Visual Servoing Platform version 3.5.0
vpSimulatorPioneer.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Pioneer mobile robot simulator without display.
33 *
34 * Authors:
35 * Fabien Spindler
36 *
37 *****************************************************************************/
38
46#include <visp3/core/vpDebug.h>
47#include <visp3/core/vpExponentialMap.h>
48#include <visp3/core/vpHomogeneousMatrix.h>
49#include <visp3/robot/vpRobotException.h>
50#include <visp3/robot/vpSimulatorPioneer.h>
51
56vpSimulatorPioneer::vpSimulatorPioneer() : wMc_(), wMe_(), xm_(0), ym_(0), theta_(0) { init(); }
57
65void vpSimulatorPioneer::init()
66{
67 xm_ = 0;
68 ym_ = 0;
69 theta_ = 0;
70
71 nDof = 2;
72 eJeAvailable = true;
73 fJeAvailable = false;
75 qmin = NULL;
76 qmax = NULL;
77
78 wMc_ = wMe_ * cMe_.inverse();
79}
80
86
95
114{
115 switch (frame) {
119 }
120 setRobotFrame(frame);
121
122 // v is a 2 dimension vector that contains v,w
123 if (v.size() != 2) {
124 vpERROR_TRACE("Bad dimension of the control vector");
125 throw vpRobotException(vpRobotException::dimensionError, "Bad dimension of the control vector");
126 }
127
128 vpColVector v_max(2);
129
130 v_max[0] = getMaxTranslationVelocity();
131 v_max[1] = getMaxRotationVelocity();
132
133 vpColVector v_sat = vpRobot::saturateVelocities(v, v_max, true);
134
135 xm_ += delta_t_ * v_sat[0] * cos(theta_);
136 ym_ += delta_t_ * v_sat[0] * sin(theta_);
137 theta_ += delta_t_ * v_sat[1];
138
139 vpRotationMatrix wRe(0, 0, theta_);
140 vpTranslationVector wte(xm_, ym_, 0);
141 wMe_.buildFrom(wte, wRe);
142 wMc_ = wMe_ * cMe_.inverse();
143
144 break;
145 } break;
147 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the camera frame:"
148 "functionality not implemented");
149 break;
151 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the articular frame:"
152 "functionality not implemented");
154 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the mixt frame:"
155 "functionality not implemented");
156
157 break;
159 throw vpRobotException(vpRobotException::wrongStateError, "Cannot set a velocity in the end-effector frame:"
160 "functionality not implemented");
161
162 break;
163 }
164}
165
171
172/*
173 Get the current position of the robot.
174
175 \param frame : Control frame type in which to get the position, either :
176 - in the camera cartesien frame,
177 - joint (articular) coordinates of each axes (not implemented)
178 - in a reference or fixed cartesien frame attached to the robot base
179 - in a mixt cartesien frame (translation in reference frame, and rotation in
180 camera frame)
181
182 \param position : Measured position of the robot:
183 - in camera cartesien frame, a 6 dimension vector, set to 0.
184
185 - in articular, this functionality is not implemented.
186
187 - in reference frame, a 6 dimension vector, the first 3 values correspond to
188 the translation tx, ty, tz in meters (like a vpTranslationVector), and the
189 last 3 values to the rx, ry, rz rotation (like a vpRxyzVector).
190*/
192{
193 q.resize(6);
194
195 switch (frame) {
197 q = 0;
198 break;
199
201 std::cout << "ARTICULAR_FRAME is not implemented in "
202 "vpSimulatorPioneer::getPosition()"
203 << std::endl;
204 break;
206 // Convert wMc_ to a position
207 // From fMc extract the pose
209 this->wMc_.extract(wRc);
210 vpRxyzVector rxyz;
211 rxyz.buildFrom(wRc);
212
213 for (unsigned int i = 0; i < 3; i++) {
214 q[i] = this->wMc_[i][3]; // translation x,y,z
215 q[i + 3] = rxyz[i]; // Euler rotation x,y,z
216 }
217
218 break;
219 }
221 std::cout << "MIXT_FRAME is not implemented in vpSimulatorCamera::getPosition()" << std::endl;
222 break;
224 std::cout << "END_EFFECTOR_FRAME is not implemented in vpSimulatorCamera::getPosition()" << std::endl;
225 break;
226 }
227}
unsigned int size() const
Return the number of elements of the 2D array.
Definition: vpArray2D.h:291
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
void resize(unsigned int i, bool flagNullify=true)
Definition: vpColVector.h:310
@ dimensionError
Bad dimension.
Definition: vpException.h:95
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
void extract(vpRotationMatrix &R) const
Implementation of a matrix and operations on matrices.
Definition: vpMatrix.h:154
Error that can be emited by the vpRobot class and its derivates.
int nDof
number of degrees of freedom
Definition: vpRobot.h:102
virtual vpRobotStateType getRobotState(void) const
Definition: vpRobot.h:144
double * qmin
Definition: vpRobot.h:113
static vpColVector saturateVelocities(const vpColVector &v_in, const vpColVector &v_max, bool verbose=false)
Definition: vpRobot.cpp:163
vpControlFrameType
Definition: vpRobot.h:75
@ REFERENCE_FRAME
Definition: vpRobot.h:76
@ ARTICULAR_FRAME
Definition: vpRobot.h:78
@ MIXT_FRAME
Definition: vpRobot.h:86
@ CAMERA_FRAME
Definition: vpRobot.h:82
@ END_EFFECTOR_FRAME
Definition: vpRobot.h:81
double * qmax
Definition: vpRobot.h:114
int areJointLimitsAvailable
Definition: vpRobot.h:112
int fJeAvailable
is the robot Jacobian expressed in the robot reference frame available
Definition: vpRobot.h:110
@ STATE_VELOCITY_CONTROL
Initialize the velocity controller.
Definition: vpRobot.h:66
double getMaxRotationVelocity(void) const
Definition: vpRobot.cpp:273
virtual vpRobotStateType setRobotState(const vpRobot::vpRobotStateType newState)
Definition: vpRobot.cpp:201
int eJeAvailable
is the robot Jacobian expressed in the end-effector frame available
Definition: vpRobot.h:106
double getMaxTranslationVelocity(void) const
Definition: vpRobot.cpp:251
vpControlFrameType setRobotFrame(vpRobot::vpControlFrameType newFrame)
Definition: vpRobot.cpp:207
Implementation of a rotation matrix and operations on such kind of matrices.
Implementation of a rotation vector as Euler angle minimal representation.
Definition: vpRxyzVector.h:184
vpRxyzVector buildFrom(const vpRotationMatrix &R)
vpHomogeneousMatrix wMc_
void getPosition(vpHomogeneousMatrix &wMc) const
vpHomogeneousMatrix wMe_
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
Class that consider the case of a translation vector.
vpMatrix get_eJe() const
Definition: vpUnicycle.h:107
vpHomogeneousMatrix cMe_
Definition: vpUnicycle.h:127
#define vpERROR_TRACE
Definition: vpDebug.h:393