Visual Servoing Platform version 3.5.0
servoSimu3D_cMcd_CamVelocity.cpp
1/****************************************************************************
2 *
3 * ViSP, open source Visual Servoing Platform software.
4 * Copyright (C) 2005 - 2019 by Inria. All rights reserved.
5 *
6 * This software is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 * See the file LICENSE.txt at the root directory of this source
11 * distribution for additional information about the GNU GPL.
12 *
13 * For using ViSP with software that can not be combined with the GNU
14 * GPL, please contact Inria about acquiring a ViSP Professional
15 * Edition License.
16 *
17 * See http://visp.inria.fr for more information.
18 *
19 * This software was developed at:
20 * Inria Rennes - Bretagne Atlantique
21 * Campus Universitaire de Beaulieu
22 * 35042 Rennes Cedex
23 * France
24 *
25 * If you have questions regarding the use of this file, please contact
26 * Inria at visp@inria.fr
27 *
28 * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
29 * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
30 *
31 * Description:
32 * Simulation of a 3D visual servoing.
33 *
34 * Authors:
35 * Eric Marchand
36 * Fabien Spindler
37 *
38 *****************************************************************************/
58#include <stdio.h>
59#include <stdlib.h>
60
61#include <visp3/core/vpHomogeneousMatrix.h>
62#include <visp3/core/vpIoTools.h>
63#include <visp3/core/vpMath.h>
64#include <visp3/io/vpParseArgv.h>
65#include <visp3/robot/vpSimulatorCamera.h>
66#include <visp3/visual_features/vpFeatureThetaU.h>
67#include <visp3/visual_features/vpFeatureTranslation.h>
68#include <visp3/vs/vpServo.h>
69
70// List of allowed command line options
71#define GETOPTARGS "h"
72
73void usage(const char *name, const char *badparam);
74bool getOptions(int argc, const char **argv);
75
84void usage(const char *name, const char *badparam)
85{
86 fprintf(stdout, "\n\
87Simulation of a 3D visual servoing:\n\
88- eye-in-hand control law,\n\
89- velocity computed in the camera frame,\n\
90- without display.\n\
91 \n\
92SYNOPSIS\n\
93 %s [-h]\n", name);
94
95 fprintf(stdout, "\n\
96OPTIONS: Default\n\
97 \n\
98 -h\n\
99 Print the help.\n");
100
101 if (badparam)
102 fprintf(stdout, "\nERROR: Bad parameter [%s]\n", badparam);
103}
104
114bool getOptions(int argc, const char **argv)
115{
116 const char *optarg_;
117 int c;
118 while ((c = vpParseArgv::parse(argc, argv, GETOPTARGS, &optarg_)) > 1) {
119
120 switch (c) {
121 case 'h':
122 usage(argv[0], NULL);
123 return false;
124
125 default:
126 usage(argv[0], optarg_);
127 return false;
128 }
129 }
130
131 if ((c == 1) || (c == -1)) {
132 // standalone param or error
133 usage(argv[0], NULL);
134 std::cerr << "ERROR: " << std::endl;
135 std::cerr << " Bad argument " << optarg_ << std::endl << std::endl;
136 return false;
137 }
138
139 return true;
140}
141
142int main(int argc, const char **argv)
143{
144#if (defined(VISP_HAVE_LAPACK) || defined(VISP_HAVE_EIGEN3) || defined(VISP_HAVE_OPENCV))
145 try {
146 // Read the command line options
147 if (getOptions(argc, argv) == false) {
148 exit(-1);
149 }
150
151 // Log file creation in /tmp/$USERNAME/log.dat
152 // This file contains by line:
153 // - the 6 computed camera velocities (m/s, rad/s) to achieve the task
154 // - the 6 values of s - s*
155 std::string username;
156 // Get the user login name
157 vpIoTools::getUserName(username);
158
159 // Create a log filename to save velocities...
160 std::string logdirname;
161#if defined(_WIN32)
162 logdirname = "C:/temp/" + username;
163#else
164 logdirname = "/tmp/" + username;
165#endif
166 // Test if the output path exist. If no try to create it
167 if (vpIoTools::checkDirectory(logdirname) == false) {
168 try {
169 // Create the dirname
170 vpIoTools::makeDirectory(logdirname);
171 } catch (...) {
172 std::cerr << std::endl << "ERROR:" << std::endl;
173 std::cerr << " Cannot create " << logdirname << std::endl;
174 exit(-1);
175 }
176 }
177 std::string logfilename;
178 logfilename = logdirname + "/log.dat";
179
180 // Open the log file name
181 std::ofstream flog(logfilename.c_str());
182
183 vpServo task;
184 vpSimulatorCamera robot;
185
186 std::cout << std::endl;
187 std::cout << "-------------------------------------------------------" << std::endl;
188 std::cout << " Test program for vpServo " << std::endl;
189 std::cout << " Eye-in-hand task control, velocity computed in the camera frame" << std::endl;
190 std::cout << " Simulation " << std::endl;
191 std::cout << " task : 3D visual servoing " << std::endl;
192 std::cout << "-------------------------------------------------------" << std::endl;
193 std::cout << std::endl;
194
195 // Sets the initial camera location
196 vpPoseVector c_r_o( // Translation tx,ty,tz
197 0.1, 0.2, 2,
198 // ThetaU rotation
199 vpMath::rad(20), vpMath::rad(10), vpMath::rad(50));
200
201 // From the camera pose build the corresponding homogeneous matrix
202 vpHomogeneousMatrix cMo(c_r_o);
203
204 // Set the robot initial position
205 vpHomogeneousMatrix wMc, wMo;
206 robot.getPosition(wMc);
207 wMo = wMc * cMo; // Compute the position of the object in the world frame
208
209 // Sets the desired camera location
210 vpPoseVector cd_r_o( // Translation tx,ty,tz
211 0, 0, 1,
212 // ThetaU rotation
214
215 // From the camera desired pose build the corresponding homogeneous matrix
216 vpHomogeneousMatrix cdMo(cd_r_o);
217
218 // Compute the transformation from the initial camera position to the
219 // desired one
221 cMcd = cMo * cdMo.inverse();
222
223 // Build the 3D translation feature: ctc*
225 t.buildFrom(cMcd);
226
227 // Build the 3D rotation feature: thetaU_cRc*
228 vpFeatureThetaU tu(vpFeatureThetaU::cRcd); // current feature
229 tu.buildFrom(cMcd);
230
231 // Sets the desired rotation (always zero !) since s is the
232 // rotation that the camera has to achieve. Here s* = (0, 0)^T
234 vpFeatureThetaU tud(vpFeatureThetaU::cRcd); // desired feature
235
236 // Define the task
237 // - we want an eye-in-hand control law
238 // - the robot is controlled in the camera frame
240 // - we use here the interaction matrix computed with the current
241 // features
243
244 // Add the current and desired visual features
245 task.addFeature(t, td); // 3D translation
246 task.addFeature(tu, tud); // 3D rotation theta u
247
248 // - set the constant gain to 1.0
249 task.setLambda(1);
250
251 // Display task information
252 task.print();
253
254 unsigned int iter = 0;
255 // Start the visual servoing loop. We stop the servo after 200 iterations
256 while (iter++ < 200) {
257 std::cout << "------------------------------------" << iter << std::endl;
258 vpColVector v;
259
260 // get the robot position
261 robot.getPosition(wMc);
262 // Compute the position of the object frame in the camera frame
263 cMo = wMc.inverse() * wMo;
264
265 // new displacement to achieve
266 cMcd = cMo * cdMo.inverse();
267
268 // Update the current visual features
269 t.buildFrom(cMcd);
270 tu.buildFrom(cMcd);
271
272 // Compute the control law
273 v = task.computeControlLaw();
274
275 // Display task information
276 if (iter == 1)
277 task.print();
278
279 // Send the camera velocity to the controller
281
282 // Retrieve the error
283 std::cout << "|| s - s* || = " << (task.getError()).sumSquare() << std::endl;
284
285 // Save log
286 flog << v.t() << " " << (task.getError()).t() << std::endl;
287 }
288 // Display task information
289 task.print();
290
291 // Kill the task
292
293 // Close the log file
294 flog.close();
295 return EXIT_SUCCESS;
296 } catch (const vpException &e) {
297 std::cout << "Catch a ViSP exception: " << e << std::endl;
298 return EXIT_FAILURE;
299 }
300#else
301 (void)argc;
302 (void)argv;
303 std::cout << "Cannot run this example: install Lapack, Eigen3 or OpenCV" << std::endl;
304 return EXIT_SUCCESS;
305#endif
306}
Implementation of column vector and the associated operations.
Definition: vpColVector.h:131
vpRowVector t() const
error that can be emited by ViSP classes.
Definition: vpException.h:72
Class that defines a 3D visual feature from a axis/angle parametrization that represent the rotatio...
Class that defines the translation visual feature .
Implementation of an homogeneous matrix and operations on such kind of matrices.
vpHomogeneousMatrix inverse() const
void buildFrom(const vpTranslationVector &t, const vpRotationMatrix &R)
static bool checkDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:420
static std::string getUserName()
Definition: vpIoTools.cpp:316
static void makeDirectory(const std::string &dirname)
Definition: vpIoTools.cpp:570
static double rad(double deg)
Definition: vpMath.h:110
static bool parse(int *argcPtr, const char **argv, vpArgvInfo *argTable, int flags)
Definition: vpParseArgv.cpp:69
Implementation of a pose vector and operations on poses.
Definition: vpPoseVector.h:152
void setVelocity(const vpRobot::vpControlFrameType frame, const vpColVector &vel)
@ CAMERA_FRAME
Definition: vpRobot.h:82
void setInteractionMatrixType(const vpServoIteractionMatrixType &interactionMatrixType, const vpServoInversionType &interactionMatrixInversion=PSEUDO_INVERSE)
Definition: vpServo.cpp:567
@ EYEINHAND_CAMERA
Definition: vpServo.h:155
void print(const vpServo::vpServoPrintType display_level=ALL, std::ostream &os=std::cout)
Definition: vpServo.cpp:306
void setLambda(double c)
Definition: vpServo.h:404
void setServo(const vpServoType &servo_type)
Definition: vpServo.cpp:218
vpColVector getError() const
Definition: vpServo.h:278
vpColVector computeControlLaw()
Definition: vpServo.cpp:929
@ CURRENT
Definition: vpServo.h:182
void addFeature(vpBasicFeature &s, vpBasicFeature &s_star, unsigned int select=vpBasicFeature::FEATURE_ALL)
Definition: vpServo.cpp:490
Class that defines the simplest robot: a free flying camera.