Visual Servoing Platform version 3.5.0
homographyHartleyDLT2DObject.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Example of the HartleyDLT homography estimation algorithm.
33 *
34 * Authors:
35 * Eric Marchand
36 *
37 *****************************************************************************/
53#include <visp3/core/vpDebug.h>
54#include <visp3/core/vpMath.h>
55#include <visp3/core/vpRotationMatrix.h>
56#include <visp3/core/vpThetaUVector.h>
57#include <visp3/vision/vpHomography.h>
58
59#include <stdlib.h>
60#include <visp3/core/vpDebug.h>
61#include <visp3/core/vpHomogeneousMatrix.h>
62#include <visp3/core/vpMath.h>
63#include <visp3/core/vpPoint.h>
64#include <visp3/io/vpParseArgv.h>
65// List of allowed command line options
66#define GETOPTARGS "h"
67
68#define L 0.1
69#define nbpt 5
70
71void usage(const char *name, const char *badparam);
72bool getOptions(int argc, const char **argv);
73
83void usage(const char *name, const char *badparam)
84{
85 fprintf(stdout, "\n\
86Test the HartleyDLT homography estimation algorithm.\n\
87\n\
88SYNOPSIS\n\
89 %s [-h]\n", name);
90
91 fprintf(stdout, "\n\
92OPTIONS: Default\n\
93 -h\n\
94 Print the help.\n");
95
96 if (badparam) {
97 fprintf(stderr, "ERROR: \n");
98 fprintf(stderr, "\nBad parameter [%s]\n", badparam);
99 }
100}
112bool getOptions(int argc, const char **argv)
113{
114 const char *optarg_;
115 int c;
116 while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
117
118 switch (c) {
119 case 'h':
120 usage(argv[0], NULL);
121 return false;
122 break;
123
124 default:
125 usage(argv[0], optarg_);
126 return false;
127 break;
128 }
129 }
130
131 if ((c == 1) || (c == -1)) {
132 // standalone param or error
133 usage(argv[0], NULL);
134 std::cerr << "ERROR: " << std::endl;
135 std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
136 return false;
137 }
138
139 return true;
140}
141
142int main(int argc, const char **argv)
143{
144#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
145 try {
146 // Read the command line options
147 if (getOptions(argc, argv) == false) {
148 exit(-1);
149 }
150
151 vpPoint P[nbpt]; // Point to be tracked
152 std::vector<double> xa(nbpt), ya(nbpt), xb(nbpt), yb(nbpt);
153
154 vpPoint aP[nbpt]; // Point to be tracked
155 vpPoint bP[nbpt]; // Point to be tracked
156
157 P[0].setWorldCoordinates(-L, -L, 0);
158 P[1].setWorldCoordinates(2 * L, -L, 0);
159 P[2].setWorldCoordinates(L, L, 0);
160 P[3].setWorldCoordinates(-L, 3 * L, 0);
161 P[4].setWorldCoordinates(0, 0, 0);
162 /*
163 P[5].setWorldCoordinates(10,20, 0 ) ;
164 P[6].setWorldCoordinates(-10,12, 0 ) ;
165 */
166 vpHomogeneousMatrix bMo(0, 0, 1, 0, 0, 0);
167 vpHomogeneousMatrix aMb(1, 0, 0.0, vpMath::rad(10), 0, vpMath::rad(40));
168 vpHomogeneousMatrix aMo = aMb * bMo;
169 for (unsigned int i = 0; i < nbpt; i++) {
170 P[i].project(aMo);
171 aP[i] = P[i];
172 xa[i] = P[i].get_x();
173 ya[i] = P[i].get_y();
174 }
175
176 for (unsigned int i = 0; i < nbpt; i++) {
177 P[i].project(bMo);
178 bP[i] = P[i];
179 xb[i] = P[i].get_x();
180 yb[i] = P[i].get_y();
181 }
182 std::cout << "-------------------------------" << std::endl;
183 std::cout << "aMb " << std::endl << aMb << std::endl;
184 std::cout << "-------------------------------" << std::endl;
185 vpHomography aHb;
186
187 vpHomography::DLT(xb, yb, xa, ya, aHb, true);
188
189 vpTRACE("aHb computed using the DLT algorithm");
190 aHb /= aHb[2][2];
191 std::cout << std::endl << aHb << std::endl;
192
195 vpColVector n;
196
197 std::cout << "-------------------------------" << std::endl;
198 vpTRACE("extract R, T and n ");
199 aHb.computeDisplacement(aRb, aTb, n);
200 std::cout << "Rotation: aRb" << std::endl;
201 std::cout << aRb << std::endl;
202 std::cout << "Translation: aTb" << std::endl;
203 std::cout << (aTb).t() << std::endl;
204 std::cout << "Normal to the plane: n" << std::endl;
205 std::cout << (n).t() << std::endl;
206
207 std::cout << "-------------------------------" << std::endl;
208 vpTRACE("Compare with built homoraphy H = R + t/d ");
209 vpPlane bp(0, 0, 1, 1);
210 vpHomography aHb_built(aMb, bp);
211 vpTRACE("aHb built from the displacement ");
212 std::cout << std::endl << aHb_built / aHb_built[2][2] << std::endl;
213
214 aHb_built.computeDisplacement(aRb, aTb, n);
215 std::cout << "Rotation: aRb" << std::endl;
216 std::cout << aRb << std::endl;
217 std::cout << "Translation: aTb" << std::endl;
218 std::cout << (aTb).t() << std::endl;
219 std::cout << "Normal to the plane: n" << std::endl;
220 std::cout << (n).t() << std::endl;
221
222 std::cout << "-------------------------------" << std::endl;
223 vpTRACE("test if ap = aHb bp");
224
225 for (unsigned int i = 0; i < nbpt; i++) {
226 std::cout << "Point " << i << std::endl;
227 vpPoint p;
228 std::cout << "(";
229 std::cout << aP[i].get_x() / aP[i].get_w() << ", " << aP[i].get_y() / aP[i].get_w();
230 std::cout << ") = (";
231 p = aHb * bP[i];
232 std::cout << p.get_x() / p.get_w() << ", " << p.get_y() / p.get_w() << ")" << std::endl;
233 }
234 return EXIT_SUCCESS;
235 } catch (const vpException &e) {
236 std::cout << "Catch an exception: " << e << std::endl;
237 return EXIT_FAILURE;
238 }
239#else
240 (void)argc;
241 (void)argv;
242 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
243 return EXIT_SUCCESS;
244#endif
245}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
error that can be emited by ViSP classes.
Definition: vpException.h:72
Implementation of an homogeneous matrix and operations on such kind of matrices.
Implementation of an homography and operations on homographies.
Definition: vpHomography.h:175
static void DLT(const std::vector< double > &xb, const std::vector< double > &yb, const std::vector< double > &xa, const std::vector< double > &ya, vpHomography &aHb, bool normalization=true)
void computeDisplacement(vpRotationMatrix &aRb, vpTranslationVector &atb, vpColVector &n)
static double rad(double deg)
Definition: vpMath.h:110
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
This class defines the container for a plane geometrical structure.
Definition: vpPlane.h:59
Class that defines a 3D point in the object frame and allows forward projection of a 3D point in the ...
Definition: vpPoint.h:82
double get_w() const
Get the point w coordinate in the image plane.
Definition: vpPoint.cpp:474
double get_y() const
Get the point y coordinate in the image plane.
Definition: vpPoint.cpp:472
double get_x() const
Get the point x coordinate in the image plane.
Definition: vpPoint.cpp:470
void setWorldCoordinates(double oX, double oY, double oZ)
Definition: vpPoint.cpp:113
Implementation of a rotation matrix and operations on such kind of matrices.
Class that consider the case of a translation vector.
#define vpTRACE
Definition: vpDebug.h:416