Visual Servoing Platform version 3.5.0
servoAfma6FourPoints2DCamVelocityLs_cur.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * tests the control law
33 * eye-in-hand control
34 * velocity computed in the camera frame
35 *
36 * Authors:
37 * Eric Marchand
38 * Fabien Spindler
39 *
40 *****************************************************************************/
41
64#include <stdlib.h>
65#include <visp3/core/vpConfig.h>
66#include <visp3/core/vpDebug.h> // Debug trace
67#if (defined(VISP_HAVE_AFMA6) && defined(VISP_HAVE_DC1394))
68
69#include <visp3/core/vpDisplay.h>
70#include <visp3/core/vpImage.h>
71#include <visp3/core/vpImagePoint.h>
72#include <visp3/gui/vpDisplayGTK.h>
73#include <visp3/gui/vpDisplayOpenCV.h>
74#include <visp3/gui/vpDisplayX.h>
75#include <visp3/sensor/vp1394TwoGrabber.h>
76
77#include <visp3/blob/vpDot.h>
78#include <visp3/core/vpHomogeneousMatrix.h>
79#include <visp3/core/vpIoTools.h>
80#include <visp3/core/vpMath.h>
81#include <visp3/core/vpPoint.h>
82#include <visp3/core/vpRotationMatrix.h>
83#include <visp3/core/vpRxyzVector.h>
84#include <visp3/core/vpTranslationVector.h>
85#include <visp3/robot/vpRobotAfma6.h>
86#include <visp3/vision/vpPose.h>
87#include <visp3/visual_features/vpFeatureBuilder.h>
88#include <visp3/visual_features/vpFeaturePoint.h>
89#include <visp3/vs/vpServo.h>
90#include <visp3/vs/vpServoDisplay.h>
91
92// Exception
93#include <visp3/core/vpException.h>
94
95#define L 0.05 // to deal with a 10cm by 10cm square
96
122void compute_pose(vpPoint point[], vpDot2 dot[], int ndot, vpCameraParameters cam, vpHomogeneousMatrix &cMo,
123 vpTranslationVector &cto, vpRxyzVector &cro, bool init)
124{
125 vpHomogeneousMatrix cMo_dementhon; // computed pose with dementhon
126 vpHomogeneousMatrix cMo_lagrange; // computed pose with dementhon
128 vpPose pose;
129 vpImagePoint cog;
130 for (int i = 0; i < ndot; i++) {
131
132 double x = 0, y = 0;
133
134 cog = dot[i].getCog();
136 y); // pixel to meter conversion
137 // std::cout << "point cam: " << i << x << " " << y << std::endl;
138 point[i].set_x(x); // projection perspective p
139 point[i].set_y(y);
140 pose.addPoint(point[i]);
141 // std::cout << "point " << i << std::endl;
142 // point[i].print();
143 }
144
145 if (init == true) {
146 pose.computePose(vpPose::DEMENTHON, cMo_dementhon);
147 // compute the pose for a given method
148 // cMo_dementhon.extract(cto);
149 // cMo_dementhon.extract(cRo);
150 // cro.buildFrom(cRo);
151 // Compute and return the residual expressed in meter for the pose matrix
152 // 'cMo'
153 double residual_dementhon = pose.computeResidual(cMo_dementhon);
154
155 // std::cout << "\nPose Dementhon "
156 // << "(residual: " << residual_dementhon << ")\n "
157 // << "cdto[0] = " << cto[0] << ";\n "
158 // << "cdto[1] = " << cto[1] << ";\n "
159 // << "cdto[2] = " << cto[2] << ";\n "
160 // << "cdro[0] = vpMath::rad(" << vpMath::deg(cro[0]) << ");\n "
161 // << "cdro[1] = vpMath::rad(" << vpMath::deg(cro[1]) << ");\n "
162 // << "cdro[2] = vpMath::rad(" << vpMath::deg(cro[2]) << ");\n"
163 // << std::endl;
164
165 pose.computePose(vpPose::LAGRANGE, cMo_lagrange);
166 // cMo_lagrange.extract(cto);
167 // cMo_lagrange.extract(cRo);
168 // cro.buildFrom(cRo);
169 double residual_lagrange = pose.computeResidual(cMo_lagrange);
170
171 // std::cout << "\nPose Lagrange "
172 // << "(residual: " << residual_lagrange << ")\n "
173 // << "cdto[0] = " << cto[0] << ";\n "
174 // << "cdto[1] = " << cto[1] << ";\n "
175 // << "cdto[2] = " << cto[2] << ";\n "
176 // << "cdro[0] = vpMath::rad(" << vpMath::deg(cro[0]) << ");\n "
177 // << "cdro[1] = vpMath::rad(" << vpMath::deg(cro[1]) << ");\n "
178 // << "cdro[2] = vpMath::rad(" << vpMath::deg(cro[2]) << ");\n"
179 // << std::endl;
180
181 // cout << "Lagrange residual term: " << residual_lagrange <<endl ;
182
183 // Select the best pose to initialize the lowe pose computation
184 if (residual_lagrange < residual_dementhon) // on garde le cMo
185 cMo = cMo_lagrange;
186 else
187 cMo = cMo_dementhon;
188
189 // cout
190 // <<"------------------------------------------------------------"<<endl
191 } else { // init = false; use of the previous pose to initialise LOWE
192 cRo.buildFrom(cro);
193 cMo.buildFrom(cto, cRo);
194 }
195 pose.computePose(vpPose::LOWE, cMo);
196 cMo.extract(cto);
197 cMo.extract(cRo);
198 cro.buildFrom(cRo);
199 // double residual_lowe = pose.computeResidual(cMo);
200
201 // std::cout << "\nPose LOWE "
202 // << "(residual: " << residual_lowe << ")\n "
203 // << "cdto[0] = " << cto[0] << ";\n "
204 // << "cdto[1] = " << cto[1] << ";\n "
205 // << "cdto[2] = " << cto[2] << ";\n "
206 // << "cdro[0] = vpMath::rad(" << vpMath::deg(cro[0]) << ");\n "
207 // << "cdro[1] = vpMath::rad(" << vpMath::deg(cro[1]) << ");\n "
208 // << "cdro[2] = vpMath::rad(" << vpMath::deg(cro[2]) << ");\n"
209 // << std::endl;
210
211 // vpTRACE( "LOWE pose :" ) ;
212 // std::cout << cMo << std::endl ;
213}
214
215int main()
216{
217 // Log file creation in /tmp/$USERNAME/log.dat
218 // This file contains by line:
219 // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
220 // - the 6 mesured joint velocities (m/s, rad/s)
221 // - the 6 mesured joint positions (m, rad)
222 // - the 8 values of s - s*
223 // - the 6 values of the pose cMo (tx,ty,tz, rx,ry,rz) with translation
224 // in meters and rotations in radians
225 std::string username;
226 // Get the user login name
227 vpIoTools::getUserName(username);
228
229 // Create a log filename to save velocities...
230 std::string logdirname;
231 logdirname = "/tmp/" + username;
232
233 // Test if the output path exist. If no try to create it
234 if (vpIoTools::checkDirectory(logdirname) == false) {
235 try {
236 // Create the dirname
237 vpIoTools::makeDirectory(logdirname);
238 } catch (...) {
239 std::cerr << std::endl << "ERROR:" << std::endl;
240 std::cerr << " Cannot create " << logdirname << std::endl;
241 exit(-1);
242 }
243 }
244 std::string logfilename;
245 logfilename = logdirname + "/log.dat";
246
247 // Open the log file name
248 std::ofstream flog(logfilename.c_str());
249
250 try {
251 vpServo task;
252
254 int i;
255
259 g.open(I);
260
261#ifdef VISP_HAVE_X11
262 vpDisplayX display(I, 100, 100, "Current image");
263#elif defined(VISP_HAVE_OPENCV)
264 vpDisplayOpenCV display(I, 100, 100, "Current image");
265#elif defined(VISP_HAVE_GTK)
266 vpDisplayGTK display(I, 100, 100, "Current image");
267#endif
268
269 g.acquire(I);
270
273
274 std::cout << std::endl;
275 std::cout << "-------------------------------------------------------" << std::endl;
276 std::cout << " Test program for vpServo " << std::endl;
277 std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
278 std::cout << " Use of the Afma6 robot " << std::endl;
279 std::cout << " Interaction matrix computed with the current features " << std::endl;
280 std::cout << " task : servo 4 points on a square with dimention " << L << " meters" << std::endl;
281 std::cout << "-------------------------------------------------------" << std::endl;
282 std::cout << std::endl;
283
284 vpDot2 dot[4];
285 vpImagePoint cog;
286
287 std::cout << "Click on the 4 dots clockwise starting from upper/left dot..." << std::endl;
288 for (i = 0; i < 4; i++) {
289 dot[i].initTracking(I);
290 cog = dot[i].getCog();
293 }
294
296 vpRobotAfma6 robot;
297
298 // Load the end-effector to camera frame transformation obtained
299 // using a camera intrinsic model with distortion
300 robot.init(vpAfma6::TOOL_CCMOP, projModel);
301
303 // Update camera parameters
304 robot.getCameraParameters(cam, I);
305
306 // Sets the current position of the visual feature
307 vpFeaturePoint p[4];
308 for (i = 0; i < 4; i++)
309 vpFeatureBuilder::create(p[i], cam, dot[i]); // retrieve x,y of the vpFeaturePoint structure
310
311 // Set the position of the square target in a frame which origin is
312 // centered in the middle of the square
313 vpPoint point[4];
314 point[0].setWorldCoordinates(-L, -L, 0);
315 point[1].setWorldCoordinates(L, -L, 0);
316 point[2].setWorldCoordinates(L, L, 0);
317 point[3].setWorldCoordinates(-L, L, 0);
318
319 // Initialise a desired pose to compute s*, the desired 2D point features
321 vpTranslationVector cto(0, 0, 0.7); // tz = 0.7 meter
323 vpMath::rad(0)); // No rotations
324 vpRotationMatrix cRo(cro); // Build the rotation matrix
325 cMo.buildFrom(cto, cRo); // Build the homogeneous matrix
326
327 // Sets the desired position of the 2D visual feature
328 vpFeaturePoint pd[4];
329 // Compute the desired position of the features from the desired pose
330 for (int i = 0; i < 4; i++) {
331 vpColVector cP, p;
332 point[i].changeFrame(cMo, cP);
333 point[i].projection(cP, p);
334
335 pd[i].set_x(p[0]);
336 pd[i].set_y(p[1]);
337 pd[i].set_Z(cP[2]);
338 }
339
340 // Define the task
341 // - we want an eye-in-hand control law
342 // - robot is controlled in the camera frame
343 // - Interaction matrix is computed with the current visual features
346
347 // We want to see a point on a point
348 std::cout << std::endl;
349 for (i = 0; i < 4; i++)
350 task.addFeature(p[i], pd[i]);
351
352 // Set the proportional gain
353 task.setLambda(0.1);
354
355 // Display task information
356 task.print();
357
358 // Initialise the velocity control of the robot
360
361 // Initialise the pose using Lagrange and Dementhon methods, chose the
362 // best estimated pose (either Lagrange or Dementhon) and than compute the
363 // pose using LOWE method with Lagrange or Dementhon pose as
364 // initialisation. compute_pose(point, dot, 4, cam, cMo, cto, cro, true);
365
366 std::cout << "\nHit CTRL-C to stop the loop...\n" << std::flush;
367
368 for (;;) {
369 // Acquire a new image from the camera
370 g.acquire(I);
371
372 // Display this image
374
375 // For each point...
376 for (i = 0; i < 4; i++) {
377 // Achieve the tracking of the dot in the image
378 dot[i].track(I);
379 // Get the dot cog
380 cog = dot[i].getCog();
381 // Display a green cross at the center of gravity position in the
382 // image
384 }
385
386 // During the servo, we compute the pose using LOWE method. For the
387 // initial pose used in the non linear minimisation we use the pose
388 // computed at the previous iteration.
389 compute_pose(point, dot, 4, cam, cMo, cto, cro, false);
390
391 for (i = 0; i < 4; i++) {
392 // Update the point feature from the dot location
393 vpFeatureBuilder::create(p[i], cam, dot[i]);
394 // Set the feature Z coordinate from the pose
395 vpColVector cP;
396 point[i].changeFrame(cMo, cP);
397
398 p[i].set_Z(cP[2]);
399 }
400
401 // Printing on stdout concerning task information
402 // task.print() ;
403
404 vpColVector v;
405 // Compute the visual servoing skew vector
406 v = task.computeControlLaw();
407
408 // Display the current and desired feature points in the image display
409 vpServoDisplay::display(task, cam, I);
410
411 // Apply the computed camera velocities to the robot
413
414 // Save velocities applied to the robot in the log file
415 // v[0], v[1], v[2] correspond to camera translation velocities in m/s
416 // v[3], v[4], v[5] correspond to camera rotation velocities in rad/s
417 flog << v[0] << " " << v[1] << " " << v[2] << " " << v[3] << " " << v[4] << " " << v[5] << " ";
418
419 // Get the measured joint velocities of the robot
420 vpColVector qvel;
422 // Save measured joint velocities of the robot in the log file:
423 // - qvel[0], qvel[1], qvel[2] correspond to measured joint translation
424 // velocities in m/s
425 // - qvel[3], qvel[4], qvel[5] correspond to measured joint rotation
426 // velocities in rad/s
427 flog << qvel[0] << " " << qvel[1] << " " << qvel[2] << " " << qvel[3] << " " << qvel[4] << " " << qvel[5] << " ";
428
429 // Get the measured joint positions of the robot
430 vpColVector q;
431 robot.getPosition(vpRobot::ARTICULAR_FRAME, q);
432 // Save measured joint positions of the robot in the log file
433 // - q[0], q[1], q[2] correspond to measured joint translation
434 // positions in m
435 // - q[3], q[4], q[5] correspond to measured joint rotation
436 // positions in rad
437 flog << q[0] << " " << q[1] << " " << q[2] << " " << q[3] << " " << q[4] << " " << q[5] << " ";
438
439 // Save feature error (s-s*) for the 4 feature points. For each feature
440 // point, we have 2 errors (along x and y axis). This error is
441 // expressed in meters in the camera frame
442 flog << (task.getError()).t() << " "; // s-s* for points
443
444 // Save the current cMo pose: translations in meters, rotations (rx, ry,
445 // rz) in radians
446 flog << cto[0] << " " << cto[1] << " " << cto[2] << " " // translation
447 << cro[0] << " " << cro[1] << " " << cro[2] << std::endl; // rot
448
449 // Flush the display
451 }
452
453 flog.close(); // Close the log file
454
455 // Display task information
456 task.print();
457
458 return EXIT_SUCCESS;
459 }
460 catch (const vpException &e) {
461 flog.close(); // Close the log file
462
463 std::cout << "Test failed with exception: " << e << std::endl;
464 return EXIT_FAILURE;
465 }
466}
467
468#else
469int main()
470{
471 std::cout << "You do not have an afma6 robot connected to your computer..." << std::endl;
472 return EXIT_SUCCESS;
473}
474
475#endif
Class for firewire ieee1394 video devices using libdc1394-2.x api.
void acquire(vpImage< unsigned char > &I)
void setVideoMode(vp1394TwoVideoModeType videomode)
void setFramerate(vp1394TwoFramerateType fps)
void open(vpImage< unsigned char > &I)
@ TOOL_CCMOP
Definition: vpAfma6.h:127
Generic class defining intrinsic camera parameters.
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
static const vpColor blue
Definition: vpColor.h:223
static const vpColor green
Definition: vpColor.h:220
The vpDisplayGTK allows to display image using the GTK 3rd party library. Thus to enable this class G...
Definition: vpDisplayGTK.h:135
The vpDisplayOpenCV allows to display image using the OpenCV library. Thus to enable this class OpenC...
Use the X11 console to display images on unix-like OS. Thus to enable this class X11 should be instal...
Definition: vpDisplayX.h:135
static void display(const vpImage< unsigned char > &I)
static void displayCross(const vpImage< unsigned char > &I, const vpImagePoint &ip, unsigned int size, const vpColor &color, unsigned int thickness=1)
static void flush(const vpImage< unsigned char > &I)
This tracker is meant to track a blob (connex pixels with same gray level) on a vpImage.
Definition: vpDot2.h:127
void track(const vpImage< unsigned char > &I, bool canMakeTheWindowGrow=true)
Definition: vpDot2.cpp:441
vpImagePoint getCog() const
Definition: vpDot2.h:180
void initTracking(const vpImage< unsigned char > &I, unsigned int size=0)
Definition: vpDot2.cpp:253
error that can be emited by ViSP classes.
Definition: vpException.h:72
static void create(vpFeaturePoint &s, const vpCameraParameters &cam, const vpDot &d)
Class that defines a 2D point visual feature which is composed by two parameters that are the cartes...
void set_y(double y)
void set_x(double x)
void set_Z(double Z)
Implementation of an homogeneous matrix and operations on such kind of matrices.
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void extract(vpRotationMatrix &R) const
Class that defines a 2D point in an image. This class is useful for image processing and stores only ...
Definition: vpImagePoint.h:88
void init(unsigned int h, unsigned int w, Type value)
Definition: vpImage.h:631
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:420
static std::string getUserName()
Definition: vpIoTools.cpp:316
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:570
static double rad(double deg)
Definition: vpMath.h:110
static void convertPoint(const vpCameraParameters &cam, const double &u, const double &v, double &x, double &y)
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
void set_x(double x)
Set the point x coordinate in the image plane.
Definition: vpPoint.cpp:511
void projection(const vpColVector &_cP, vpColVector &_p) const
Definition: vpPoint.cpp:222
void changeFrame(const vpHomogeneousMatrix &cMo, vpColVector &cP) const
Definition: vpPoint.cpp:239
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
void set_y(double y)
Set the point y coordinate in the image plane.
Definition: vpPoint.cpp:513
Class used for pose computation from N points (pose from point only). Some of the algorithms implemen...
Definition: vpPose.h:81
void addPoint(const vpPoint &P)
Definition: vpPose.cpp:149
@ DEMENTHON
Definition: vpPose.h:86
@ LAGRANGE
Definition: vpPose.h:85
@ LOWE
Definition: vpPose.h:87
double computeResidual(const vpHomogeneousMatrix &cMo) const
Compute and return the sum of squared residuals expressed in meter^2 for the pose matrix cMo.
Definition: vpPose.cpp:336
bool computePose(vpPoseMethodType method, vpHomogeneousMatrix &cMo, bool(*func)(const vpHomogeneousMatrix &)=NULL)
Definition: vpPose.cpp:374
Control of Irisa's gantry robot named Afma6.
Definition: vpRobotAfma6.h:212
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
void getVelocity(const vpRobot::vpControlFrameType frame, vpColVector &velocity)
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
Implementation of a rotation matrix and operations on such kind of matrices.
vpRotationMatrix buildFrom(const vpHomogeneousMatrix &M)
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:184
vpRxyzVector buildFrom(const vpRotationMatrix &R)
static void display(const vpServo &s, const vpCameraParameters &cam, const vpImage< unsigned char > &I, vpColor currentColor=vpColor::green, vpColor desiredColor=vpColor::red, unsigned int thickness=1)
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
@ PSEUDO_INVERSE
Definition: vpServo.h:202
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that consider the case of a translation vector.