout << "---------------------------------------------" << iter << std::endl;
230 vpColVector v;
231
232 // get the robot position
233 robot.getPosition(wMc);
234 // Compute the position of the object frame in the camera frame
235 cMo = wMc.inverse() * wMo;
236
237 // update the feature
238 point.track(cMo);
239 vpFeatureBuilder::create(p, point);
240 vpFeatureBuilder::create(Z, point);
241
242 cdMc = cdMo * cMo.inverse();
243 tu.buildFrom(cdMc);
244
245 // compute the control law
246 v = task.computeControlLaw();
247 // send the camera velocity to the controller ") ;
249
250 std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
251 }
252
253 // Display task information
254 task.print();
255 std::cout << "Final camera location:\n " << cMo << std::endl;
256 return EXIT_SUCCESS;
257 } catch (const vpException &e) {
258 std::cout << "Catch a ViSP exception: " << e << std::endl;
259 return EXIT_SUCCESS;
260 }
261#else
262 (void)argc;
263 (void)argv;
264 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
265 return EXIT_SUCCESS;
266#endif
267}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
error that can be emited by ViSP classes.
Definition: vpException.h:72
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines the 3D point visual feature.
static unsigned int selectZ()
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static double rad(double deg)
Definition: vpMath.h:110
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that defines the simplest robot: a free flying camera.